Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics
Abstract
1. Introduction
2. Materials and Methods
2.1. Provenance of Clay Samples
2.2. Characterization of Clay Samples
2.2.1. DSC Analysis
2.2.2. TG/DTA
2.2.3. Particle Size Distribution Analysis
2.2.4. X-Ray Diffraction Determination
2.2.5. X-Ray Fluorescence Assessment
2.3. Formulation Development
2.4. In Vivo Efficacy Assessment of Red, Green, and Black Clay-Based Cosmetic Formulations
2.4.1. Specific Inclusion Criteria
2.4.2. Specific Exclusion Criteria
2.4.3. Assessment of Skin Firmness and Elasticity by Cutometry
- Skin firmness: R0 (or Uf) parameter—Maximum amplitude—highest point in the curve
- Skin biologic elasticity: R7 (Ur/Uf)—Skin’s ability to return to its initial position after deformation.
2.4.4. Assessment of Skin Oiliness by Sebumetry
2.4.5. Statistical Treatment
3. Results
3.1. Clay Sample Characterization
3.1.1. DSC
3.1.2. TG/DTA
3.1.3. Particle Size Distribution
3.1.4. X-Ray Diffraction
3.1.5. X-Ray Fluorescence
3.2. Skin Parameters: Cutometry (Firmness and Elasticity) and Sebumetry (Oiliness)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef]
- Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Nardy, B.C. Caracterização do Material Pelítico Utilizado Para Fins Terapêuticos, Cosméticos e de Higiene Pessoal no Vale do Capão, Chapada Diamantina, Bahia, Trabalho de Conclusão de Curso. Master’s Dissertation, School of Mines, Federal University of Ouro Preto, Ouro Preto, Brazil, 2018; p. 81. [Google Scholar]
- Zague, V. Desenvolvimento e Avaliação da Estabilidade Física e Físico-Química de Máscaras Faciais Argilosas. Master’s Dissertation, Universidade de São Paulo, São Paulo, Brazil, 2007; p. 160. [Google Scholar]
- Balduino, A.P.Z. Estudo da Caracterização e Composição de Argilas de Uso Cosmético. Master’s Dissertation, Universidade Federal de Jatai, Jataí, Brazil, 2016; p. 55. [Google Scholar]
- Sarruf, F.D.; Contreras, V.J.P.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics. Cosmetics 2024, 11, 7. [Google Scholar] [CrossRef]
- Daneluz, J.; Favero, J.D.S.; dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Mexias, A.S.; Bergmann, C.P. The influence of different concentrations of a natural clay material as active principle in cosmetic formulations. Mater. Res. 2020, 23, e20190572. [Google Scholar] [CrossRef]
- Matike, D.M.E.; Ekosse, G.I.E.; Ngole, V.M. Physico-chemical properties of clayey soils used traditionally for cosmetics in Eastern Cape, South Africa. Int. J. Phys. Sci. 2011, 6, 7557–7566. [Google Scholar] [CrossRef]
- Ng’etich, W.K.; Mwangi, E.M.; Kiptoo, J.; Digo, C.A.; Ombito, J.O. In vitro determination of Sun Protection Factor on Clays Used for Cosmetic Purposes in Kenya. Chem. Mater. Res. 2014, 6, 25–31. [Google Scholar]
- Silva, M.L.D.G.D. Obtenção e Caracterização de Argila Piauiense Paligorsquita (Atapulgita) Organofilizada Para Uso em Formulações Cosméticas. Master’s Dissertation, Universidade Federal do Piauí, Piauí, Brazil, 2011; p. 106. [Google Scholar]
- Mattioli, M.; Giardini, L.; Roselli, C.; Desideri, D. Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Appl. Clay Sci. 2016, 119, 449–454. [Google Scholar] [CrossRef]
- Velasco, M.V.R.; Zague, V.; Dario, M.F.; Nishikawa, D.O.; Pinto, C.A.; Almeida, M.M.; Trossini, G.H.G.; Coelho, A.C.V.; Baby, A.R. Characterization and Short-Term Clinical Study of Clay Facial Mask. J. Basic Appl. Pharm. Sci. 2016, 37, 1–6. [Google Scholar]
- Rautureau, M.; Figueiredo Gomes, C.D.S.; Liewig, N.; Katouzian-Safadi, M. Clays and Health; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Sarruf, F.D. Cosmetic Attributes (Oiliness Reduction and Firmness) from Face Masks Composed of Red, Green and Black Clays. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2024. [Google Scholar]
- Bonaparte, J.P.; Ellis, D.; Chung, J. The effect of probe to skin contact force on Cutometer MPA 580 measurements. J. Med. Eng. Technol. 2013, 37, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Camargo Junior, F.B.D. Estabilidade e eficácia de formulações cosméticas contendo extrato de Myrtus communis e um complexo polivitamínico hidratante. Ph.D. Dissertation, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil, 2010. [Google Scholar]
- Courage & Khazaka. Information and Instruction Manual for the Cutometer MPA 580 Probe; Courage + Khazaka Electronic GmbH: Köln, Germany, 2021; pp. 1–49. [Google Scholar]
- Courage & Khazaka. Information and Instruction Manual for the Sebumeter SM 815 Probe; Courage + Khazaka electronic GmbH: Köln, Germany, 2020; pp. 1–31. Available online: https://www.courage-khazaka.de/en/downloads-en (accessed on 29 August 2025).
- Bretzke, P.E. Caracterizacão e Disponibilidade Biológica In Vitro e Ex Vivo de Argilominerais Utilizados Como Insumos Farmacêuticos e Cosméticos. Ph.D. Dissertation, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil, 2015. [Google Scholar]
- Da Silva Favero, J.; Parisotto-Peterle, J.; Weiss-Angeli, V.; Brandalise, R.N.; Gomes, L.B.; Bergmann, C.P.; dos Santos, V. Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Appl. Clay Sci. 2016, 124, 252–259. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopezgalindo, A. Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Das Graças Silva-Valenzuela, M.; Chambi-Peralta, M.M.; Sayeg, I.J.; de Souza Carvalho, F.M.; Wang, S.H.; Valenzuela-Diaz, F.R. Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics. Appl. Clay Sci. 2018, 155, 111–119. [Google Scholar] [CrossRef]
- Carretero, M.I.; Gomes, C.S.F.; Tateo, F. Chapter 11.5 Clays and Human Health. In Development in Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; pp. 717–741. [Google Scholar]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Daré, R.G.; Estanqueiro, M.; Amaral, M.H.A.R.; Truiti, M.D.C.T. Significância dos argilominerais em produtos cosméticos. Rev. Cienc. Farm. Basica Apl. 2015, 36, 59–67. [Google Scholar]
- López-Galindo, A.; Viseras, C. Pharmaceutical and cosmetic applications of clays. Interface Sci. Technol. 2004, 1, 267–289. [Google Scholar]
- Wargala, E.; Sławska, M.; Zalewska, A.; Toporowska, M. Health Effects of Dyes, Minerals, and Vitamins Used in Cosmetics. Women 2021, 1, 223–237. [Google Scholar] [CrossRef]
- Viseras, C.; Sánchez-Espejo, R.; Palumbo, R.; Liccardi, N.; García-Villén, F.; Borrego-Sánchez, A.; Massaro, M.; Riela, S.; López-Galindo, A. Clays in Cosmetics and Personal-Care Products. Clays Clay Miner. 2021, 69, 561–575. [Google Scholar] [CrossRef]
Formulation Composition | Concentration (%w/w) | ||||
---|---|---|---|---|---|
F01 | F02 | F03 | |||
Base formulation with pH between 5.5 and 6.5 (gel base with Ammonium Acryloyldimethyltaurate/VP Copolymer as thickener at 2%) | Until 100% * | Until 100% * | Until 100% * | ||
Active compounds | Tersil® CDR (red clay) | INCI: Kaolin | 0.0 | 3.0 | 7.0 |
Tersil® G (green clay) | INCI: Kaolin | 0.0 | 3.0 | 7.0 | |
Tersil® CB (black clay) | INCI: Kaolin | 0.0 | 3.0 | 7.0 |
Clay Sample | Event’s Start (°C) | Event’s End (°C) | Event’s Peak (°C) | Area (mJ/mg) | Area (uV.s/mg) |
---|---|---|---|---|---|
Black | 201.7 | 263.0 | 217.7 | 21.2 | - |
Red | 322.5 | 345.6 | 337.7 | 161.7 | 152 |
Green | 203.4 | 245.9 | 230.6 | 8.74 | - |
Clay Sample | Mass Loss Between 25 and 125 °C | Mass Loss Between 425 and 550 °C | Residue at 540 °C |
---|---|---|---|
Black | 2.87% | 6.10% | 86.64% |
Red | 1.08% | 3.80% | 85.57% |
Green | 0.98% | 1.95% | 96.61% |
Clay Sample | 10% DM | 50% DM | 90% DM | Average DM |
---|---|---|---|---|
Black | 4.10 | 59.62 | 121.86 | 61.70 |
Red | 22.65 | 91.33 | 189.12 | 101.64 |
Green | 7.44 | 81.47 | 157.78 | 82.67 |
Clays | Sample Treatment Condition | Mineralogical Composition | |||||
---|---|---|---|---|---|---|---|
Kaolinite | Illite | Smectite * | Quartz | Hematite | Gibbsite (Al(OH)3) | ||
Black | TC | ✓ | ✓ | ||||
CF | ✓ | ✓ | |||||
Red | TC | ✓ | ✓ | ✓ | ✓ | ||
CF | ✓ | ✓ | ✓ | ||||
EG | ✓ | ✓ | ✓ | ||||
Green | TC | ✓ | ✓ | ✓ | |||
EG | ✓ | ✓ | ✓ |
Element/ Clay | Multielement Calibration/Screening (%) | ||
---|---|---|---|
Black | Green | Red | |
Na2O | 0.0 ppm | 1.148 | 0.0 ppm |
MgO | 0.0 ppm | 0.643 | 0.0 ppm |
Al2O3 | 24.658 | 19.749 | 37.259 |
SiO2 | 56.417 | 58.182 | 33.948 |
P2O5 | 0.028 | 0.018 | 0.025 |
SO3 | 0.212 | 0.151 | 0.120 |
Cl | 0.003 | 0.002 | 0.0 ppm |
K2O | 0.416 | 1.840 | 0.264 |
CaO | 0.235 | 0.721 | 0.027 |
TiO2 | 1.157 | 0.303 | 2.151 |
V2O5 | 0.022 | 0.006 | 0.047 |
Cr2O3 | 0.011 | 0.014 | 0.030 |
MnO | 0.017 | 0.013 | 0.015 |
Fe2O3 | 1.539 | 2.330 | 13.295 |
NiO | 0.002 | 0.001 | 0.005 |
CuO | 0.002 | 0.001 | 0.004 |
ZnO | 0.003 | 0.006 | 0.004 |
Ga2O3 | 0.004 | 0.002 | 0.007 |
As2O3 | 4.2 ppm | 1.1 ppm | 0.006 |
SeO2 | 0.9 ppm | 0.0 ppm | / |
Rb2O | 0.002 | 0.005 | 0.001 |
SrO | 0.014 | 0.032 | 0.002 |
Y2O3 | 0.004 | 0.001 | 0.004 |
ZrO2 | 0.053 | 0.016 | 0.136 |
Nb2O5 | 0.010 | 0.011 | 0.022 |
MoO3 | 3.1 ppm | 2.2 ppm | 7.5 ppm |
PdO | 2.4 ppm | 2.6 ppm | 0.2 ppm |
Ag2O | 0.077 | 0.077 | 0.112 |
CdO | 0.0 ppm | 0.4 ppm | 1.2 ppm |
SnO2 | 0.008 | 0.007 | 0.011 |
Sb2O3 | 0.002 | 0.002 | 0.003 |
BaO | 0.032 | 0.051 | 0.013 |
CeO2 | 0.022 | 0.007 | 0.012 |
Eu2O3 | 0.008 | 0.010 | 0.038 |
HfO2 | 7.1 ppm | 4.1 ppm | 0.004 |
Ta2O5 | 0.006 | 0.010 | 0.022 |
WO3 | 8.9 ppm | 0.003 | 0.0 ppm |
IrO2 | 0.0 ppm | 0.0 ppm | 0.0 ppm |
PtO2 | 0.0 ppm | 0.0 ppm | 0.0 ppm |
HgO | 5.0 ppm | 0.0 ppm | 1.7 ppm |
Tl2O3 | 0.0 ppm | 0.0 ppm | 0.0 ppm |
PbO | 0.005 | 0.001 | 0.002 |
Bi2O3 | 0.0 ppm | 0.0 ppm | 0.0 ppm |
ThO2 | 0.002 | 2.5 ppm | 0.005 |
F | 15.026 | 14.628 | 12.397 |
Rh | 0.0 ppm | 0.0 ppm | 0.9 ppm |
Re | 0.0 ppm | 0.0 ppm | 0.0 ppm |
Au | 0.1 ppm | 0.0 ppm | 0.0 ppm |
U | 4.0 ppm | 1.3 ppm | 7.2 ppm |
Yb2O3 | 8.8 ppm | 0.003 | 0.006 |
Nd2O3 | 0.0 ppm | 0.0 ppm | / |
TeO2 | / | 0.006 | / |
GeO2 | / | 0.4 ppm | / |
Br | / | / | 3.0 ppm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarruf, F.D.; Issa, M.G.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics. Cosmetics 2025, 12, 219. https://doi.org/10.3390/cosmetics12050219
Sarruf FD, Issa MG, Velasco MVR, Rosado C, Baby AR. Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics. Cosmetics. 2025; 12(5):219. https://doi.org/10.3390/cosmetics12050219
Chicago/Turabian StyleSarruf, Fernanda Daud, Michele Georges Issa, Maria Valéria Robles Velasco, Catarina Rosado, and André Rolim Baby. 2025. "Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics" Cosmetics 12, no. 5: 219. https://doi.org/10.3390/cosmetics12050219
APA StyleSarruf, F. D., Issa, M. G., Velasco, M. V. R., Rosado, C., & Baby, A. R. (2025). Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics. Cosmetics, 12(5), 219. https://doi.org/10.3390/cosmetics12050219