The Transformative Impact of Extracellular Vesicles on the Cosmetics Industry: A Comprehensive Review
Abstract
1. Extracellular Vesicles in Cosmetology: The New Global Market Trend
2. A Brief History of the Extracellular Vesicles
3. Exosomes to Extracellular Vesicles: A Nomenclature Change Proposed by MISEV2023 That Directly Impact the EV-Based Cosmetic Market
4. Exploring the EV Biotechnological Applications in Cosmetic Products
4.1. Human-Derived EVs
4.2. Plant-Derived EVs
4.3. Bacterial-Derived EVs
5. Potential Risks and Adverse Effects of Human-, Plant-, and Bacterial-Derived EVs in Cosmetics Applications
6. Challenges in EV Large-Scale Production for Cosmetic Purposes
7. Regulatory Issues
8. Perspectives About the Cosmetic Use of EVs
Author Contributions
Funding
Conflicts of Interest
References
- Grand View Research Cosmetics Market Size, Share & Trends Analysis Report By Product (Skin Care, Hair Care), By End-User (Men, Women), By Distribution Channel (Offline, Online), By Region (North America, Europe), And Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/cosmetics-market (accessed on 25 August 2025).
- Han, J.H.; Kim, H.S. Skin Deep: The Potential of Microbiome Cosmetics. J. Microbiol. 2024, 62, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Woolery-Lloyd, H.; Andriessen, A.; Day, D.; Gonzalez, N.; Green, L.; Grice, E.; Henry, M. Review of the Microbiome in Skin Aging and the Effect of a Topical Prebiotic Containing Thermal Spring Water. J. Cosmet. Dermatol. 2023, 22, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Lolou, V.; Panayiotidis, M.I. Functional Role of Probiotics and Prebiotics on Skin Health and Disease. Fermentation 2019, 5, 41. [Google Scholar] [CrossRef]
- Thakur, A.; Shah, D.; Rai, D.; Parra, D.C.; Pathikonda, S.; Kurilova, S.; Cili, A. Therapeutic Values of Exosomes in Cosmetics, Skin Care, Tissue Regeneration, and Dermatological Diseases. Cosmetics 2023, 10, 65. [Google Scholar] [CrossRef]
- Queen, D.; Avram, M.R. Exosomes for Treating Hair Loss: A Review of Clinical Studies. Dermatol. Surg. 2024, 51, 409–415. [Google Scholar] [CrossRef]
- Dal’Forno-Dini, T.; Birck, M.S.; Rocha, M.; Bagatin, E. Exploring the Reality of Exosomes in Dermatology. Bras. Dermatol. 2025, 100, 121–130. [Google Scholar] [CrossRef]
- Cohen, M.; Austin, E.; Masub, N.; Kurtti, A.; George, C.; Jagdeo, J. Home-Based Devices in Dermatology: A Systematic Review of Safety and Efficacy. Arch. Dermatol. Res. 2022, 314, 239–246. [Google Scholar] [CrossRef]
- Scott, J.A.; Banga, A.K. Cosmetic Devices Based on Active Transdermal Technologies. Ther. Deliv. 2015, 6, 1089–1099. [Google Scholar] [CrossRef]
- Hamed, R.; Abu Nahia, B.J.; Alkilani, A.Z.; Al-Adhami, Y.; Obaidat, R. Recent Advances in Microneedling-Assisted Cosmetic Applications. Cosmetics 2024, 11, 51. [Google Scholar] [CrossRef]
- Grand View Research Exosomes Market Size, Share & Trends Analysis Report by Product & Service (Kits & Reagents, Services), by Workflow (Isolation Methods, Downstream Analysis), by Application, by End-Use, by Region, and Segment Forecasts, 2025–2030. Available online: https://www.grandviewresearch.com/industry-analysis/exosomes-market (accessed on 25 August 2025).
- Villarreal-Gómez, L.J.; Origel-Lucio, S.; Hernández-Hernández, D.A.; Pérez-González, G.L. Use of Exosomes for Cosmetics Applications. Cosmetics 2025, 12, 9. [Google Scholar] [CrossRef]
- Kerkis, I.; Araldi, R.; Wenceslau, C.; Mendes, T. Advances in Cellular and Cell-Free Therapy Medicinal Products for Huntigton’s Disease Treatment. In From Physiopatology to Treatment of Huntigton’s Disease; InTech: Penang, Malaysia, 2022; pp. 1–27. [Google Scholar]
- Da Costa, V.R.; Araldi, R.P.; Vigerelli, H.; D’Ámelio, F.; Mendes, T.B.; Gonzaga, V.; Policíquio, B.; Colozza-Gama, G.A.; Valverde, C.W.; Kerkis, I. Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells 2021, 10, 2617. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Alievi, A.L.; da Costa, V.R.; Dias Pinto, J.R.; Araldi, R.P. Therapeutic Potential of Extracellular Vesicles in Parkinson’s Disease. Explor. Neurosci. 2023, 2, 106–122. [Google Scholar] [CrossRef]
- Araldi, R.P.; Delvalle, D.A.; da Costa, V.R.; Alievi, A.L.; Teixeira, M.R.; Dias Pinto, J.R.; Kerkis, I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023, 12, 2144. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Chargaff, E. Cell Structure and the Problem of Blood Coagulation. J. Biol. Chem. 1945, 160, 351–359. [Google Scholar] [CrossRef]
- Chargaff, E.; West, R. The Biological Significant of the Thrombopastic Protein of Blood. J. Biol. Chem. 1946, 166, 189–197. [Google Scholar] [CrossRef]
- Wolf, P. The Nature and Significance of Platelet Products in Human Plasma. Br. J. Haematol. 1967, 13, 269–288. [Google Scholar] [CrossRef]
- Crawford, N. The Presence of Contractile Proteins in Platelet Microparticles Isolated from Human and Animal Platelet-free Plasma. Br. J. Haematol. 1971, 21, 53–69. [Google Scholar] [CrossRef]
- Couch, Y.; Buzàs, E.I.; Di Vizio, D.; Gho, Y.S.; Harrison, P.; Hill, A.F.; Lötvall, J.; Raposo, G.; Stahl, P.D.; Théry, C.; et al. A Brief History of Nearly EV-erything—The Rise and Rise of Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12144. [Google Scholar] [CrossRef]
- Nunez, E.A.; Wallis, J.; Gershon, M.D. Secretory processes in follicular cells of the bat thyroid. III. The occurrence of extracellular vesicles and colloid droplets during arousal from hibernation. Am. J. Anat. 1974, 141, 179–201. [Google Scholar] [CrossRef]
- Levine, P.H.; Horoszewicz, J.S.; Grace, J.T.; Chai, L.S.; Ellison, R.R.; Holland, J.F. Relationship between Clinical Status of Leukemic Patients and Virus-like Particles in Their Plasma. Cancer 1967, 20, 1563–1577. [Google Scholar] [CrossRef]
- Seman, G.; Gallager, H.S.; Lukeman, J.M.; Dmochowski, L. Studies on the Presence of Particles Resembling RNA Virus Particles in Human Breast Tumors, Pleural Effusions, Their Tissue Cultures, and Milk. Cancer 1971, 28, 1431–1442. [Google Scholar] [CrossRef]
- Fawcett, D.W. Electron Microscope Observations on Intracellular Virus-Like Particles Associated with The Cells of The Lucké Renal Adenocarcinoma. J. Cell Biol. 1956, 2, 725–742. [Google Scholar] [CrossRef] [PubMed]
- Lunger, P.D.; Lucas, J.C.; Shipkey, F.H. The Ultramorphology of Milk Fractions from Normal and Breast Cancer Patients. A Preliminary Report. Cancer 1964, 17, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.M.; Adams, W.R. Virus-like Particles in Human Plasma and Serum: Role of Platelet Lysosomes. J. Natl. Cancer Inst. 1966, 37, 153–166. [Google Scholar] [PubMed]
- Dalton, A.J. Microvesicles and Vesicles of Multivesicular Bodies Versus “Virus-Like” Particles. J. Natl. Cancer Inst. 1975, 54, 1137–1148. [Google Scholar] [CrossRef]
- Harding, C.; Heuser, J.; Stahl, P. Receptor-Mediated Endocytosis of Transferrin and Recycling of the Transferrin Receptor in Rat Reticulocytes. J. Cell Biol. 1983, 97, 329–339. [Google Scholar] [CrossRef]
- Pan, B.-T.; Johnstone, R.M. Fate of the Transferrin Receptor during Maturation of Sheep Reticulocytes in Vitro: Selective Externalization of the Receptor. Cell 1983, 33, 967–978. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Mathew, A.; Mason, A.B.; Teng, K. Exosome Formation during Maturation of Mammalian and Avian Reticulocytes: Evidence That Exosome Release Is a Major Route for Externalization of Obsolete Membrane Proteins. J. Cell Physiol. 1991, 147, 27–36. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jy, W.; Horstman, L.L.; Janania, J.; Reyes, Y.; Kelley, R.E.; Ahn, Y.S. Elevated Platelet Microparticles in Transient Ischemic Attacks, Lacunar Infarcts, and Multiinfarct Dementias. Thromb. Res. 1993, 72, 295–304. [Google Scholar] [CrossRef]
- Powell, J.J.; Harvey, R.S.; Thompson, R.P. Microparticles in Crohn’s Disease—Has the Dust Settled? Gut 1996, 39, 340–341. [Google Scholar] [CrossRef]
- Johnstone, R.; Bianchini, A.; Teng, K. Reticulocyte Maturation and Exosome Release: Transferrin Receptor Containing Exosomes Shows Multiple Plasma Membrane Functions. Blood 1989, 74, 1844–1851. [Google Scholar] [CrossRef]
- Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Liejendekker, R.; Harding, C.V.; Melief, C.J.; Geuze, H.J. B Lymphocytes Secrete Antigen-Presenting Vesicles. J. Exp. Med. 1996, 183, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lan, M.; Chen, Y. Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023). Pharmaceutics 2024, 16, 1394. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Shin, K.J.; Chae, Y.C. Regulation of Cargo Selection in Exosome Biogenesis and Its Biomedical Applications in Cancer. Exp. Mol. Med. 2024, 56, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, M.A. Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology 2022, 11, 804. [Google Scholar] [CrossRef]
- Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal Lipid Composition and the Role of Ether Lipids and Phosphoinositides in Exosome Biology. J. Lipid Res. 2019, 60, 9–18. [Google Scholar] [CrossRef]
- Kumeda, N.; Ogawa, Y.; Akimoto, Y.; Kawakami, H.; Tsujimoto, M.; Yanoshita, R. Characterization of Membrane Integrity and Morphological Stability of Human Salivary Exosomes. Biol. Pharm. Bull. 2017, 40, 1183–1191. [Google Scholar] [CrossRef]
- Araldi, R.P.; D’Amelio, F.; Vigerelli, H.; de Melo, T.C.; Kerkis, I. Stem Cell-Derived Exosomes as Therapeutic Approach for Neurodegenerative Ddsorders: From Biology to Biotechnology. Cells 2020, 9, 2663. [Google Scholar] [CrossRef]
- Ogorevc, E.; Kralj-Iglic, V.; Veranic, P. The Role of Extracellular Vesicles in Phenotypic Cancer Transformation. Radiol. Oncol. 2013, 47, 197–205. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The Exosome Journey: From Biogenesis to Uptake and Intracellular Signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef]
- Liu, S.-L.; Sun, P.; Li, Y.; Liu, S.-S.; Lu, Y. Exosomes as Critical Mediators of Cell-to-Cell Communication in Cancer Pathogenesis and Their Potential Clinical Application. Transl. Cancer Res. 2019, 8, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Choi, J.S.; Cho, Y.W. Reprogramming of Cancer Stem Cells into Non-Tumorigenic Cells Using Stem Cell Exosomes for Cancer Therapy. Biochem. Biophys. Res. Commun. 2019, 512, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional Transfer of MicroRNA-Loaded Exosomes from T Cells to Antigen-Presenting Cells. Nat. Commun. 2011, 2, 282. [Google Scholar] [CrossRef] [PubMed]
- Peak, T.C.; Praharaj, P.P.; Panigrahi, G.K.; Doyle, M.; Su, Y.; Schlaepfer, I.R.; Singh, R.; Vander Griend, D.J.; Alickson, J.; Hemal, A.; et al. Exosomes Secreted by Placental Stem Cells Selectively Inhibit Growth of Aggressive Prostate Cancer Cells. Biochem. Biophys. Res. Commun. 2018, 499, 1004–1010. [Google Scholar] [CrossRef]
- Showalter, M.R.; Wancewicz, B.; Fiehn, O.; Archard, J.A.; Clayton, S.; Wagner, J.; Deng, P.; Halmai, J.; Fink, K.D.; Bauer, G.; et al. Primed Mesenchymal Stem Cells Package Exosomes with Metabolites Associated with Immunomodulation. Biochem. Biophys. Res. Commun. 2019, 512, 729–735. [Google Scholar] [CrossRef]
- Sato, Y.; Yaguchi, M.; Okuno, Y.; Ishimaru, H.; Sagou, K.; Ozaki, S.; Suzuki, T.; Inagaki, T.; Umeda, M.; Watanabe, T.; et al. Epstein–Barr Virus Tegument Protein BGLF2 in Exosomes Released from Virus-Producing Cells Facilitates de Novo Infection. Cell Commun. Signal. 2022, 20, 95. [Google Scholar] [CrossRef]
- Lee, M.; Ban, J.-J.; Kim, K.Y.; Jeon, G.S.; Im, W.; Sung, J.-J.; Kim, M. Adipose-Derived Stem Cell Exosomes Alleviate Pathology of Amyotrophic Lateral Sclerosis in Vitro. Biochem. Biophys. Res. Commun. 2016, 479, 434–439. [Google Scholar] [CrossRef]
- Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017, 27, 172–188. [Google Scholar] [CrossRef]
- Yuan, Z.; Kolluri, K.K.; Gowers, K.H.C.; Janes, S.M. TRAIL Delivery by MSC-Derived Extracellular Vesicles Is an Effective Anticancer Therapy. J. Extracell. Vesicles 2017, 6, 1265291. [Google Scholar] [CrossRef]
- Mukhopadhya, A.; Tsiapalis, D.; McNamee, N.; Talbot, B.; O’Driscoll, L. Doxorubicin Loading into Milk and Mesenchymal Stem Cells’ Extracellular Vesicles as Drug Delivery Vehicles. Pharmaceutics 2023, 15, 718. [Google Scholar] [CrossRef]
- Haney, M.J.; Zhao, Y.; Jin, Y.S.; Li, S.M.; Bago, J.R.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. J. Neuroimmune Pharmacol. 2020, 15, 487–500. [Google Scholar] [CrossRef]
- Alkhilaiwi, F.; Yuan, H. Detection of HPV RNA in Extracellular Vesicles from Neuroendocrine Cervical Cancer Cells. Viruses 2022, 14, 2226. [Google Scholar] [CrossRef]
- Kouroumalis, E.; Tsomidis, I.; Voumvouraki, A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024, 16, 1785. [Google Scholar] [CrossRef]
- Zhao, M.; Nanbo, A.; Sun, L.; Lin, Z. Extracellular Vesicles in Epstein-Barr Virus’ Life Cycle and Pathogenesis. Microorganisms 2019, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Wang, T.; Rapaport, J.A.; Talukder, M. Therapeutic Potential of Extracellular Vesicles (Exosomes) Derived From Platelet-Rich Plasma: A Literature Review. J. Cosmet. Dermatol. 2025, 24, e16709. [Google Scholar] [CrossRef] [PubMed]
- Hesseler, M.J.; Shyam, N. Platelet-Rich Plasma and Its Utility in Medical Dermatology: A Systematic Review. J. Am. Acad. Dermatol. 2019, 81, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Sakata, R.; Reddi, A.H. Platelet-Rich Plasma Modulates Actions on Articular Cartilage Lubrication and Regeneration. Tissue Eng. Part. B Rev. 2016, 22, 408–419. [Google Scholar] [CrossRef]
- Dashore, S.; Chouhan, K.; Nanda, S.; Sharma, A. Preparation of Platelet-Rich Plasma: National IADVL PRP Taskforce Recommendations. Indian. Dermatol. Online J. 2021, 12, 12. [Google Scholar] [CrossRef]
- Vladulescu, D.; Scurtu, L.G.; Simionescu, A.A.; Scurtu, F.; Popescu, M.I.; Simionescu, O. Platelet-Rich Plasma (PRP) in Dermatology: Cellular and Molecular Mechanisms of Action. Biomedicines 2023, 12, 7. [Google Scholar] [CrossRef]
- Heijnen, H.; van der Sluijs, P. Platelet secretory behaviour: As diverse as the granules … or not? J. Thromb. Haemost. 2015, 13, 2141–2151. [Google Scholar] [CrossRef]
- Hesseler, M.J.; Shyam, N. Platelet-Rich Plasma and Its Utility in the Treatment of Acne Scars: A Systematic Review. J. Am. Acad. Dermatol. 2019, 80, 1730–1745. [Google Scholar] [CrossRef]
- Guo, S.-C.; Tao, S.-C.; Yin, W.-J.; Qi, X.; Yuan, T.; Zhang, C.-Q. Exosomes Derived from Platelet-Rich Plasma Promote the Re-Epithelization of Chronic Cutaneous Wounds via Activation of YAP in a Diabetic Rat Model. Theranostics 2017, 7, 81–96. [Google Scholar] [CrossRef]
- Torreggiani, E.; Perut, F.; Roncuzzi, L.; Zini, N.; Baglìo, S.; Baldini, N. Exosomes: Novel Effectors of Human Platelet Lysate Activity. Eur. Cell Mater. 2014, 28, 137–151. [Google Scholar] [CrossRef]
- Iyer, S.R.; Scheiber, A.L.; Yarowsky, P.; Henn, R.F.; Otsuru, S.; Lovering, R.M. Exosomes Isolated From Platelet-Rich Plasma and Mesenchymal Stem Cells Promote Recovery of Function After Muscle Injury. Am. J. Sports Med. 2020, 48, 2277–2286. [Google Scholar] [CrossRef]
- Kerkis, I.; Valverde Wenceslau, C.; Pinheiro Araldi, R. Stem Cells from Dental Pulp of Deciduous Teeth: Twenty Years of Experience. In Recent Update on Mesenchymal Stem Cells; IntechOpen: London, UK, 2024. [Google Scholar]
- Araldi, R.P.; Viana, M.; Colozza-Gama, G.A.; Dias-Pinto, J.R.; Ankol, L.; Valverde, C.W.; Perlson, E.; Kerkis, I. Unique Transcriptional Signatures Observed in Stem Cells from the Dental Pulp of Deciduous Teeth Produced on a Large Scale. Pharmacologia 2023, 14, 72–95. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Piatetzky-Shapiro, I.I.; Petrakova, K. Osteogenesis in Transplants of Bone Marrow Cells. J. Embryol. Exp. Morphol. 1966, 16, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J.; Chailakhjan, R.K.; Lalykina, K.S. The Development of Fibroblast Colonies in Monolayer Cultures of Guinea-Pig Bone Marrow and Spleen Cells. Cell Prolif. 1970, 3, 393–403. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Chailakhyan, R.K.; Gerasimov, U. V Bone Marrow Osteogenic Stem Cells: In Vitro Cultivation and Transplantation in Diffusion Chambers. Cell Prolif. 1987, 20, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J.; Chailakhyan, R.K.; Latsinik, N.V.; Panasyuk, A.F.; Keiliss-Borok, I.V. Stromal Cells Responsible for Transferring the Microenvironment of the Hemopoietic Tissues. Transplantation 1974, 17, 331–340. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Haynesworth, S.E.; Barer, M.A.; Caplan, A.I. Cell Surface Antigens on Human Marrow-Derived Mesenchymal Cells Are Detected by Monoclonal Antibodies. Bone 1992, 13, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Barry, F.P.; Boynton, R.E.; Haynesworth, S.; Murphy, J.M.; Zaia, J. The Monoclonal Antibody SH-2, Raised against Human Mesenchymal Stem Cells, Recognizes an Epitope on Endoglin (CD105). Biochem. Biophys. Res. Commun. 1999, 265, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Barry, F.; Boynton, R.; Murphy, M.; Zaia, J. The SH-3 and SH-4 Antibodies Recognize Distinct Epitopes on CD73 from Human Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2001, 289, 519–524. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. Int. Soc. Cell. Ther. Position. Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Lizier, N.F.; Kerkis, A.; Gomes, C.M.; Hebling, J.; Oliveira, C.F.; Caplan, A.I.; Kerkis, I. Scaling-up of Dental Pulp Stem Cells Isolated from Multiple Niches. PLoS ONE 2012, 7, e39885. [Google Scholar] [CrossRef]
- Qu, Q.; Fu, B.; Long, Y.; Liu, Z.-Y.; Tian, X.-H. Current Strategies for Promoting the Large-Scale Production of Exosomes. Curr. Neuropharmacol. 2023, 21, 1964–1979. [Google Scholar] [CrossRef]
- Almouh, M.; Pakravan, K.; Ghazimoradi, M.H.; Motamed, R.; Bakhshinejad, B.; Hassan, Z.M.; Babashah, S. Exosomes Released by Oxidative Stress-Induced Mesenchymal Stem Cells Promote Murine Mammary Tumor Progression through Activating the STAT3 Signaling Pathway. Mol. Cell Biochem. 2024, 479, 3375–3391. [Google Scholar] [CrossRef]
- Feng, Z.-Y.; Zhang, Q.-Y.; Tan, J.; Xie, H.-Q. Techniques for Increasing the Yield of Stem Cell-Derived Exosomes: What Factors May Be Involved? Sci. China Life Sci. 2022, 65, 1325–1341. [Google Scholar] [CrossRef]
- Lee, H.; Cho, H.-J.; Han, Y.; Lee, S.H. Mid- to Long-Term Efficacy and Safety of Stem Cell Therapy for Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Stem Cell Res. Ther. 2024, 15, 290. [Google Scholar] [CrossRef]
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; et al. Stem Cell-Based Therapy for Human Diseases. Signal Transduct. Target. Ther. 2022, 7, 272. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, H.; Song, Y. The Safety of MSC Therapy over the Past 15 Years: A Meta-Analysis. Stem Cell Res. Ther. 2021, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Brooke, G.; Tong, H.; Levesque, J.-P.; Atkinson, K. Molecular Trafficking Mechanisms of Multipotent Mesenchymal Stem Cells Derived from Human Bone Marrow and Placenta. Stem Cells Dev. 2008, 17, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Yamamoto, A.; Matsubara, K.; Nakamura, S.; Naruse, M.; Yamagata, M.; Sakamoto, K.; Tauchi, R.; Wakao, N.; Imagama, S.; et al. Human Dental Pulp-Derived Stem Cells Promote Locomotor Recovery after Complete Transection of the Rat Spinal Cord by Multiple Neuro-Regenerative Mechanisms. J. Clin. Investig. 2012, 122, 80–90. [Google Scholar] [CrossRef]
- Shamir, C.; Venugopal, C.; Dhanushkodi, A. Dental Pulp Stem Cells for Treating Neurodegenerative Diseases. Neural Regen. Res. 2015, 10, 1910–1911. [Google Scholar] [CrossRef] [PubMed]
- Hmadcha, A.; Martin-Montalvo, A.; Gauthier, B.R.; Soria, B.; Capilla-Gonzalez, V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front. Bioeng. Biotechnol. 2020, 8, 43. [Google Scholar] [CrossRef]
- Archambault, J.; Moreira, A.; McDaniel, D.; Winter, L.; Sun, L.; Hornsby, P. Therapeutic Potential of Mesenchymal Stromal Cells for Hypoxic Ischemic Encephalopathy: A Systematic Review and Meta-Analysis of Preclinical Studies. PLoS ONE 2017, 12, e0189895. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, D.; Yang, Y.; Xie, W.; He, M.; Yu, D.; Wu, Y.; Wang, X.; Xiao, W.; Li, Y. The Role and Therapeutic Potential of Stem Cells in Skeletal Muscle in Sarcopenia. Stem Cell Res. Ther. 2022, 13, 28. [Google Scholar] [CrossRef]
- Guo, M.; Yin, Z.; Chen, F.; Lei, P. Mesenchymal Stem Cell-Derived Exosome: A Promising Alternative in the Therapy of Alzheimer’s Disease. Alzheimers Res. Ther. 2020, 12, 109. [Google Scholar] [CrossRef]
- de Souza, C.F.; de Napoli, P.; Han, S.W.; de Lima, V.C.; Carvalho, A.C.d.C. Células-tronco mesenquimais: Células ideais para a regeneração cardíaca? Rev. Bras. De Cardiol. Invasiva 2010, 18, 344–353. [Google Scholar] [CrossRef]
- Baek, G.; Choi, H.; Kim, Y.; Lee, H.C.; Choi, C. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapeutics and as a Drug Delivery Platform. Stem Cells Transl. Med. 2019, 8, 880–886. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, K.; Wu, S.; Cui, M.; Xu, T. Focus on Mesenchymal Stem Cell-Derived Exosomes: Opportunities and Challenges in Cell-Free Therapy. Stem Cells Int. 2017, 2017, 6305295. [Google Scholar] [CrossRef]
- Evangelista, A.; Soares, M.B.P.; Villarreal, C.F. Cell-Free Therapy: A Neuroregenerative Approach to Sensory Neuropathy? Neural Regen. Res. 2019, 14, 1383–1384. [Google Scholar] [CrossRef]
- Gomzikova, M.O.; Rizvanov, A.A. Current Trends in Regenerative Medicine: From Cell to Cell-Free Therapy. Bionanoscience 2017, 7, 240–245. [Google Scholar] [CrossRef]
- Duffield, J.S.; Park, K.M.; Hsiao, L.-L.; Kelley, V.R.; Scadden, D.T.; Ichimura, T.; Bonventre, J.V. Restoration of Tubular Epithelial Cells during Repair of the Postischemic Kidney Occurs Independently of Bone Marrow-Derived Stem Cells. J. Clin. Investig. 2005, 115, 1743–1755. [Google Scholar] [CrossRef]
- Chapel, A.; Bertho, J.M.; Bensidhoum, M.; Fouillard, L.; Young, R.G.; Frick, J.; Demarquay, C.; Cuvelier, F.; Mathieu, E.; Trompier, F.; et al. Mesenchymal Stem Cells Home to Injured Tissues When Co-Infused with Hematopoietic Cells to Treat a Radiation-Induced Multi-Organ Failure Syndrome. J. Gene Med. 2003, 5, 1028–1038. [Google Scholar] [CrossRef]
- Devine, S.M.; Cobbs, C.; Jennings, M.; Bartholomew, A.; Hoffman, R. Mesenchymal Stem Cells Distribute to a Wide Range of Tissues Following Systemic Infusion into Nonhuman Primates. Blood 2003, 101, 2999–3001. [Google Scholar] [CrossRef] [PubMed]
- Kristocheck, M.; Dias, L.D.; Ghem, C.; Eibel, B.; Kalil, R.A.K.; Markoski, M.M. The Homing of Bone Marrow Stem Cells Is Differentially Activated in Ischemic and Valvular Heart Diseases and Influenced by Beta-Blockers. J. Transl. Med. 2018, 16, 133. [Google Scholar] [CrossRef] [PubMed]
- Biancone, L.; Bruno, S.; Deregibus, M.C.; Tetta, C.; Camussi, G. Therapeutic Potential of Mesenchymal Stem Cell-Derived Microvesicles. Nephrol. Dial. Transplant. 2012, 27, 3037–3042. [Google Scholar] [CrossRef]
- Eggenhofer, E.; Benseler, V.; Kroemer, A.; Popp, F.C.; Geissler, E.K.; Schlitt, H.J.; Baan, C.C.; Dahlke, M.H.; Hoogduijn, M.J. Mesenchymal Stem Cells Are Short-Lived and Do Not Migrate beyond the Lungs after Intravenous Infusion. Front. Immunol. 2012, 3, 297. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Kadota, T.; Araya, J.; Ochiya, T.; Kuwano, K. Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. J. Clin. Med. 2018, 7, 355. [Google Scholar] [CrossRef]
- Gao, J.; Dennis, J.E.; Muzic, R.F.; Lundberg, M.; Caplan, A.I. The Dynamic in Vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs 2001, 169, 12–20. [Google Scholar] [CrossRef]
- Lee, R.H.; Pulin, A.A.; Seo, M.J.; Kota, D.J.; Ylostalo, J.; Larson, B.L.; Semprun-Prieto, L.; Delafontaine, P.; Prockop, D.J. Intravenous HMSCs Improve Myocardial Infarction in Mice Because Cells Embolized in Lung Are Activated to Secrete the Anti-Inflammatory Protein TSG-6. Cell Stem Cell 2009, 5, 54–63. [Google Scholar] [CrossRef]
- Haynesworth, S.E.; Baber, M.A.; Caplan, A.I. Cytokine Expression by Human Marrow-Derived Mesenchymal Progenitor Cells in Vitro: Effects of Dexamethasone and IL-1α. J. Cell Physiol. 1996, 166, 585–592. [Google Scholar] [CrossRef]
- Takahashi, M.; Li, T.-S.; Suzuki, R.; Kobayashi, T.; Ito, H.; Ikeda, Y.; Matsuzaki, M.; Hamano, K. Cytokines Produced by Bone Marrow Cells Can Contribute to Functional Improvement of the Infarcted Heart by Protecting Cardiomyocytes from Ischemic Injury. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H886–H893. [Google Scholar] [CrossRef] [PubMed]
- Joladarashi, D.; Kishore, R. Mesenchymal Stromal Cell Exosomes in Cardiac Repair. Curr. Cardiol. Rep. 2022, 24, 405–417. [Google Scholar] [CrossRef]
- Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 2017, 18, 1852. [Google Scholar] [CrossRef] [PubMed]
- Wendt, S.; Goetzenich, A.; Goettsch, C.; Stoppe, C.; Bleilevens, C.; Kraemer, S.; Benstoem, C. Evaluation of the Cardioprotective Potential of Extracellular Vesicles—A Systematic Review and Meta-Analysis. Sci. Rep. 2018, 8, 15702. [Google Scholar] [CrossRef]
- Pishavar, E.; Trentini, M.; Zanotti, F.; Camponogara, F.; Tiengo, E.; Zanolla, I.; Bonora, M.; Zavan, B. Exosomes as Neurological Nanosized Machines. ACS Nanosci. Au 2022, 2, 284–296. [Google Scholar] [CrossRef]
- Li, Y.; Fang, B. Neural Stem Cell-Derived Extracellular Vesicles: The Light of Central Nervous System Diseases. Biomed. Pharmacother. 2023, 165, 115092. [Google Scholar] [CrossRef]
- Haider, K.H.; Aramini, B. Mircrining the Injured Heart with Stem Cell-Derived Exosomes: An Emerging Strategy of Cell-Free Therapy. Stem Cell Res. Ther. 2020, 11, 23. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Yang, X.; Zhao, H. Harnessing Exosomes as Cutting-Edge Drug Delivery Systems for Revolutionary Osteoarthritis Therapy. Biomed. Pharmacother. 2023, 165, 115135. [Google Scholar] [CrossRef]
- Han, C.; Sun, X.; Liu, L.; Jiang, H.; Shen, Y.; Xu, X.; Li, J.; Zhang, G.; Huang, J.; Lin, Z.; et al. Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells Int. 2016, 2016, 7653489. [Google Scholar] [CrossRef]
- Bu, H.; He, D.; He, X.; Wang, K. Exosomes: Isolation, Analysis, and Applications in Cancer Detection and Therapy. ChemBioChem 2019, 20, 451–461. [Google Scholar] [CrossRef]
- Woith, E.; Guerriero, G.; Hausman, J.-F.; Renaut, J.; Leclercq, C.C.; Weise, C.; Legay, S.; Weng, A.; Melzig, M.F. Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int. J. Mol. Sci. 2021, 22, 3719. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Hong, Y.D.; Kim, D.; Park, S.J.; Kim, J.S.; Kim, H.-M.; Yoon, E.J.; Cho, J.-S. Confirmation of Plant-Derived Exosomes as Bioactive Substances for Skin Application through Comparative Analysis of Keratinocyte Transcriptome. Appl. Biol. Chem. 2022, 65, 8. [Google Scholar] [CrossRef]
- Hessvik, N.P.; Llorente, A. Current Knowledge on Exosome Biogenesis and Release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Schorey, J.S.; Bhatnagar, S. Exosome Function: From Tumor Immunology to Pathogen Biology. Traffic 2008, 9, 871–881. [Google Scholar] [CrossRef]
- Hansen, L.L.; Nielsen, M.E. Plant Exosomes: Using an Unconventional Exit to Prevent Pathogen Entry? J. Exp. Bot. 2018, 69, 59–68. [Google Scholar] [CrossRef]
- De Robertis, M.; Sarra, A.; D’Oria, V.; Mura, F.; Bordi, F.; Postorino, P.; Fratantonio, D. Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-α-Induced Change on Gene Expression in EA.Hy926 Cells. Biomolecules 2020, 10, 742. [Google Scholar] [CrossRef]
- Perut, F.; Roncuzzi, L.; Avnet, S.; Massa, A.; Zini, N.; Sabbadini, S.; Giampieri, F.; Mezzetti, B.; Baldini, N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021, 11, 87. [Google Scholar] [CrossRef]
- Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; et al. Interspecies Communication between Plant and Mouse Gut Host Cells through Edible Plant Derived Exosome-like Nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Tulkens, J.; Vergauwen, G.; Van Deun, J.; Geeurickx, E.; Dhondt, B.; Lippens, L.; De Scheerder, M.-A.; Miinalainen, I.; Rappu, P.; De Geest, B.G.; et al. Increased Levels of Systemic LPS-Positive Bacterial Extracellular Vesicles in Patients with Intestinal Barrier Dysfunction. Gut 2020, 69, 191–193. [Google Scholar] [CrossRef] [PubMed]
- Matsuguchi, T.; Takagi, A.; Matsuzaki, T.; Nagaoka, M.; Ishikawa, K.; Yokokura, T.; Yoshikai, Y. Lipoteichoic Acids from Lactobacillus Strains Elicit Strong Tumor Necrosis Factor Alpha-Inducing Activities in Macrophages through Toll-Like Receptor 2. Clin. Vaccine Immunol. 2003, 10, 259–266. [Google Scholar] [CrossRef]
- Jo, C.S.; Myung, C.H.; Yoon, Y.C.; Ahn, B.H.; Min, J.W.; Seo, W.S.; Lee, D.H.; Kang, H.C.; Heo, Y.H.; Choi, H.; et al. The Effect of Lactobacillus plantarum Extracellular Vesicles from Korean Women in Their 20s on Skin Aging. Curr. Issues Mol. Biol. 2022, 44, 526–540. [Google Scholar] [CrossRef]
- Schaar, V.; Uddback, I.; Nordstrom, T.; Riesbeck, K. Group A Streptococci Are Protected from Amoxicillin-Mediated Killing by Vesicles Containing β—Lactamase Derived from Haemophilus Influenzae. J. Antimicrob. Chemother. 2014, 69, 117–120. [Google Scholar] [CrossRef]
- Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Karamanos, Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells 2020, 9, 851. [Google Scholar] [CrossRef]
- Surman, M.; Drożdż, A.; Stępień, E.; Przybyło, M. Extracellular Vesicles as Drug Delivery Systems—Methods of Production and Potential Therapeutic Applications. Curr. Pharm. Des. 2019, 25, 132–154. [Google Scholar] [CrossRef]
- de Jong, B.; Barros, E.R.; Hoenderop, J.G.J.; Rigalli, J.P. Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020, 12, 1006. [Google Scholar] [CrossRef]
- Walker, S.; Busatto, S.; Pham, A.; Tian, M.; Suh, A.; Carson, K.; Quintero, A.; Lafrence, M.; Malik, H.; Santana, M.X.; et al. Extracellular Vesicle-Based Drug Delivery Systems for Cancer Treatment. Theranostics 2019, 9, 8001–8017. [Google Scholar] [CrossRef]
- Edem, E.E.; Nathaniel, B.U.; Nebo, K.E.; Obisesan, A.O.; Olabiyi, A.A.; Akinluyi, E.T.; Ishola, A.O. Lactobacillus plantarum Mitigates Sexual-Reproductive Deficits by Modulating Insulin Receptor Expression in the Hypothalamic-Pituitary-Testicular Axis of Hyperinsulinemic Mice. Drug Metab. Pers. Ther. 2021, 36, 321–336. [Google Scholar] [CrossRef]
- Nguyen, T.D.T.; Kang, J.H.; Lee, M.S. Characterization of Lactobacillus plantarum PH04, a Potential Probiotic Bacterium with Cholesterol-Lowering Effects. Int. J. Food Microbiol. 2007, 113, 358–361. [Google Scholar] [CrossRef]
- Zheng, Z.; Cao, F.-W.; Wang, W.; Yu, J.; Chen, C.; Chen, B.; Liu, J.; Firrman, J.; Renye, J.; Ren, D. Probiotic Characteristics of Lactobacillus plantarum E680 and Its Effect on Hypercholesterolemic Mice. BMC Microbiol. 2020, 20, 239. [Google Scholar] [CrossRef]
- Prakoeswa, C.R.S.; Herwanto, N.; Prameswari, R.; Astari, L.; Sawitri, S.; Hidayati, A.N.; Indramaya, D.M.; Kusumowidagdo, E.R.; Surono, I.S. Lactobacillus plantarum IS-10506 Supplementation Reduced SCORAD in Children with Atopic Dermatitis. Benef. Microbes 2017, 8, 833–840. [Google Scholar] [CrossRef]
- Nagata, Y.; Yoshida, M.; Kitazawa, H.; Araki, E.; Gomyo, T. Improvements in Seasonal Allergic Disease with Lactobacillus plantarum No. 14. Biosci. Biotechnol. Biochem. 2010, 74, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, Y.; Wang, S.; Liu, H.; Zhang, D.; Zhang, W.; Wang, Y.; Ji, H. Swine-Derived Probiotic Lactobacillus plantarum Inhibits Growth and Adhesion of Enterotoxigenic Escherichia Coli and Mediates Host Defense. Front. Microbiol. 2018, 9, 1364. [Google Scholar] [CrossRef] [PubMed]
- Dinev, T.; Beev, G.; Tzanova, M.; Denev, S.; Dermendzhieva, D.; Stoyanova, A. Antimicrobial Activity of Lactobacillus plantarum against Pathogenic and Food Spoilage Microorganisms: A Review. Bulg. J. Vet. Med. 2018, 21, 253–268. [Google Scholar] [CrossRef]
- Valdéz, J.C.; Peral, M.C.; Rachid, M.; Santana, M.; Perdigón, G. Interference of Lactobacillus plantarum with Pseudomonas Aeruginosa in Vitro and in Infected Burns: The Potential Use of Probiotics in Wound Treatment. Clin. Microbiol. Infect. 2005, 11, 472–479. [Google Scholar] [CrossRef]
- Chen, Y.E.; Fischbach, M.A.; Belkaid, Y. Skin Microbiota–Host Interactions. Nature 2018, 553, 427–436. [Google Scholar] [CrossRef]
- Kurata, A.; Kiyohara, S.; Imai, T.; Yamasaki-Yashiki, S.; Zaima, N.; Moriyama, T.; Kishimoto, N.; Uegaki, K. Characterization of Extracellular Vesicles from Lactiplantibacillus plantarum. Sci. Rep. 2022, 12, 13330. [Google Scholar] [CrossRef]
- Gong, S.; Zeng, R.; Liu, L.; Wang, R.; Xue, M.; Dong, H.; Wu, Z.; Zhang, Y. Extracellular Vesicles from a Novel Lactiplantibacillus plantarum Strain Suppress Inflammation and Promote M2 Macrophage Polarization. Front. Immunol. 2024, 15, 1459213. [Google Scholar] [CrossRef]
- Kang, S.; Jeon, S.; Baek, H.; Hwang, S.; Kim, S.; Youn, S.H.; Kim, J.W.; Jun, S.-H.; Kang, N.-G. Lactobacillus-Derived Artificial Extracellular Vesicles for Skin Rejuvenation and Prevention of Photo-Aging. Biomater. Sci. 2025, 13, 2026–2035. [Google Scholar] [CrossRef]
- Rajendran Venkataswamy, K. Perspective Chapter: Exosome-Mediated Pathogen Transmission. In Exosomes—Recent Advances From Bench to Bedside; Intech Open: London, UK, 2023. [Google Scholar]
- Hazrati, A.; Soudi, S.; Malekpour, K.; Mahmoudi, M.; Rahimi, A.; Hashemi, S.M.; Varma, R.S. Immune Cells-Derived Exosomes Function as a Double-Edged Sword: Role in Disease Progression and Their Therapeutic Applications. Biomark. Res. 2022, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Fang, H.; Fatmous, M.; Claridge, B.; Poh, Q.H.; Simpson, R.J.; Greening, D.W. A Protocol for Isolation, Purification, Characterization, and Functional Dissection of Exosomes. Methods Mol Biol. 2021, 2261, 105–149. [Google Scholar] [PubMed]
- Chen, Y.; Qi, W.; Wang, Z.; Niu, F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics 2025, 17, 147. [Google Scholar] [CrossRef]
- Andriolo, G.; Provasi, E.; Lo Cicero, V.; Brambilla, A.; Soncin, S.; Torre, T.; Milano, G.; Biemmi, V.; Vassalli, G.; Turchetto, L.; et al. Exosomes From Human Cardiac Progenitor Cells for Therapeutic Applications: Development of a GMP-Grade Manufacturing Method. Front. Physiol. 2018, 9, 1169. [Google Scholar] [CrossRef]
- Langellotto, M.D.; Rassu, G.; Serri, C.; Demartis, S.; Giunchedi, P.; Gavini, E. Plant-Derived Extracellular Vesicles: A Synergetic Combination of a Drug Delivery System and a Source of Natural Bioactive Compounds. Drug Deliv. Transl. Res. 2025, 15, 831–845. [Google Scholar] [CrossRef]
- Yazdanpanah, S.; Romano, S.; Valentino, A.; Galderisi, U.; Peluso, G.; Calarco, A. Plant-Derived Exosomes: Carriers and Cargo of Natural Bioactive Compounds: Emerging Functions and Applications in Human Health. Nanomaterials 2025, 15, 1005. [Google Scholar] [CrossRef]
- Majewski, G.; Craw, J.; Falla, T. Accelerated Barrier Repair in Human Skin Explants Induced with a Plant-Derived PPAR-α Activating Complex via Cooperative Interactions. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1271–1293. [Google Scholar] [CrossRef]
- Yang, G.H.; Lee, Y.B.; Kang, D.; Choi, E.; Nam, Y.; Lee, K.H.; You, H.-J.; Kang, H.J.; An, S.H.; Jeon, H. Overcome the Barriers of the Skin: Exosome Therapy. Biomater. Res. 2021, 25, 22. [Google Scholar] [CrossRef]
- Zingl, F.G.; Leitner, D.R.; Thapa, H.B.; Schild, S. Outer Membrane Vesicles as Versatile Tools for Therapeutic Approaches. microLife 2021, 2, uqab006. [Google Scholar] [CrossRef]
- Xue, K.; Wang, L.; Liu, J. Bacterial Outer Membrane Vesicles and Their Functionalization as Vehicles for Bioimaging, Diagnosis and Therapy. Mater. Adv. 2022, 3, 7185–7197. [Google Scholar] [CrossRef]
- Effah, C.Y.; Ding, X.; Drokow, E.K.; Li, X.; Tong, R.; Sun, T. Bacteria-Derived Extracellular Vesicles: Endogenous Roles, Therapeutic Potentials and Their Biomimetics for the Treatment and Prevention of Sepsis. Front. Immunol. 2024, 15, 1296061. [Google Scholar] [CrossRef]
- Lieberman, L.A. Outer Membrane Vesicles: A Bacterial-Derived Vaccination System. Front. Microbiol. 2022, 13, 1029146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Bai, B.; Song, G.; Zhang, J.; Yu, H.; Huang, S.; Wang, Z.; Lu, G. Topical Drug Delivery Strategies for Enhancing Drug Effectiveness by Skin Barriers, Drug Delivery Systems and Individualized Dosing. Front. Pharmacol. 2024, 14, 1333986. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, G.; Forsyth, A.; Kazemeini, S.; Ma, J.; Lam, K.; Kasiri, N.; Frasier, K.M. Systemic Risks of Topical Anesthetics in Barrier-Compromised Dermatologic Patients. Cureus 2025, 17, e84157. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Malekian, F.; Baghban, N.; Kodam, S.P.; Ullah, M. Methodologies to Isolate and Purify Clinical Grade Extracellular Vesicles for Medical Applications. Cells 2022, 11, 186. [Google Scholar] [CrossRef]
- Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in Exosome Isolation Techniques. Theranostics 2017, 7, 789–804. [Google Scholar] [CrossRef]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Zaborowski, M.P.; Balaj, L.; Breakefield, X.O.; Lai, C.P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 2015, 65, 783–797. [Google Scholar] [CrossRef]
- Zarovni, N.; Corrado, A.; Guazzi, P.; Zocco, D.; Lari, E.; Radano, G.; Muhhina, J.; Fondelli, C.; Gavrilova, J.; Chiesi, A. Integrated Isolation and Quantitative Analysis of Exosome Shuttled Proteins and Nucleic Acids Using Immunocapture Approaches. Methods 2015, 87, 46–58. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, K.; Gao, L.; Zhang, Z.; Li, F.; Zhou, F.; Zhang, L. Methods and Technologies for Exosome Isolation and Characterization. Small Methods 2018, 2, 1800021. [Google Scholar] [CrossRef]
- Muller, L.; Hong, C.-S.; Stolz, D.B.; Watkins, S.C.; Whiteside, T.L. Isolation of Biologically-Active Exosomes from Human Plasma. J. Immunol. Methods 2014, 411, 55–65. [Google Scholar] [CrossRef]
- Hiemstra, T.F.; Charles, P.D.; Gracia, T.; Hester, S.S.; Gatto, L.; Al-Lamki, R.; Floto, R.A.; Su, Y.; Skepper, J.N.; Lilley, K.S.; et al. Human Urinary Exosomes as Innate Immune Effectors. J. Am. Soc. Nephrol. 2014, 25, 2017–2027. [Google Scholar] [CrossRef]
- Baranyai, T.; Herczeg, K.; Onódi, Z.; Voszka, I.; Módos, K.; Marton, N.; Nagy, G.; Mäger, I.; Wood, M.J.; El Andaloussi, S.; et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE 2015, 10, e0145686. [Google Scholar] [CrossRef]
- Ullah, M.; Kodam, S.P.; Mu, Q.; Akbar, A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS Nano 2021, 15, 3612–3620. [Google Scholar] [CrossRef]
- Martins, T.S.; Catita, J.; Rosa, I.M.; Da Cruz e Silva, O.A.B.; Henriques, A.G. Exosome Isolation from Distinct Biofluids Using Precipitation and Column-Based Approaches. PLoS ONE 2018, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pertierra, E.; Oliveira-Rodríguez, M.; Rivas, M.; Oliva, P.; Villafani, J.; Navarro, A.; Blanco-López, M.C.; Cernuda-Morollón, E. Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study. Bioengineering 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Livshits, M.A.; Khomyakova, E.; Evtushenko, E.G.; Lazarev, V.N.; Kulemin, N.A.; Semina, S.E.; Generozov, E.V.; Govorun, V.M. Isolation of Exosomes by Differential Centrifugation: Theoretical Analysis of a Commonly Used Protocol. Sci. Rep. 2015, 5, 17319. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.D.; Shah, S. Methods of Isolating Extracellular Vesicles Impact Down-Stream Analyses of Their Cargoes. Methods 2015, 87, 3–10. [Google Scholar] [CrossRef]
- Salih, M.; Zietse, R.; Hoorn, E.J. Urinary Extracellular Vesicles and the Kidney: Biomarkers and Beyond. Am. J. Physiol. Ren. Physiol. 2014, 306, F1251–F1259. [Google Scholar] [CrossRef]
- Van Deun, J.; Mestdagh, P.; Sormunen, R.; Cocquyt, V.; Vermaelen, K.; Vandesompele, J.; Bracke, M.; De Wever, O.; Hendrix, A. The Impact of Disparate Isolation Methods for Extracellular Vesicles on Downstream RNA Profiling. J. Extracell. Vesicles 2014, 3, 24858. [Google Scholar] [CrossRef]
- Rikkert, L.G.; Engelaer, M.; Hau, C.M.; Terstappen, L.W.M.M.; Nieuwland, R.; Coumans, F.A.W. Rate Zonal Centrifugation Can Partially Separate Platelets from Platelet-derived Vesicles. Res. Pr. Thromb. Haemost. 2020, 4, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Mabood, N.; Maqbool, M.; Khan, L.; Khan, M.; Ullah, M. SAR-CoV-2 Infection, Emerging New Variants and the Role of Activation Induced Cytidine Deaminase (AID) in Lasting Immunity. Saudi Pharm. J. 2021, 29, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Carnino, J.M.; Lee, H.; Jin, Y. Isolation and Characterization of Extracellular Vesicles from Broncho-Alveolar Lavage Fluid: A Review and Comparison of Different Methods. Respir. Res. 2019, 20, 240. [Google Scholar] [CrossRef] [PubMed]
- Deregibus, M.C.; Figliolini, F.; D’antico, S.; Manzini, P.M.; Pasquino, C.; De Lena, M.; Tetta, C.; Brizzi, M.F.; Camussi, G. Charge-Based Precipitation of Extracellular Vesicles. Int. J. Mol. Med. 2016, 38, 1359–1366. [Google Scholar] [CrossRef]
- Liga, A.; Vliegenthart, A.D.B.; Oosthuyzen, W.; Dear, J.W.; Kersaudy-Kerhoas, M. Exosome Isolation: A Microfluidic Road-Map. Lab. Chip 2015, 15, 2388–2394. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, W.; Zhang, H.; Zhang, F.; Chen, L.; Ma, L.; Larcher, L.M.; Chen, S.; Liu, N.; Zhao, Q.; et al. Progress, Opportunity, and Perspective on Exosome Isolation—Efforts for Efficient Exosome-Based Theranostics. Theranostics 2020, 10, 3684–3707. [Google Scholar] [CrossRef]
- Lobb, R.J.; Becker, M.; Wen Wen, S.; Wong, C.S.F.; Wiegmans, A.P.; Leimgruber, A.; Möller, A. Optimized Exosome Isolation Protocol for Cell Culture Supernatant and Human Plasma. J. Extracell. Vesicles 2015, 4, 27031. [Google Scholar] [CrossRef]
- Visan, K.S.; Lobb, R.J.; Ham, S.; Lima, L.G.; Palma, C.; Edna, C.P.Z.; Wu, L.; Gowda, H.; Datta, K.K.; Hartel, G.; et al. Comparative Analysis of Tangential Flow Filtration and Ultracentrifugation, Both Combined with Subsequent Size Exclusion Chromatography, for the Isolation of Small Extracellular Vesicles. J. Extracell. Vesicles 2022, 11, e12266. [Google Scholar] [CrossRef]
- Soda, N.; Rehm, B.H.A.; Sonar, P.; Nguyen, N.-T.; Shiddiky, M.J.A. Advanced Liquid Biopsy Technologies for Circulating Biomarker Detection. J. Mater. Chem. B 2019, 7, 6670–6704. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.F.; Otoc, N.; Sethi, J.K.; Gupta, A.; Antes, T.J. Integrated Systems for Exosome Investigation. Methods 2015, 87, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Kaur, J.; Kamboj, R.; Thangariyal, S.; Yadav, R.; Kumar, K.; Dhania, N.K. Investigate the Efficacy of Size Exclusion Chromatography for the Isolation of Extracellular Vesicles from C. Elegans. J. Chromatogr. B 2024, 1233, 123982. [Google Scholar] [CrossRef] [PubMed]
- Stranska, R.; Gysbrechts, L.; Wouters, J.; Vermeersch, P.; Bloch, K.; Dierickx, D.; Andrei, G.; Snoeck, R. Comparison of Membrane Affinity-Based Method with Size-Exclusion Chromatography for Isolation of Exosome-like Vesicles from Human Plasma. J. Transl. Med. 2018, 16, 1. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, J.; He, Y.; Jiang, L. Plant Extracellular Vesicles. Protoplasma 2020, 257, 3–12. [Google Scholar] [CrossRef]
- Hong, C.S.; Muller, L.; Boyiadzis, M.; Whiteside, T.L. Isolation and Characterization of CD34+ Blast-Derived Exosomes in Acute Myeloid Leukemia. PLoS ONE 2014, 9, e103310. [Google Scholar] [CrossRef]
- Lee, K.; Shao, H.; Weissleder, R.; Lee, H. Acoustic Purification of Extracellular Microvesicles. ACS Nano 2015, 9, 2321–2327. [Google Scholar] [CrossRef]
- Pinto, H.; Sánchez-Vizcaíno Mengual, E. Exosomes in the Real World of Medical Aesthetics: A Review. Aesthetic Plast. Surg. 2024, 48, 2513–2527. [Google Scholar] [CrossRef]
- Cho, B.S.; Kim, J.O.; Ha, D.H.; Yi, Y.W. Exosomes Derived from Human Adipose Tissue-Derived Mesenchymal Stem Cells Alleviate Atopic Dermatitis. Stem Cell Res. Ther. 2018, 9, 187. [Google Scholar] [CrossRef]
- Matte, B.F.; Medeiros, H.R.; Dal-Col, V. Exosome-Based Compound Activates Skin’s Keratinocytes and Fibroblasts. Curr. Cosmet. Sci. 2025, 29, 148. [Google Scholar]
Exosomes-Based Skin Cosmetics Applications | ||||||||
---|---|---|---|---|---|---|---|---|
Year | Exosomes | Regeneration | Antiaging | Hydration | Pigmentation | Wound Healing | Nanodelivery of Molecules | Total |
2024 | 4982 | 26 | 25 | 2 | 7 | 309 | 31 | 5382 |
2023 | 5099 | 17 | 11 | 2 | 4 | 282 | 28 | 5443 |
2022 | 5226 | 15 | 11 | 1 | 2 | 258 | 30 | 5543 |
2021 | 5075 | 11 | 4 | 1 | 1 | 190 | 27 | 5309 |
2020 | 4299 | 5 | 4 | 1 | 4 | 145 | 22 | 4480 |
2019 | 3281 | 4 | 4 | 0 | 2 | 92 | 15 | 3398 |
2018 | 2573 | 1 | 3 | 0 | 1 | 61 | 10 | 2649 |
2017 | 2040 | 0 | 0 | 0 | 1 | 41 | 13 | 2095 |
2016 | 1560 | 1 | 0 | 0 | 1 | 36 | 4 | 1602 |
2015 | 1126 | 1 | 0 | 0 | 1 | 20 | 5 | 1153 |
2014 | 912 | 0 | 0 | 0 | 0 | 4 | 2 | 912 |
Total | 36,173 | 81 | 62 | 7 | 24 | 1438 | 187 | 37,972 |
EV Category | Name | Size (nm) | Markers | Biogenesis |
---|---|---|---|---|
Exosomes | Classical | 30–200 | CD63+/CD9+/CD81+ | MVE |
Non-classical | 30–200 | CD63+/CD9+/CD81− | MVE | |
Microvesicle | Classical | 150–1000 | Annexin A1, ARF6 | PMS |
Oncosomes | 1000–10,000 | Annexin A1, ARF6 | PMS | |
ARMN | 40–100 | ARRDC1, TSG101 | PMS | |
Apoptotic | Apoptotic body | 1000–5000 | Annexin V, PS | Apoptosis |
Apoptotic vesicle | 100–1000 | Annexin V, P5 | Apoptosis | |
Autophagic | Autophagic EV | 40–1000 | LC3B-PE, p62, dsDNA/histones | Amphisome |
Stressome | Stressed EV | 40–1000 | HSP90, HSPs | PMS |
Damaged EV | 40–1000 | CD63+/CD9+/CD81+ | PMS | |
Matrix vesicles | Matrix vesicles | 40–1000 | Fibronectin, Proteoglycan | Matrix binding release |
MISEV2014 | Definition: EVs are secreted membrane-enclosed vesicles Nomenclature: No recommendation |
MISEV2018 | Definition: EVs are particles naturally secreted from cells, defined by a lipid bilayer, and cannot replicate Nomenclature: Unless the authors do not establish specific markers of subcellular origins, they urged to consider operational terms for EVs subtypes based on their physical characteristics and biological constituents. The authors also suggest the replacement of terms such as “exosomes” and “microvesicles” with descriptions of the conditions or cellular origins |
MISEV2023 | Definition: EV are particles released from cells, delimited by a lipid bilayer, and cannot replicate on their own Nomenclature: Authors recommended the use of generic term “EV” (as previously suggested in MISEV2018) rather than inconsistently defined and sometimes misleading terms such as exosomes |
EV Source | Benefits | Limitations |
---|---|---|
Human-derived | -Can be isolated from plasma and MSCs -High potential for therapeutic and cosmetic applications due to their similarity to human cells | -Regulatory restrictions in many regions due to potential disease transmission -High production costs and complex quality control processes |
Plant-derived | -Can be isolated from various plants, each offering unique bioactive functions -Rich in secondary metabolites with proven skin benefits (anti-aging, moisturizing, etc.) -Generally considered safe and non-immunogenic | -Limited comprehensive (pre)clinical studies -Variability in bioactive functions depending on the plant source -Less transcriptional similarity to human cells, potentially affecting efficacy |
Bacterium-derived | -Specific strains like Lactiplantibacillus plantarum show anti-inflammatory and anti-aging benefits -Potential for drug delivery and immunomodulatory properties -Can be produced on a large scale | -Presence of lipopolysaccharides (LPS) or lipoteichoic acids (LTA) may cause immune reactions -Limited clinical evidence for cosmetic applications |
NCT Number | Conditions |
---|---|
NCT05658094 | Hair Loss, Alopecia |
NCT06568653 | Fistula Perianal |
NCT04500769 | Metabolism |
NCT05043181 | Familial Hypercholesterolemia |
NCT04529915 | Lung Cancer |
NCT04965961 | Sports Drug Abuse |
NCT04544215 | Drug-resistant |
NCT04969172 | COVID-19 Disease |
NCT02957279 | Sepsis |
NCT05402748 | Fistula Perianal |
NCT06853522 | Ulcerative Colitis (UC) |
NCT02147418 | Oropharyngeal Cancer |
NCT04270006 | Periodontitis |
NCT06138210 | Acute Ischemic Stroke |
NCT05475418 | Wounds and Injuries |
NCT03478410 | Atrial Fibrillation |
NCT05499156 | Perianal Fistula in Patients With Crohn’s Disease |
NCT05871463 | Decompensated Liver Cirrhosis |
NCT06609785 | Diabetes, Exercise, Lifestyle Intervention |
NCT06810869 | Stable Vitiligo |
NCT06072794 | Premature Ovarian Insufficiency, Diminished Ovarian Reserve |
NCT06298682 | Platelet Thrombus |
NCT05616234 | Exosomes, Connective Tissue, Exercise |
NCT04636788 | Pancreas Adenocarcinoma |
NCT04602104 | Acute Respiratory Distress Syndrome |
NCT03985696 | Lymphoma, B-cell, Aggressive Non-Hodgkin (B-NHL) |
NCT06697080 | Androgenic Alopecia |
NCT04657406 | COVID19 |
NCT06536712 | Rectal Cancer |
NCT02748369 | Normal Cellular Metabolism |
NCT04747574 | SARS-CoV-2 |
NCT06764004 | Apical Periodontitis |
NCT06221787 | Melasma |
NCT05933707 | Obesity |
NCT03392441 | Diabetes Mellitus |
NCT06496451 | Friedreich Ataxia |
NCT06330922 | Cerebral Palsy, Spastic |
NCT04081194 | New Tumor Diagnostics From Human Plasma Samples |
NCT03106246 | Type1 Diabetes Mellitus |
NCT05559177 | Recurrent or Metastatic Bladder Cancer |
NCT04595903 | COVID-19 |
NCT06598202 | Amyotrophic Lateral Sclerosis |
NCT05228899 | COVID-19 |
NCT04384445 | COVID-19 |
NCT06773572 | Infertility |
NCT05375604 | Advanced Hepatocellular Carcinoma (HCC) |
NCT04167722 | Prostate Cancer |
NCT02797834 | Extracellular Vesicles |
NCT06824285 | Aging |
NCT03255408 | Obstructive Sleep Apnea of Adult |
NCT04664738 | Skin Graft |
NCT03854032 | Oral Cavity Squamous Cell Carcinoma |
NCT06615531 | Intensive Meditation in Novice and Experienced Meditators |
NCT06536374 | Prostate Cancer |
NCT04134676 | Chronic Ulcer |
NCT01550523 | Malignant Glioma of Brain |
NCT04924504 | Diabetes Mellitus, Type |
NCT02507583 | Malignant Glioma |
NCT04617405 | Diabetes Mellitus, Type 2 |
NCT05937594 | Neonatal Opioid Withdrawal Syndrome |
NCT06821243 | Squamous Cell Carcinoma of Oropharynx |
NCT06319742 | Stroke, TIA, Stroke-mimics, Stroke Biomarkers |
NCT02935816 | Prostate Cancer |
NCT00285805 | Insulin Resistance |
NCT00578240 | Prostate Cancer |
NCT06504485 | Hepatitis D |
NCT00001888 | Asthma |
NCT02653339 | Rhinitis, Allergic, Perennial |
NCT02063464 | Ovarian Cancer |
NCT05624203 | Myocardial Reperfusion Injury |
NCT06633003 | Spinocerebellar Ataxia |
NCT06654167 | Cognitive Function |
NCT03406780 | Muscular Dystrophies |
NCT06652425 | Cardiovascular System |
NCT05575752 | Cardiovascular System |
NCT03459703 | Obesity |
NCT03410030 | Pancreatic Cancer |
NCT04350177 | Parkinson Disease |
NCT06219850 | Diabetes Mellitus, Type 2 |
NCT04153539 | Cardiovascular System |
NCT02737267 | Body Weight Changes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Col, V.D.; Ribas, F.F.; Araldi, R.P. The Transformative Impact of Extracellular Vesicles on the Cosmetics Industry: A Comprehensive Review. Cosmetics 2025, 12, 191. https://doi.org/10.3390/cosmetics12050191
Col VD, Ribas FF, Araldi RP. The Transformative Impact of Extracellular Vesicles on the Cosmetics Industry: A Comprehensive Review. Cosmetics. 2025; 12(5):191. https://doi.org/10.3390/cosmetics12050191
Chicago/Turabian StyleCol, Valéria Dal, Fábio Fernandes Ribas, and Rodrigo Pinheiro Araldi. 2025. "The Transformative Impact of Extracellular Vesicles on the Cosmetics Industry: A Comprehensive Review" Cosmetics 12, no. 5: 191. https://doi.org/10.3390/cosmetics12050191
APA StyleCol, V. D., Ribas, F. F., & Araldi, R. P. (2025). The Transformative Impact of Extracellular Vesicles on the Cosmetics Industry: A Comprehensive Review. Cosmetics, 12(5), 191. https://doi.org/10.3390/cosmetics12050191