Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods
Abstract
1. Introduction
1.1. Endocrine System and EDCs
1.1.1. Hypothalamic–Pituitary–Thyroid (HPT) Axis
1.1.2. Parathyroid Glands
1.1.3. Hypothalamic–Pituitary–Adrenal (HPA) Axis
1.1.4. The Hypothalamic–Pituitary–Gonad (HPG) Axis
1.1.5. Pancreas
2. Overview of the Main In Vitro Current Models for Identifying Endocrine-Disrupting Activity
2.1. Reproductive System
2.1.1. Yeast Estrogen Screen (YES) and Yeast Androgen Screen (YAS) Assay
2.1.2. Cell Proliferation Assay (E-SCREEN Assay)
2.1.3. Transactivation System with Stably Transfected Cells to Detect Estrogen Receptor Agonists or Antagonists
2.1.4. Estrogen Binding Affinity Assay
2.1.5. Transactivation System with Stably Transfected Cells to Detect Androgen Receptor Agonists or Antagonists
2.1.6. Aromatase (Human Recombinant) Assay
2.1.7. H295R Steroidogenesis Assay
2.2. Thyroid Gland
2.2.1. Thyroid Method 1b: Thyrotropin-Stimulating Hormone (TSH) Receptor Activation Based on cAMP Measurement
2.2.2. Thyroid Method 2a: Thyroperoxidase (TPO) Inhibition Based on Oxidation of Amplex UltraRed® (TPO-AUR)
2.2.3. Thyroid Method 2c: Tyrosine Iodination Using Liquid Chromatography (LC) (TYRO-IOD)
2.2.4. Thyroid Method 3a: Thyroxine-Binding Prealbumin (TTR)/Thyroxinebinding Prealbumin (TBG) Binding Using Fluorescence Displacement (ANSA) (TTR-ANSA)
2.2.5. Thyroid Method 3b: Thyroxine-Binding Prealbumin Binding Using Fluorescence Displacement (TTR FITC T4)
2.2.6. Thyroid Method 4a: Deiodinase 1 Activity Based on Sandell–Kolthoff Reaction (DIO 1)
2.2.7. Thyroid Method 4b: Inhibition of THs Glucuronidation Using Liquid Chromatography/Mass Spectrometry (GLUC LC/MS)
2.2.8. Thyroid Method 6a: Human TH Receptor Alpha (TRα) and Human TH Receptor Beta (TRβ) Reporter Gene Transactivation Measuring Agonist Activities. (TRα and TRβ Reporter Assays)
2.2.9. Thyroid Method 6b: TR CALUX Human TH Receptor Beta (TRβ) Reporter Gene Transactivation Measuring Agonist and Antagonist Activities (TR CALUX)
2.2.10. Thyroid Method 8a: T-Screen Assay Measuring Cell Proliferation of GH3 Cells Using Alamar Blue/Resazurin (T-SCREEN)
3. Overview of the In Silico Models for Identifying Endocrine-Disrupting Activity
4. Overview of the Main Current Models for Identifying Endocrine-Disrupting Activity Using Partial Replacement
4.1. Short-Term Juvenile Hormone Activity Screening Assay Using Daphnia Magna
4.2. EASZY Assay: Detection of Endocrine Active Substances, Acting Through Estrogen Receptors, Using Transgenic Tg(cyp19a1b:GFP) Zebrafish Embryos
4.3. Larval Amphibian Growth and Development Assay
4.4. Xenopus Eleutheroembryonic Thyroid Assay (XETA)
4.5. Daphnia Multigeneration Test for Assessment of Endocrine-Active Chemicals (DMGT)
5. Limitations
6. EDCs in Cosmetics
6.1. Ultraviolet Filters
6.1.1. Benzophenones and Derivatives
6.1.2. 4-Methylbenzylidene Camphor
6.1.3. Homosalate
6.1.4. Octocrylene
6.1.5. Ethylhexyl Methoxycinnamate or Octinoxate
6.1.6. Avobenzone
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fouyet, S.; Ferger, M.-C.; Leproux, P.; Rat, P.; Dutot, M. Advancing Endocrine Disruptors via In Vitro Evaluation: Recognizing the Significance of the Organization for Economic Co-Operation and Development and United States Environmental Protection Agency Guidelines, Embracing New Assessment Methods, and the Urgent Need for a Comprehensive Battery of Tests. Toxics 2024, 12, 183. [Google Scholar] [CrossRef]
- Kalofiri, P.; Biskanaki, F.; Kefala, V.; Tertipi, N.; Sfyri, E.; Rallis, E. Endocrine Disruptors in Cosmetic Products and the Regulatory Framework: Public Health Implications. Cosmetics 2023, 10, 160. [Google Scholar] [CrossRef]
- European Commission. 16 May 2019. Call for Data on Ingredients with Potential Endocrine-Disrupting Properties Used in Cosmetic Products. European Commission Newsroom. Available online: https://ec.europa.eu/newsroom/growth/items/651201/en (accessed on 4 August 2025).
- The Lancet Oncology. Endocrine disruptors-the lessons (not) learned. Lancet Oncol. 2021, 22, 1483. [Google Scholar] [CrossRef]
- Wagner, H. Essentials of human physiology. In The Psychobiology of Human Motivation; Routledge: Abingdon, UK, 2021; Volume 1, pp. 11–24. [Google Scholar] [CrossRef]
- Chou, K. Endocrine System and Endocrine Disruptors. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128012383. [Google Scholar] [CrossRef]
- Bany Bakar, R.; Reimann, F.; Gribble, F.M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 784–796. [Google Scholar] [CrossRef]
- Environment, Climate Change and Health (ECH). State of the Science of Endocrine Disputing Chemicals—IPCP-2012; Bergman, Å., Heindel, J.J., Jobling, S., Kidd, K.A., Zoeller, R.T., Eds.; United Nations Environment Programme and the World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.who.int/publications/i/item/state-of-the-science-of-endocrine-disrupting-chemicals (accessed on 7 May 2025).
- Clavel Rolland, N.; Graslin, F.; Schorsch, F.; Pourcher, T.; Blanck, O. Investigating the mechanisms of action of thyroid disruptors: A multimodal approach that integrates in vitro and metabolomic analysis. Toxicol. Vitr. 2024, 100, 105911. [Google Scholar] [CrossRef]
- European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the Technical Support of the Joint Research Centre (JRC); Andersson, N.; Arena, M.; Auteri, D.; Barmaz, S.; Grignard, E.; Kienzler, A.; Lepper, P.; Lostia, A.M.; Munn, S.; et al. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018, 16, e05311. [Google Scholar] [CrossRef]
- Paul, K.B.; Hedge, J.M.; Bansal, R.; Zoeller, R.T.; Peter, R.; DeVito, M.J.; Crofton, K.M. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 2012, 300, 31–45. [Google Scholar] [CrossRef]
- Homburg, M.; Rasmussen, Å.K.; Ramhøj, L.; Feldt-Rasmussen, U. The Influence of Triclosan on the Thyroid Hormone System in Humans—A Systematic Review. Front. Endocrinol. 2022, 13, 883827. [Google Scholar] [CrossRef]
- Coperchini, F.; Croce, L.; Ricci, G.; Magri, F.; Rotondi, M.; Imbriani, M.; Chiovato, L. Thyroid Disrupting Effects of Old and New Generation PFAS. Front. Endocrinol. 2021, 11, 612320. [Google Scholar] [CrossRef]
- Hu, X.; Saunders, N.; Safley, S.; Smith, M.R.; Liang, Y.; Tran, V.; Sharma, J.; Jones, D.P.; Weber, C.J. Environmental chemicals and metabolic disruption in primary and secondary human parathyroid tumors. Surgery 2021, 169, 102–108. [Google Scholar] [CrossRef]
- Tyc, H.J.; Kłodnicka, K.; Teresińska, B.; Karpiński, R.; Flieger, J.; Baj, J. Micro- and Nanoplastics as Disruptors of the Endocrine System—A Review of the Threats and Consequences Associated with Plastic Exposure. Int. J. Mol. Sci. 2025, 26, 6156. [Google Scholar] [CrossRef]
- Babić Leko, M.; Pleić, N.; Gunjača, I.; Zemunik, T. Environmental Factors that Affect Parathyroid Hormone and Calcitonin Levels. Int. J. Mol. Sci. 2022, 23, 44. [Google Scholar] [CrossRef]
- Karaca, Z.; Grossman, A.; Kelestimur, F. Investigation of the Hypothalamo-pituitary-adrenal (HPA) axis: A con-temporary synthesis. Rev. Endocr. Metab. Disord. 2021, 22, 179–204. [Google Scholar] [CrossRef]
- Hinson, J.P.; Raven, P.W. Effects of endocrine-disrupting chemicals on adrenal function. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 111–120. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef]
- Harvey, P.W. Adrenocortical endocrine disruption. J. Steroid Biochem. Mol. Biol. 2016, 155, 199–206. [Google Scholar] [CrossRef]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef]
- Oyola, M.G.; Handa, R.J. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: Sex differences in regulation of stress responsivity. Stress 2017, 20, 476–494. [Google Scholar] [CrossRef]
- Li, L.; Lin, W.; Wang, Z.; Huang, R.; Xia, H.; Li, Z.; Deng, J.; Ye, T.; Huang, Y.; Yang, Y. Hormone Regulation in Testicular Development and Function. Int. J. Mol. Sci. 2023, 25, 5805. [Google Scholar] [CrossRef]
- Schulster, M.; Bernie, A.M.; Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 2016, 18, 435–440. [Google Scholar] [CrossRef]
- Czarnywojtek, A.; Borowska, M.; Dyrka, K.; Moskal, J.; Kościński, J.; Krela-Kaźmierczak, I.; Lewandowska, A.M.; Hjeily, B.A.; Gut, P.; Hoffmann, K.; et al. The influence of various endocrine disruptors on the reproductive system. Endokrynol. Pol. 2023, 74, 221–233. [Google Scholar] [CrossRef]
- Fenichel, P.; Chevalier, N.; Brucker-Davis, F. Bisphenol A: An endocrine and metabolic disruptor. Ann. Endocrinol. 2013, 74, 211–220. [Google Scholar] [CrossRef]
- Kim, K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int. J. Mol. Sci. 2024, 25, 3818. [Google Scholar] [CrossRef]
- Lința, A.V.; Lolescu, B.M.; Ilie, C.A.; Vlad, M.; Blidișel, A.; Sturza, A.; Borza, C.; Muntean, D.M.; Crețu, O.M. Liver and Pancreatic Toxicity of Endocrine-Disruptive Chemicals: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 7420. [Google Scholar] [CrossRef]
- Ropero, A.B.; Alonso-Magdalena, P.; García-García, E.; Ripoll, C.; Fuentes, E.; Nadal, A. Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int. J. Androl. 2008, 31, 194–200. [Google Scholar] [CrossRef]
- Bernasconi, C.; Langezaal, I.; Bartnicka, J.; Asturiol, D.; Bowe, G.; Coecke, S.; Kienzler, A.; Liska, R.; Milcamps, A.; Munoz Pineiro, A.; et al. Validation of a Battery of Mechanistic Methods Relevant for the Detection of Chemicals that Can Disrupt the Thyroid Hormone System; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Ramhøj, L.; Axelstad, M.; Baert, Y.; Cañas-Portilla, A.I.; Chalmel, F.; Dahmen, L.; De La Vieja, A.; Evrard, B.; Haigis, A.-C.; Hamers, T.; et al. New approach methods to improve human health risk assessment of thyroid hormone system disruption–a PARC project. Front. Toxicol. 2023, 5, 1189303. [Google Scholar] [CrossRef]
- Barton-Maclaren, T.S.; Wade, M.; Basu, N.; Bayen, S.; Grundy, J.; Marlatt, V.; Moore, R.; Parent, L.; Parrott, J.; Grigorova, P.; et al. Innovation in regulatory approaches for endocrine disrupting chemicals: The journey to risk assessment modernization in Canada. Environ. Res. 2022, 204, 112225. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2009, 29, 730–741. [Google Scholar] [CrossRef]
- OECD. Guidance Document for the Use of Adverse Outcome Pathways in Developing Integrated Approaches to Testing and Assessment (IATA); OECD Series on Testing and Assessment, No. 260; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Zilliacus, J.; Draskau, M.K.; Johansson, H.K.L.; Svingen, T.; Beronius, A. Building an adverse outcome pathway network for estrogen-, androgen- and steroidogenesis-mediated reproductive toxicity. Front. Toxicol. 2024, 6, 1357717. [Google Scholar] [CrossRef]
- Li, K.; Cui, K.; Wang, Q. Adverse outcome pathway network approach to identify endocrine disruptor-induced reproductive toxicity. Curr. Opin. Toxicol. 2023, 34, 100391. [Google Scholar] [CrossRef]
- Audouze, K.; Zgheib, E.; Abass, K.; Baig, A.H.; Forner-Piquer, I.; Holbech, H.; Knapen, D.; Leonards, P.E.G.; Lupu, D.I.; Palaniswamy, S.; et al. Evidenced-Based Approaches to Support the Development of Endocrine-Mediated Adverse Outcome Pathways: Challenges and Opportunities. Front. Toxicol. 2021, 3, 787017. [Google Scholar] [CrossRef]
- Wiklund, L.; Pípal, M.; Weiss, J.; Beronius, A. Exploring a mechanism-based approach for the identification of endocrine disruptors using Adverse Outcome Pathways and New Approach Methodologies: A perfluorooctane sulfonic acid case study. Toxicology 2024, 504, 153794. [Google Scholar] [CrossRef]
- ISO 19040-1:2018; Water Quality—Determination of the Estrogenic Potential of Water and Waste Water—Part 1: Yeast Estrogen Screen (YES) Assay. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 19040-2:2018; Water Quality—Determination of the Estrogenic Potential of Water and Waste Water—Part 2: Human Cell-Based Reporter Gene Assay. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 19040-3:2018; Water Quality—Determination of the Estrogenic Potential of Water and Waste Water—Part 3: In Vivo Assay with the Fish Danio Rerio (Estrogenic Gene Expression). International Organization for Standardization: Geneva, Switzerland, 2018.
- Czernych, R.; Chraniuk, M.; Zagożdżon, P.; Wolska, L. Characterization of estrogenic and androgenic activity of phthalates by the XenoScreen YES/YAS in vitro assay. Environ. Toxicol. Pharmacol. 2017, 53, 95–104. [Google Scholar] [CrossRef]
- Oliver, M.; Kudłak, B.; Wieczerzak, M.; Reis, S.; Lima, S.A.C.; Segundo, M.A.; Miró, M. Ecotoxicological equilibria of triclosan in Microtox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants. Sci. Total Environ. 2020, 719, 137358. [Google Scholar] [CrossRef]
- Chauhan, A.; Subbarayan, R.; Ravi, K.; Verma, R.; Rao, S.K.; Girija, D.M.; Gopalakrishnan, C.; Rana, G. Phytomediated Chitosan-Modified TiO2 NPs for Enhanced Photocatalytic and Potential Application for Breast Cancer Therapy. Lumin. J. Biol. Chem. Lumin. 2025, 40, e70162. [Google Scholar] [CrossRef]
- Svobodova, L.; Kejlova, K.; Rucki, M.; Chrz, J.; Kubincova, P.; Dvorakova, M.; Kolarova, H.; Jirova, D. Health safety of parabens evaluated by selected in vitro methods. Regul. Toxicol. Pharmacol. 2023, 137, 105307. [Google Scholar] [CrossRef]
- Soto, A.M.; Sonnenschein, C.; Chung, K.L.; Fernandez, M.F.; Olea, N.; Serrano, F.O. The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ. Health Perspect. 1995, 103 (Suppl. S7), 113–122. [Google Scholar] [CrossRef]
- OECD. Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- OECD. Test No. 493: Performance-Based Test Guideline for Human Recombinant Estrogen Receptor (hrER) In Vitro Assays to Detect Chemicals with ER Binding Affinity; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- OECD. Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Endocrine Disruptor Screening Program Test Guidelines OPPTS 890.1200: Aromatase (Human Recombinant) Assay (EPA-HQ-OPPT-2009-0576-0004). Office of Chemical Safety and Pollution Prevention. 2009. Available online: https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0004 (accessed on 7 July 2025).
- OECD. Test No. 456: H295R Steroidogenesis Assay; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2025. [Google Scholar] [CrossRef]
- OECD. New Scoping Document on In Vitro and Ex Vivo Assays for the Identification of Modulators of Thyroid Hormone Signalling; OECD Series on Testing and Assessment, No. 207; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Vergauwen, L.; Bajard, L.; Tait, S.; Langezaal, I.; Sosnowska, A.; Roncaglioni, A.; Hessel, E.; van den Brand, A.D.; Haigis, A.-C.; Novák, J.; et al. A 2024 inventory of test methods relevant to thyroid hormone system disruption for human health and environmental regulatory hazard assessment. Open Res. Eur. 2024, 4, 242. [Google Scholar] [CrossRef]
- OECD. Thyroid In Vitro Methods: Assessment Reports by the Thyroid Disruption Methods Expert Group: Reports Assessing the Validation Status of Assays from the EU-NETVAL Activities; OECD Series on Testing and Assessment, No. 403; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Paul, K.B.; Hedge, J.M.; Rotroff, D.M.; Hornung, M.W.; Crofton, K.M.; Simmons, S.O. Development of a thyroperoxidase inhibition assay for high-throughput screening. Chem. Res. Toxicol. 2014, 27, 387–399. [Google Scholar] [CrossRef]
- Paul Friedman, K.; Watt, E.D.; Hornung, M.W.; Hedge, J.M.; Judson, R.S.; Crofton, K.M.; Houck, K.A.; Simmons, S.O. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicol. Sci. 2016, 151, 160–180. [Google Scholar] [CrossRef]
- Doerge, D.R.; Takazawa, R.S. Mechanism of thyroid peroxidase inhibition by ethylenethiourea. Chem. Res. Toxicol. 1990, 3, 98–101. [Google Scholar] [CrossRef]
- Divi, R.L.; Doerge, D.R. Inhibition of thyroid peroxidase by dietary flavonoids. Chem. Res. Toxicol. 1996, 9, 16–23. [Google Scholar] [CrossRef]
- Freyberger, A.; Ahr, H.J. Studies on the goitrogenic mechanism of action of N,N,N′,N′-tetramethylthiourea. Toxicology 2006, 217, 169–175. [Google Scholar] [CrossRef]
- Tater, A.; Gupta, A.; Upadhyay, G.; Deshpande, A.; Date, R.; Tamboli, I.Y. In vitro assays for characterization of distinct multiple catalytic activities of thyroid peroxidase using LC-MS/MS. Curr. Res. Toxicol. 2021, 2, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Reinen, J.; Rijk, J.; de Laat, E.; Toersche, J.; Freyberger, A.; Wenker, M. Development and standardization of an assay to evaluate the in vitro inhibition of thyroid peroxidase catalyzed iodination using FTC 238 hrTPO cell homogenates. Appl. Vitr. Toxicol. 2024, 10, 51–64. [Google Scholar] [CrossRef]
- Meerts, I.A.; van Zanden, J.J.; Luijks, E.A.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci. 2000, 56, 95–104. [Google Scholar] [CrossRef]
- Cao, J.; Lin, Y.; Guo, L.H.; Zhang, A.Q.; Wei, Y.; Yang, Y. Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology 2010, 277, 20–28. [Google Scholar] [CrossRef]
- Montaño, M.; Cocco, E.; Guignard, C.; Marsh, G.; Hoffmann, L.; Bergman, A.; Gutleb, A.C.; Murk, A.J. New approaches to assess the transthyretin binding capacity of bioactivated thyroid hormone disruptors. Toxicol. Sci. 2012, 130, 94–105. [Google Scholar] [CrossRef]
- Hamers, T.; Kortenkamp, A.; Scholze, M.; Molenaar, D.; Cenijn, P.H.; Weiss, J.M. Transthyretin-Binding Activity of Complex Mixtures Representing the Composition of Thyroid-Hormone Disrupting Contaminants in House Dust and Human Serum. Environ. Health Perspect. 2020, 128, 17015. [Google Scholar] [CrossRef]
- Tong, Z.; Li, H.; Goljer, I.; McConnell, O.; Chandrasekaran, A. In vitro glucuronidation of thyroxine and triiodothyronine by liver microsomes and recombinant human UDP-glucuronosyltransferases. Drug Metab. Dispos. Biol. Fate Chem. 2007, 35, 2203–2210. [Google Scholar] [CrossRef]
- Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol. Lett. 2009, 189, 67–77. [Google Scholar] [CrossRef]
- Kusk, K.O.; Krüger, T.; Long, M.; Taxvig, C.; Lykkesfeldt, A.E.; Frederiksen, H.; Andersson, A.M.; Andersen, H.R.; Hansen, K.M.; Nellemann, C.; et al. Endocrine potency of wastewater: Contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays. Environ. Toxicol. Chem. 2011, 30, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.H.; Ramsden, D.B.; Jarratt, P.D.; Harris, R.M. Biomarkers of endocrine disruption: Cluster analysis of effects of plasticisers on Phase 1 and Phase 2 metabolism of steroids. Int. J. Androl. 2012, 35, 415–423. [Google Scholar] [CrossRef]
- Vuorinen, A.; Odermatt, A.; Schuster, D. Reprint of “In Silico methods in the discovery of endocrine disrupting chemicals”. J. Steroid Biochem. Mol. Biol. 2015, 153, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, S.; Roncaglioni, A.; Mansouri, K.; Judson, R.S.; Benfenati, E.; Manganaro, A.; Ruiz, P. Development, validation and integration of in silico models to identify androgen active chemicals. Chemosphere 2019, 220, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Bhhatarai, B.; Wilson, D.M.; Price, P.S.; Marty, S.; Parks, A.K.; Carney, E. Evaluation of OASIS QSAR Models Using ToxCast™ in Vitro Estrogen and Androgen Receptor Binding Data and Application in an Integrated Endocrine Screening Approach. Environ. Health Perspect 2016, 124, 1453–1461. [Google Scholar] [CrossRef]
- Chen, Q.; Tan, H.; Yu, H.; Shi, W. Activation of steroid hormone receptors: Shed light on the in silico evaluation of endocrine disrupting chemicals. Sci. Total Environ. 2018, 631–632, 27–39. [Google Scholar] [CrossRef]
- Schneider, M.; Pons, J.L.; Labesse, G.; Bourguet, W. In Silico Predictions of Endocrine Disruptors Properties. Endocrinology 2019, 160, 2709–2716. [Google Scholar] [CrossRef]
- Vedani, A.; Smiesko, M.; Spreafico, M.; Peristera, O.; Dobler, M. VirtualToxLab—In Silico prediction of the toxic (endo-crine-disrupting) potential of drugs, chemicals and natural products. Two years and 2000 compounds of experi-ence: A progress report. ALTEX 2009, 26, 167–176. [Google Scholar] [CrossRef]
- Vedani, A.; Dobler, M.; Smieško, M. VirtualToxLab—A platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol. Appl. Pharmacol. 2012, 261, 142–153. [Google Scholar] [CrossRef]
- Shao, Y.; Zhu, L.; Chen, Z.; Thalmann, B.; Zhou, S.; Hollert, H.; Seiler, T.B. Evidence of increased estrogenicity upon metabolism of Bisphenol F—Elucidation of the key metabolites. Sci. Total Environ. 2021, 787, 147669. [Google Scholar] [CrossRef]
- Nowak, K.; Jakopin, Ž. In silico profiling of endocrine-disrupting potential of bisphenol analogues and their halogenated transformation products. Food Chem. Toxicol. 2023, 173, 113623. [Google Scholar] [CrossRef]
- Evangelista, M.; Chirico, N.; Papa, E. In Silico models for the screening of human transthyretin disruptors. J. Hazard. Mater. 2024, 480, 136188. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, H.; Cai, Y.; Li, W.; Liu, G.; Tang, Y. In Silico Prediction of Endocrine Disrupting Chemicals Using Single-Label and Multilabel Models. J. Chem. Inf. Model. 2019, 59, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Eskes, C. The usefulness of integrated strategy approaches in replacing animal experimentation. Ann. Ist. Super. Sanita. 2019, 55, 400–404. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 253: Short-Term Juvenile Hormone Activity Screening Assay Using Daphnia Magna (JHASA); OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- LeBlanc, G.A.; Medlock, E.K. Males on demand: The environmental-neuro-endocrine control of male sex determination in daphnids. FEBS J. 2015, 282, 4080–4093. [Google Scholar] [CrossRef]
- Toyota, K.; Watanabe, H.; Hirano, M.; Abe, R.; Miyakawa, H.; Song, Y.; Sato, T.; Miyagawa, S.; Tollefsen, K.E.; Yamamoto, H.; et al. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): Review and adverse outcome pathway development. Aquat. Toxicol. 2022, 243, 106058. [Google Scholar] [CrossRef]
- Tong, S.K.; Mouriec, K.; Kuo, M.W.; Pellegrini, E.; Gueguen, M.M.; Brion, F.; Kah, O.; Chung, B.C. A cyp19a1b-GFP (Aromatase B) transgenic Zebrafish line that expresses GFP in radial glial cells. Genesis 2009, 47, 67–73. [Google Scholar] [CrossRef]
- OECD. Test No. 250: EASZY Assay—Detection of Endocrine Active Substances, Acting Through Estrogen Receptors, Using Transgenic tg(cyp19a1b:GFP) Zebrafish embrYos; OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- OECD. Test No. 241: The Larval Amphibian Growth and Development Assay (LAGDA); OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- OECD. Test No. 248: Xenopus Eleutheroembryonic Thyroid Assay (XETA); OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Padilla Suarez, E.G.; Pugliese, S.; Galdiero, E.; Guida, M.; Libralato, G.; Saviano, L.; Spampinato, M.; Pappalardo, C.; Siciliano, A. Multigenerational tests on Daphnia spp.: A vision and new perspectives. Environ. Pollut. 2023, 337, 122629. [Google Scholar] [CrossRef]
- Combes, R.D. The use of human cells in biomedical research and testing. Altern. Lab. Anim. 2004, 32 (Suppl. S1), 43–49. [Google Scholar] [CrossRef]
- Poletto, E.; Baldo, G. Creating cell lines for mimicking diseases. Prog. Mol. Biol. Transl. Sci. 2021, 181, 59–87. [Google Scholar] [CrossRef]
- Lopardo, L.; Adams, D.; Cummins, A.; Kasprzyk-Hordern, B. Verifying community-wide exposure to endocrine disruptors in personal care products—In quest for metabolic biomarkers of exposure via in vitro studies and wastewater-based epidemiology. Water Res. 2018, 143, 117–126. [Google Scholar] [CrossRef]
- Natsch, A.; Hostettler, L.; Haupt, T.; Laue, H. A critical assessment of the estrogenic potency of benzyl salicylate. Toxicol. Rep. 2021, 8, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Onyango, D.O.; Selman, B.G.; Rose, J.L.; Ellison, C.A.; Nash, J.F. Comparison between endocrine activity assessed using ToxCast/Tox21 database and human plasma concentration of sunscreen active ingredients/UV filters. Toxicol. Sci. 2023, 196, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; He, Q.; Meng, L.; Zhang, X.; Sun, P.; Wang, Z. Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers. Aquat. Toxicol. 2015, 161, 108–116. [Google Scholar] [CrossRef]
- Picot Groz, M.; Martinez Bueno, M.J.; Rosain, D.; Fenet, H.; Casellas, C.; Pereira, C.; Maria, V.; Bebianno, M.J.; Gomez, E. Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC–MS/MS. Sci. Total Environ. 2014, 493, 162–169. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://eur-lex.europa.eu/eli/reg/2009/1223/oj/eng (accessed on 10 July 2025).
- SCCS/1544/14; Memorandum on Endocrine Disruptors. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2014.
- Breakell, T.; Kowalski, I.; Foerster, Y.; Kramer, R.; Erdmann, M.; Berking, C.; Heppt, M.V. Ultraviolet Filters: Dissecting Current Facts and Myths. J. Clin. Med. 2024, 13, 2986. [Google Scholar] [CrossRef]
- Maipas, S.; Nicolopoulou-Stamati, P. Sun lotion chemicals as endocrine disruptors. Hormones 2015, 14, 32–46. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Lin, Y.-S.; Yen, C.-H.; Miaw, C.-L.; Chen, T.-C.; Wu, M.-C.; Hsieh, C.-Y. Identification, contribution, and estrogenic activity of potential EDCs in a river receiving concentrated livestock effluent in Southern Taiwan. Sci. Total Environ. 2018, 636, 464–476. [Google Scholar] [CrossRef]
- Krause, M.; Klit, A.; Blomberg Jensen, M.; Søeborg, T.; Frederiksen, H.; Schlumpf, M.; Lichtensteiger, W.; Skakkebaek, N.E.; Drzewiecki, K.T. Sunscreens: Are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int. J. Androl. 2012, 35, 424–436. [Google Scholar] [CrossRef]
- Just-Sarobé, M. Sunscreens and Their Impact on Human Health and the Environment: A Review. Int. J. Dermatol. 2025. [Google Scholar] [CrossRef]
- Ma, J.; Yang, B.; Hu, X.; Gao, Y.; Qin, C. The binding mechanism of benzophenone-type UV filters and human serum albumin: The role of site, number, and type of functional group substitutions. Environ. Pollut. 2023, 324, 121342. [Google Scholar] [CrossRef]
- Zhan, T.; Shen, L.; Zhang, Y.; Wan, F.; Qiu, Y.; Jin, Q.; Wu, Y.; Huang, Y.; Zhuang, S. Decidual Disrupting Effects of Low-Dose Benzophenone-Type UV Filters in Human Endometrial Stromal Cells via ER/PR/FOXO1 Signaling. Environ. Sci. Technol. 2025, 59, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Zhang, L.; Cui, S.; Liu, W.; Zhou, R.; Zhuang, S. Dioxybenzone triggers enhanced estrogenic effect via metabolic activation: In Silico, in vitro and in vivo investigation. Environ. Pollut. 2021, 268, 115766. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Ren, X.M.; Zhao, L.; Guo, L.H. Binding and activation of estrogen related receptor γ as possible molecular initiating events of hydroxylated benzophenones endocrine disruption toxicity. Environ. Pollut. 2020, 263, 114656. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, C.; Wang, S.; Lu, H.; Zhu, Y.; Ge, R.S.; Tang, Y.; Ying, Y. Benzophenone UV-filters: Inhibition on human and rat 17β-hydroxysteroid dehydrogenase 1—Insights from 3D-QSAR and docking studies. J. Steroid Biochem. Mol. Biol. 2025, 250, 106739. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, Y.; Tang, Y.; Pan, C.; Fei, Q.; Hu, Z.; Li, H.; Zhu, Y.; Wang, Y.; Ge, R.S. Benzophenone-1 and -2 UV-filters potently inhibit human, rat, and mouse gonadal 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. J. Steroid Biochem. Mol. Biol. 2023, 230, 106279. [Google Scholar] [CrossRef]
- Haselman, J.T.; Sakurai, M.; Watanabe, N.; Goto, Y.; Onishi, Y.; Ito, Y.; Onoda, Y.; Kosian, P.A.; Korte, J.J.; Johnson, R.D.; et al. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile. J. Appl. Toxicol. 2016, 36, 1651–1661. [Google Scholar] [CrossRef]
- SCCS/1625/20; Opinion on Benzophenone-3 (CAS No 131-57-7, EC No 205-031-5), Preliminary Version of 15 December 2020, Final Version of 30–31 March. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2021.
- SCCS/1679/25; Scientific Advice on the Safety of Benzophenone-2 (BP-2) (CAS No. 131-55-5, EC No. 205-028-9) and Benzophenone-5 (BP-5) (CAS No. 6628-37-1, EC No. 613-918-7) as Substances with Potential Endocrine Disrupting Properties in Cosmetic Products, Preliminary Version of 27 March 2025, Final Version of 26 June 2025. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2025.
- SCCS/1672/24; Opinion on Benzophenone-1 (CAS No. 131-56-6, EC No. 205-029-4), Preliminary Version of 25 October 2024, Final Version of 27 March 2025. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2021.
- Levine, A. Sunscreen use and awareness of chemical toxicity among beachgoers in Hawaii prior to a ban on the sale of sunscreens containing ingredients found to be toxic to coral reef ecosystems. Mar. Policy 2020, 117, 103875. [Google Scholar] [CrossRef]
- Wang, W.; Kannan, K. Mass loading and emission of benzophenone-3 (BP-3) and its derivatives in wastewater treatment plants in New York State, USA. Sci. Total Environ. 2017, 579, 1316–1322. [Google Scholar] [CrossRef]
- Jiménez-Díaz, I.; Molina-Molina, J.M.; Zafra-Gómez, A.; Ballesteros, O.; Navalón, A.; Real, M.; Sáenz, J.M.; Fernández, M.F.; Olea, N. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC-MS/MS. Assessment of their in vitro endocrine activity. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 936, 80–87. [Google Scholar] [CrossRef]
- Lax, C.; Wicksell, E.; Grip, A.; Niemi, J.V.L.; Liu, W.; Rafeletou, A.; Kudłak, B.; Schiöth, H.B. The effect of sunscreen 4-methylbenzylidene camphor in different and reproductive models, its bioaccumulation and molecular effects on ligand-receptor interaction, and protein expression. Basic Clin. Pharmacol. Toxicol. 2023, 133, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Ansari, M.I.; Chauhan, S.S.; Parthasarathi, R.; Anbumani, S. Embryonal exposure to 4-methylbenzylidene camphor induces reproduction impairment in adult zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 287, 110051. [Google Scholar] [CrossRef] [PubMed]
- Quintaneiro, C.; Teixeira, B.; Benedé, J.L.; Chisvert, A.; Soares, A.M.V.M.; Monteiro, M.S. Toxicity effects of the organic UV-filter 4-Methylbenzylidene camphor in zebrafish embryos. Chemosphere 2019, 218, 273–281. [Google Scholar] [CrossRef] [PubMed]
- SCCS/1640/21; Scientific Opinion on 4-Methylbenzylidene Camphor (4-MBC), Preliminary Version of 22 December, Final Version of 29 April. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2022.
- SCCS/1638/21; Scientific Advice on the Safety of Homosalate (CAS No 118-56-9, EC No 204-260-8) as a UV-Filter in Cosmetic Products in Cosmetic Products, Final Version of 2 December. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2021.
- Ka, Y.; Lee, I.; Ji, K. Thyroid and growth hormone endocrine disruption and mechanisms of homosalate and octisalate using wild-type, thrαa-/-, and dre-miR-499-/- zebrafish embryo/larvae. Ecotoxicol. Environ. Saf. 2024, 286, 117170. [Google Scholar] [CrossRef]
- Coperchini, F.; Greco, A.; Teliti, M.; Denegri, M.; Croce, L.; Calì, B.; Gallo, M.; Arpa, G.; Chytiris, S.; Magri, F.; et al. In Vitro study of the UV-filter homosalate effects on rat and human thyroid cells. Environ. Pollut. 2024, 363, 125063. [Google Scholar] [CrossRef]
- Lee, S.; Ka, Y.; Lee, B.; Lee, I.; Seo, Y.E.; Shin, H.; Kho, Y.; Ji, K. Single and mixture toxicity evaluation of avobenzone and homosalate to male zebrafish and H295R cells. Chemosphere 2023, 343, 140271. [Google Scholar] [CrossRef]
- Meng, Q.; Yeung, K.; Chan, K.M. Toxic effects of octocrylene on zebrafish larvae and liver cell line (ZFL). Aquat. Toxicol. 2021, 236, 105843. [Google Scholar] [CrossRef]
- Reum Kwon, B.; Jo, A.R.; Lee, I.; Lee, G.; Joo Park, Y.; Pyo Lee, J.; Park, N.Y.; Kho, Y.; Kim, S.; Ji, K.; et al. Thyroid, neurodevelopmental, and kidney toxicities of common organic UV filters in embryo-larval zebrafish (Danio rerio), and their potential links. Environ. Int. 2024, 192, 109030. [Google Scholar] [CrossRef]
- Chu, S.; Kwon, B.R.; Lee, Y.-M.; Zoh, K.-D.; Choi, K. Effects of 2-ethylhexyl-4-methoxycinnamate (EHMC) on thyroid hormones and genes associated with thyroid, neurotoxic, and nephrotoxic responses in adult and larval zebrafish (Danio rerio). Chemosphere 2021, 263, 128176. [Google Scholar] [CrossRef]
- Ferraris, F.K.; Garcia, E.B.; Chaves, A.d.S.; Brito, T.M.d.; Doro, L.H.; Félix da Silva, N.M.; Alves, A.S.; Pádua, T.A.; Henriques, M.d.G.M.O.; Cardoso Machado, T.S.; et al. Exposure to the UV Filter Octyl Methoxy Cinnamate in the Postnatal Period Induces Thyroid Dysregulation and Perturbs the Immune System of Mice. Front. Endocrinol. 2020, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Alamer, M.; Darbre, P.D. Effects of exposure to six chemical ultraviolet filters commonly used in personal care products on motility of MCF-7 and MDA-MB-231 human breast cancer cells in vitro. J. Appl. Toxicol. 2018, 38, 148–159. [Google Scholar] [CrossRef] [PubMed]
- SCCS/1671/24; Opinion on Ethylhexyl Methoxycinnamate (EHMC) (CAS No. 5466-77-3/83834-59-7, EC No. 226-7757/629-661-9), Preliminary Version of 25 October 2024, Final Version of 26 June 2025. SCCS (Scientific Committee on Consumer Safety): Luxembourg, 2025.
- Strajhar, P.; Tonoli, D.; Jeanneret, F.; Imhof, R.M.; Malagnino, V.; Patt, M.; Kratschmar, D.V.; Boccard, J.; Rudaz, S.; Odermatt, A. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology 2017, 381, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Lorigo, M.; Mariana, M.; Cairrao, E. Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids 2018, 131, 46–58. [Google Scholar] [CrossRef]
- Lorigo, M.; Quintaneiro, C.; Breitenfeld, L.; Cairrao, E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. Chemosphere 2024, 358, 142218. [Google Scholar] [CrossRef]
- Yang, C.; Lim, W.; Bazer, F.W.; Song, G. Avobenzone suppresses proliferative activity of human trophoblast cells and induces apoptosis mediated by mitochondrial disruption. Reprod. Toxicol. 2018, 81, 50–57. [Google Scholar] [CrossRef]
- Ka, Y.; Ji, K. Waterborne exposure to avobenzone and octinoxate induces thyroid endocrine disruption in wild-type and thrαa-/-zebrafish larvae. Ecotoxicology 2022, 31, 948–955. [Google Scholar] [CrossRef]
- Lebaron, P. UV filters and their impact on marine life: State of the science, data gaps, and next steps. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 22–28. [Google Scholar] [CrossRef]
- Mota, S.; Sousa, E.; Cruz, M.T.; Martins de Almeida, I. Occurrence and ecotoxicity of cosmetic ingredients in aquatic ecosystems: A narrative review. Emerg. Contam. 2025, 11, 100512. [Google Scholar] [CrossRef]
- Kroll, A.; Kienle, C.; Junghans, M. Organic UV-filters and freshwater organisms: Data gaps impede a robust retrospective environmental risk assessment. Environ. Sci. Eur. 2025, 37, 6. [Google Scholar] [CrossRef]
Organ/System | Test | Activity Determined | Advantages | Disadvantages | Validation Status |
---|---|---|---|---|---|
YES assay | Estrogenic interaction | Sensible and quantifiable detection | Only detection of hERα | Regulatory accepted | |
Reproductive system | XenoScreen YES/YAS assay | Estrogenic/Androgenic interaction | Activity of pure compounds and complex formulations | Poor physiological relevance | - |
E-SCREEN assay | Estrogenic activity | Easy detection of cell proliferation by hormonally active compounds | Activity can be influenced by cytotoxicity or non-specific mitogenic effects | - | |
Transactivation system with stably transfected cells to detect estrogen/androgen receptor agonists or antagonists | Estrogenic/Androgenic activity | Mechanistically relevant and standardized approach | Effects of metabolic activation or involving non-receptor-mediated pathways not detected | Regulatory accepted | |
Estrogen binding affinity assay | Estrogen activity binding | Specific, mechanistic, and suitable for screening ER-binding compounds | Lack of functional responses detection | - | |
Aromatase assay | Steroidogenic activity | Mechanistically relevant and human-specific approach | Biochemical assay | Regulatory accepted | |
H295R Steroidogenesis Assay | Steroidogenic activity | Human-specific approach | Complexity | Regulatory accepted | |
Thyroid gland | TSH receptor activation based on cAMP measurement | TSH receptor interaction | Relevant receptor and established cell system | Lack of positive reference chemicals for the agonist mode and of antagonist mode development. | Validation finalized * |
TPO-AUR | TPO inhibition | Human-specific approach | High variability | Validation finalized * | |
TYRO-IOD | Tyrosine iodination activity | Human-specific approach | Inter-laboratory reproducibility confirmation required | Validation finalized * | |
TTR-ANSA | TTR/TBG binding activity | Strong biological plausibility; direct and measurable approach | Further refinement of fluorescence interference is needed | Validation finalized * | |
TTR FITC T4 | TTR binding activity | Human-specific approach; direct and measurable approach | Fluorescence interference | Validation ongoing | |
DIO 1 | Inhibition of D1 | Biologically relevant and quantifiable endpoint | Variability due to biological source of human liver microsomes | Validation ongoing | |
GLUC LC/MS | TH glucuronidation inhibition | Sensitive LC-MS analysis | Additional data of inactive compounds required | Validation finalized * | |
TRα and TRβ reporter assays | Activation of TRα and TRβ | Agonistic activity detection | Lack of antagonistic activity detection | Validation finalized * | |
TR CALUX | Activation of TRβ | Agonist and antagonist detection | More active agonist and antagonist chemicals are required | Validation finalized * | |
T-SCREEN | T3 interaction | Agonist and antagonist detection | Unspecific for thyroid modalities | Validation finalized * |
Cosmetic Ingredient | Function |
---|---|
Benzophenone-3 | UV filter |
Kojic Acid | Antioxidant, whitening |
4 methylbenzylidene camphor | UV filter |
Propylparaben | Preservative |
Triclosan | Preservative |
Homosalate | UV filter |
Resorcinol | Dye |
Octrocrylene | UV filter |
Triclocarban | Preservative |
Butylated hydroxytoluene (BHT) | Antioxidant, fragrance |
Benzophenone-4 | UV filter |
Benzyl salicylate | Fragrance, UV absorber |
Genistein | Skin conditioning |
Daidzein | Skin conditioning |
Buthylparaben | Preservative |
Tert-butylhydroxyanisole /Butylatedhydroxyanisole/BHA | Antioxidant |
Benzophenone-1 | UV filter |
Benzophenone-2 | UV filter |
Benzophenone-5 | UV filter |
Methylparaben | Preservative |
Cyclopentasiloxane/ decamethylcyclopentasiloxane/D5 | Emollient, hair conditioning |
Cyclomethicone | Emollient, hair conditioning |
Salicylic acid | Antiseborrheic, hair conditioning, fragrance |
Butylphenyl methyl propional/BMHCA | Fragrance |
Triphenyl phosphate | Plasticiser |
2-tert-butyl-4-methoxyphenol | Antioxidant, fragrance |
2-Ethylhexyl trans-4methoxycinnamate or octinoxate | UV filter |
UV Filters | Activities | Regulatory Status | References |
---|---|---|---|
Benzophenone and derivatives | Estrogenicity, carcinogenic, reproductive, and developmental toxicity Thyroid hormone levels decrease, hypoactivity | BP-1 considered not safe as light stabilizer BP-2 not permitted BP-3 at concentrations up to 0.5% in cosmetic products and up to 6% as UV filter; not safe in body cream, sunscreen propellant spray or pump spray BP-5 safe at concentrations up to 5% in various cosmetic products and as UV filter | [102,105,112,113,114,127] |
4-Methylbenzylidene camphor | Estrogenicity, testosterone synthesis modulation, regulation of thyroid hormones, developmental toxicity and fertilization decrease | Banned in Europe | [117,118,119,120,121] |
Homosalate | Estrogenicity, growth alteration, hormonal thyroid function alteration | Safe as UV filter at concentrations up to 7.34% in face creams and pump sprays | [117,122,123,124,125] |
Octocrylene | Estrogenicity, growth, development and reproduction toxicity, thyroid hormone levels decrease, hypoactivity | Safe as UV filter at concentrations up to 10% | [98,126,127] |
2-Ethylhexyl 4-methoxycinnamate/ Octinoxate | Thyroid hormone levels decrease, hypoactivity, neurotoxicity, estrogenicity | Safe as UV filter at concentrations up to 10% | [127,128,129,130,131,132,133,134] |
1-(4-tert-Butylphenyl)-3-(4-methoxyphenyl) propane-1,3-dione/Avobenzone | Thyroid hormone levels decrease, hypoactivity Inhibition of trophoblast cell proliferation | Safe as UV filter at concentrations up to 5% | [98,125,127,135,136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaleno, A.S.; Guardia-Escote, L.; Vinardell, M.P.; Teixidó, E.; Mitjans, M. Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods. Cosmetics 2025, 12, 175. https://doi.org/10.3390/cosmetics12040175
Maddaleno AS, Guardia-Escote L, Vinardell MP, Teixidó E, Mitjans M. Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods. Cosmetics. 2025; 12(4):175. https://doi.org/10.3390/cosmetics12040175
Chicago/Turabian StyleMaddaleno, Adriana Solange, Laia Guardia-Escote, Maria Pilar Vinardell, Elisabet Teixidó, and Montserrat Mitjans. 2025. "Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods" Cosmetics 12, no. 4: 175. https://doi.org/10.3390/cosmetics12040175
APA StyleMaddaleno, A. S., Guardia-Escote, L., Vinardell, M. P., Teixidó, E., & Mitjans, M. (2025). Assessment of Endocrine-Disrupting Properties in Cosmetic Ingredients: Focus on UV Filters and Alternative Testing Methods. Cosmetics, 12(4), 175. https://doi.org/10.3390/cosmetics12040175