Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Testing Protocols
2.2.1. OXTR Receptor Activation Functional Assay
2.2.2. Dermal Fibroblast Proliferation
2.2.3. Neuron–Keratinocyte Coculture
2.2.4. Organ-on-a-Chip Nerve–Skin Interface Model
2.2.5. Clinical Trial Protocol
3. Results
3.1. In-Vitro Results
3.1.1. OXTR Receptor Activation
3.1.2. Effect on Dermal Fibroblast Proliferation:
3.1.3. Effect on Inhibition of Nociception in Neuron–Keratinocyte Coculture
3.1.4. Effect on Electrical Signaling in an Organ-on-a Chip Model
3.1.5. Effects on Neuroplasticity
3.2. Clinical Trial Results
3.2.1. EEG During Feather Touch Stimulation
3.2.2. Reduction in Skin Nociception
3.2.3. Skin Tone and Healthy Glow:
3.2.4. Skin Elasticity (Cutometer)
3.2.5. Skin Wrinkling and Roughness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
INCI/Chemical Name | % In Formula—Active | % In Formula—Placebo |
---|---|---|
Water | 84.35 | 84.85 |
Butylene glycol | 4.00 | 4.00 |
Dipropylene glycol | 1.00 | 1.00 |
Hexylene glycol | 1.00 | 1.00 |
Polysorbate 20 | 1.00 | 1.00 |
Hydrogenated polydecene | 1.50 | 1.50 |
Cyclomethicone | 4.00 | 4.00 |
Hyacinthus orientalis bulb extract | 1.00 | 0.00 |
Glycerol | 0.00 | 0.50 |
Carbomer | 0.80 | 0.80 |
Triethanolamine | 0.70 | 0.70 |
Phenoxyethanol | 0.40 | 0.40 |
Methyl paraben | 0.15 | 0.15 |
EDTA | 0.10 | 0.10 |
TOTAL | 100.00 | 100.00 |
References
- Audunsdottir, K.; Quintana, D.S. Oxytocin’s dynamic role across the lifespan. Aging Brain 2022, 2, 100028. [Google Scholar] [CrossRef]
- Leng, G.; Leng, R.I. Oxytocin: A citation network analysis of 10 000 papers. J. Neuroendocrinol. 2021, 33, e13014. [Google Scholar] [CrossRef]
- Carter, C.S.; Kenkel, W.M.; MacLean, E.L.; Wilson, S.R.; Perkeybile, A.M.; Yee, J.R.; Ferris, C.F.; Nazarloo, H.P.; Porges, S.W.; Davis, J.M.; et al. Is Oxytocin “Nature’s Medicine”? Pharmacol. Rev. 2020, 72, 829–861. [Google Scholar] [CrossRef]
- IsHak, W.W.; Kahloon, M.; Fakhry, H. Oxytocin role in enhancing well-being: A literature review. J. Aff. Disord. 2011, 130, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Assad Nafis, I.; Pandey, A.K.; Sharma, L.M. Oxytocin, Functions, Uses and Abuses: A Brief Review. Theriogenol. Insight 2016, 6, 1–17. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The Oxytocin Receptor System: Structure, Function, and Regulation. Phys. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Bussolati, G.; Cassoni, P. Editorial: The Oxytocin/Oxytocin Receptor System—Expect the Unexpected. Endocrinology 2001, 142, 1377–1379. [Google Scholar] [CrossRef]
- Zingg, H.H.; Laporte, S.A. The oxytocin receptor. Trends Endocrinol. Metabol. 2003, 14, 222–227. [Google Scholar] [CrossRef]
- Deing, V.; Roggenkamp, D.; Kühnl, J.; Gruschka, A.; Stäb, F.; Wenck, H.; Bürkle, A.; Neufang, G. Oxytocin modulates proliferation and stress responses of human skin cells: Implications for atopic dermatitis. Exp. Dermatol. 2013, 22, 399–405. [Google Scholar] [CrossRef]
- Denda, S.; Takei, K.; Kumamoto, J.; Goto, M.; Tsutsumi, M.; Denda, M. Oxytocin is expressed in epidermal keratinocytes and released upon stimulation with adenosine 5′-[γ-thio] triphosphate in vitro. Exp. Dermatol. 2012, 21, 535–537. [Google Scholar] [CrossRef]
- Denda, M.; Nakanishi, S. Do epidermal keratinocytes have sensory and information processing systems? Exp. Dermatol. 2022, 31, 459–474. [Google Scholar] [CrossRef]
- Fujimoto, K.; Inada, K.; Oka, K.; Ito, E. Revisiting oxytocin generation in keratinocytes. Biophys. Physicobiol. 2023, 20, e200003. [Google Scholar] [CrossRef]
- Zagoory-Sharon, O.; Levine, A.; Feldman, R. Human sweat contains oxytocin. Psychoneuroendocrinology 2023, 158, 106407. [Google Scholar] [CrossRef]
- Ellingsen, D.M.; Leknes, S.; Løseth, G.; Wessberg, J.; Olausson, H. The neurobiology shaping affective touch: Expectation, motivation, and meaning in the multisensory context. Front. Psychol. 2016, 6, 1986. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, M.M.; Havranek, T.; Bakos, J.; Cubeddu, L.X.; Castejon, A.M. Cell proliferation and anti-oxidant effects of oxytocin and oxytocin receptors: Role of extracellular signal-regulating kinase in astrocyte-like cells. Endocr. Regul. 2020, 54, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Cousin, W.; Upadhyayula, P.; Chen, R.Y.; Chooljian, M.S.; Li, J.; Kung, S.; Jiang, K.P.; Conboy, I.M. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun. 2014, 5, 4082. [Google Scholar] [CrossRef] [PubMed]
- Pekarek, B.T.; Hunt, P.J.; Arenkiel, B.R. Oxytocin and Sensory Network Plasticity. Front. Neurosci. 2020, 14, 30. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Javeri, A.; Khaleghi, M.; Taha, M.F. Oxytocin improves proliferation and neural differentiation of adipose tissue-derived stem cells. Neurosci. Lett. 2014, 564, 105–110. [Google Scholar] [CrossRef]
- Bakos, J.; Srancikova, A.; Havranek, T.; Bacova, Z. Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast. 2018, 2018, 4864107. [Google Scholar] [CrossRef]
- Salehi, M.S.; Neumann, I.D.; Jurek, B.; Pandamooz, S. Co-Stimulation of Oxytocin and Arginine-Vasopressin Receptors Affect Hypothalamic Neurospheroid Size. Int. J. Mol. Sci. 2021, 22, 8464. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Alsanea, S.; Kumar, A.; Alehaideb, Z.; Matou-Nasri, S.; AlGhamdi, K.M. Modulatory effects of oxytocin on normal human cultured melanocyte proliferation, migration, and melanogenesis. Tissue Cell 2024, 91, 102579. [Google Scholar] [CrossRef]
- González-Hernández, A.; Manzano-García, A.; Martínez-Lorenzana, G.; Tello-García, I.A.; Carranza, M.; Arámburo, C.; Condés-Lara, M. Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons. Pain 2017, 158, 2117–2128. [Google Scholar] [CrossRef]
- Grinevich, V.; Charlet, A. Oxytocin: Pain relief in skin. Pain 2017, 158, 2061–2063. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hernandez, A.; Charlet, A. Oxytocin, GABA, and TRPV1, the analgesic triad? Front. Mol. Neurosci. 2018, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Denda, M.; Elias, P.M. Review of sensory systems deployed by epidermal keratinocytes. Front. Cell Dev. Biol. 2025, 13, 1598326. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Kim, A.Y.; Kim, J.; Choi, D.-H.; Son, E.D.; Shin, D.W. Oxytocin alleviates cellular senescence through oxytocin receptor-mediated extracellular signal-regulated kinase/Nrf2 signalling. Br. J. Dermatol. 2019, 181, 1216–1225. [Google Scholar] [CrossRef]
- Hayre, N. Oxytocin Levels Inversely Correlate with Skin Age Score and Solar Damage. J. Drugs Dermatol. 2020, 19, 1146–1148. [Google Scholar] [CrossRef]
- Kayıran, S.; Özkan, D.; Eroğlu, E. The ethnobotanical uses of Hyacinthaceae species growing in Turkey and a review of pharmacological activities. Indian J. Tradit. Knowl. 2017, 16, 243–250. [Google Scholar]
- Karaman, S.; Kocabas, Y.Z. Traditional medicinal plants of K. Maras (Turkey). Sciences 2001, 1, 125–128. [Google Scholar]
- Asano, N.; Kato, A.; Miyauchi, M.; Kizu, H.; Kameda, Y.; Watson, A.A.; Nash, R.J.; Fleet, G.W. Nitrogen-containing furanose and pyranose analogues from Hyacinthus orientalis. J. Nat. Prod. 1998, 61, 625–628. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, F.; Chen, K. 1-Deoxynojirimycin: Sources, Extraction, Analysis and Biological Functions. Nat. Prod. Commun. 2017, 12, 1934578X1701200934. [Google Scholar] [CrossRef]
- Piao, X.; Li, S.; Sui, X.; Guo, L.; Liu, X.; Li, H.; Gao, L.; Cai, S.; Li, Y.; Wang, T.; et al. 1-Deoxynojirimycin (DNJ) Ameliorates Indomethacin-Induced Gastric Ulcer in Mice by Affecting NF-kappaB Signaling Pathway. Front. Pharmacol. 2018, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liang, T.; Zuo, W.; Wu, X.; Shen, Z.; Wang, F.; Li, C.; Zheng, Y.; Peng, G. Neuroprotective effect of 1-Deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed. Pharmacother. 2018, 106, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Stauß, A.C.; Fuchs, C.; Jansen, P.; Repert, S.; Alcock, K.; Ludewig, S.; Rozhon, W. The Ninhydrin Reaction Revisited: Optimisation and Application for Quantification of Free Amino Acids. Molecules 2024, 29, 3262. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 2021, 18, 100–106. [Google Scholar] [CrossRef]
- Pachitariu, M.; Stringer, C. Cellpose 2.0: How to train your own model. Nat. Methods 2022, 19, 1634–1641. [Google Scholar] [CrossRef]
- Cellpose Wrapper for Fiji. Available online: https://github.com/BIOP/ijl-utilities-wrappers (accessed on 29 July 2024).
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell detection with star-convex polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Part II. pp. 265–273. [Google Scholar]
- Weigert, M.; Schmidt, U. Nuclei instance segmentation and classification in histopathology images with stardist. In Proceedings of the 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), Kolkata, India, 28–31 March 2022; pp. 1–4. [Google Scholar]
- Sternberg, S.R. Biomedical image processing. Computer 1983, 16, 22–34. [Google Scholar] [CrossRef]
- Sato, Y.; Nakajima, S.; Shiraga, N.; Atsumi, H.; Yoshida, S.; Koller, T.; Gerig, G.; Kikinis, R. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 1998, 2, 143–168. [Google Scholar] [CrossRef]
- Bazin, R.; Doublet, E. Photograding scales. In Skin Aging Atlas; Doublet, E., Ed.; Med’com: Paris, France, 2007; pp. 40–41+50–51. [Google Scholar]
- Urry, H.L.; Nitschke, J.B.; Dolski, I.; Jackson, D.C.; Dalton, K.M.; Mueller, C.J.; Rosenkranz, M.A.; Ryff, C.D.; Singer, B.H.; Davidson, R.J. Making a Life Worth Living: Neural Correlates of Well-Being. Psychol. Sci. 2004, 15, 367–372. [Google Scholar] [CrossRef]
- Sutton, S.K.; Davidson, R.J. Prefrontal brain electrical asymmetry predicts the evaluation of affective stimuli. Neuropsychologia 2000, 38, 1723–1733. [Google Scholar] [CrossRef]
- Jackson, D.C.; Mueller, C.J.; Dolski, I.; Dalton, K.M.; Nitschke, J.B.; Urry, H.L.; Rosenkranz, M.A.; Ryff, C.D.; Singer, B.H.; Davidson, R.J. Now you feel it, now you don’t: Frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol. Sci. 2003, 14, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bachmann, P.; Schilling, T.M.; Naumann, E.; Schächinger, H.; Larra, M.F. Emotional stress regulation: The role of relative frontal alpha asymmetry in shaping the stress response. Biol. Psychol. 2018, 138, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.S.; Weekes, N.Y.; Wang, T.H. The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biol. Psychol. 2007, 75, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Papousek, I.; Wimmer, S.; Lackner, H.K.; Schulter, G.; Perchtold, C.M.; Paechter, M. Trait positive affect and students’ prefrontal EEG alpha asymmetry responses during a simulated exam situation. Biol. Psychol. 2019, 148, 107762. [Google Scholar] [CrossRef]
- Quaedflieg, C.W.E.M.; Meyer, T.; Smulders, F.T.Y.; Smeets, T. The functional role of individual-alpha based frontal asymmetry in stress responding. Biol. Psychol. 2015, 104, 75–81. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef]
- Zimmerman, A.; Bai, L.; Ginty, D.D. The gentle touch receptors of mammalian skin. Science 2014, 346, 950–954. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Klich, J.D.; Khallaf, M.A.; Hulme, A.J.; Sánchez-Carranza, O.; Baran, Z.M.; Rossi, A.; Huang, A.T.; Pohl, T.; Fleischer, R.; et al. Touch sensation requires the mechanically gated ion channel ELKIN1. Science 2024, 383, 992–998. [Google Scholar] [CrossRef]
- Prunizen™—The Feel-Good Anti-Hair Loss. Available online: https://www.clariant.com/en/Business-Units/Care-Chemicals/Personal-Care/Actives-and-Natural-Origins/Active-Ingredients/Natural-Actives/Prunizen (accessed on 31 July 2025).
- Kannabia Sense™|Vytrus Biotech. Available online: https://www.vytrus.com/natural-active/kannabia-sense/ (accessed on 31 July 2025).
- Caressense™ Biofunctional. Available online: https://www.ashland.com/industries/personal-and-home-care/skin-and-sun-care/caressense-biofunctional (accessed on 31 July 2025).
- Maejima, Y.; Horita, S.; Yokota, S.; Ono, T.; Proks, P.; Yoshida-Komiya, H.; Ueta, Y.; Nishimori, K.; Misaka, S.; Shimomura, K. Identification of oxytocin receptor activating chemical components from traditional Japanese medicines. J. Food Drug Anal. 2021, 29, 8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havas, F.; Krispin, S.; Cohen, M.; Attia-Vigneau, J. Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling. Cosmetics 2025, 12, 184. https://doi.org/10.3390/cosmetics12050184
Havas F, Krispin S, Cohen M, Attia-Vigneau J. Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling. Cosmetics. 2025; 12(5):184. https://doi.org/10.3390/cosmetics12050184
Chicago/Turabian StyleHavas, Fabien, Shlomo Krispin, Moshe Cohen, and Joan Attia-Vigneau. 2025. "Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling" Cosmetics 12, no. 5: 184. https://doi.org/10.3390/cosmetics12050184
APA StyleHavas, F., Krispin, S., Cohen, M., & Attia-Vigneau, J. (2025). Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling. Cosmetics, 12(5), 184. https://doi.org/10.3390/cosmetics12050184