Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Sample Preparation
2.3. Supercritical Fluid Extraction
2.4. Qualification of Polyphenolic Compounds
2.4.1. Determination of Total Phenolic Content (TPC)
2.4.2. Determination of Total Flavonoid Content (TFC)
2.5. UHPLC-ESI-QTOF-MS/MS Analysis
2.6. Antioxidant Activity Assays
2.6.1. DPPH Radical Scavenging Assay
2.6.2. The Ferric Reducing Antioxidant Ability (FRAP) Assay
2.7. Molecular Docking
2.8. Preparation of HSF-Loaded Nanoemulsions
2.9. Characterization of Nanoemulsions
2.9.1. Droplet Size Analysis
2.9.2. Morphology of Nanoemulsions by Transmission Electron Microscopy (TEM)
2.9.3. Antioxidant Activity Assay of HSF-Loaded Nanoemulsions
2.9.4. Entrapment Efficiency
2.10. Optimal Experimental Design
2.11. Statistical Analysis
3. Results and Discussion
3.1. Extraction of HSF
3.2. Total Phenolic Content and Total Flavonoid Content
3.3. Identification of Bioactive Composition of HSF Extract
3.4. Antioxidant Activities of HSF Extract
3.5. Binding Affinity of Bioactive Constituents Related to Anti-Aging and Anti-Inflammatory Properties
3.6. Optimization of Nanoemulsions
3.6.1. Fitting the Model
3.6.2. Effects of Independent Variables on Responses
- (1)
- Droplet Size.
- (2)
- Polydispersity Index
3.6.3. Optimization of Responses for Nanoemulsions
3.7. Application of Optimal Conditions for HSF-Loaded Nanoemulsions
3.7.1. Morphology of HSF-Loaded Nanoemulsions
3.7.2. Antioxidant Activity of HSF-Loaded Nanoemulsions
3.7.3. Entrapment Efficiency of HSF-Loaded Nanoemulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DI | Deionized |
DOD | D-optimal design |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
EE | Encapsulation efficiency |
FRAP | Ferric reducing antioxidant ability |
GAE | Gallic acid equivalents |
HLB | Hydrophilic-lipophilic balance |
HSF | Honeysuckle flower |
IC50 | Half-maximal inhibitory concentration |
LHR | low to high hydrophilic-lipophilic balance surfactant |
O/W | Oil in water |
PDI | Polydispersity index |
PG-3L | Polyglyceryl-3 laurate |
PG-4L | Polyglyceryl-4 laurate |
PG-6L | Polyglyceryl-6 laurate |
PGFEs | Polyglycerol fatty acid esters |
PGPR | Polyglyceryl-3 polyricinoleate |
PIC | Phase inversion composition |
QE | Quercetin equivalents |
RSM | Response surface methodology |
SFE | Supercritical fluid extraction |
SOR | Surfactant to oil ratio |
TEM | Transmission electron microscopy |
TFC | Total flavonoid content |
TPC | Total phenolic content |
TPTZ | 2,4,6-tri[2-pyridyl]-s-tria-zine |
UHPLC | Ultra-high-performance liquid chromatography |
References
- Li, Y.; Xie, L.; Liu, K.; Li, X.; Xie, F. Bioactive components and beneficial bioactivities of flowers, stems, leaves of Lonicera japonica Thunberg: A review. Biochem. Syst. Ecol. 2023, 106, 104570. [Google Scholar] [CrossRef]
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.X.; Liu, C.T.; Liu, Q.B.; Ren, J.; Li, L.Z.; Huang, X.X.; Wang, Z.Z.; Song, S.J. Iridoid glycosides from the flower buds of Lonicera japonica and their nitric oxide production and α-glucosidase inhibitory activities. J. Funct. Foods 2015, 18, 512–519. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Lee, J.Y.; Ko, J. Inhibitory effect of Lonicera japonica extract on MMP-1 production in human dermal fibroblast. J. Soc. Cosmet. Sci. Korea 2020, 46, 67–72. [Google Scholar]
- Zheng, S.L.; Wang, Y.M.; Chi, C.F.; Wang, B. Chemical characterization of honeysuckle polyphenols and their alleviating function on ultraviolet B-damaged HaCaT cells by modulating the Nrf2/NF-κB signaling pathways. Antioxidants 2024, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Liou, S.S.; Tzeng, T.F.; Lee, S.L.; Liu, I.M. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med. 2012, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in skin senescence prevention and treatment. Int. J. Mol. Sci. 2021, 22, 6814. [Google Scholar] [CrossRef] [PubMed]
- Păcularu-Burada, B.; Cîrîc, A.I.; Begea, M. Anti-aging effects of flavonoids from plant extracts. Foods 2024, 13, 2441. [Google Scholar] [CrossRef] [PubMed]
- Won, J.H.; Woo, C.H. The effect of Lonicera japonica extract in wound-induced rats. J. Korean Med. Rehabil. 2020, 30, 47–61. [Google Scholar] [CrossRef]
- Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess. Technol. 2013, 6, 628–647. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Yaowiwat, N.; Poomanee, W.; Leelapornpisid, P.; Chaiwut, P. Utilization of emulsion inversion to fabricate tea (Camellia sinensis L.) flower extract obtained by supercritical fluid extraction-loaded nanoemulsions. ACS Omega 2023, 8, 28090–28097. [Google Scholar] [CrossRef] [PubMed]
- Lewińska, A.; Domżał-Kędzia, M.; Maciejczyk, E.; Łukaszewicz, M.; Bazylińska, U. Design and engineering of “green” nanoemulsions for enhanced topical delivery of bakuchiol achieved in a sustainable manner: A novel eco-friendly approach to bioretinol. Int. J. Mol. Sci. 2021, 22, 10091. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Karsli, G.T.; Durmuş, M.; Yazgan, H.; Oztop, H.M.; McClements, D.J.; Ozogul, F. Recent developments in industrial applications of nanoemulsions. Adv. Colloid. Interface Sci. 2022, 304, 102685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, F.; Fan, Z.; Liu, B.; Liu, C.; Meng, X. DHA and EPA nanoemulsions prepared by the low-energy emulsification method: Process factors influencing droplet size and physicochemical stability. Food Res. Int. 2019, 121, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.K.; Dey, A.; Singhvi, G.; Pandey, M.M.; Singh, V.; Kesharwani, P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf. B Biointerfaces 2022, 214, 112440. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Agarwal, P.; Sebghatollahi, Z.; Mahato, N. Functional nanostructured materials in the cosmetics industry: A review. ChemEngineering 2023, 7, 66. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, F.; Zhang, J.; Yu, L.; Zhang, G.; Liu, C.; Wang, N.; Xu, B. Development of polyglycerol fatty acid ester-based low-energy nanoemulsion for the improvement of curcumin stability. J. Dispers. Sci. Technol. 2022, 43, 605–611. [Google Scholar] [CrossRef]
- Gledovic, A.; Janosevic Lezaic, A.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol ester-based low energy nanoemulsions with red raspberry seed oil and fruit extracts: Formulation development toward effective in vitro/in vivo bioperformance. Nanomaterials 2021, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Uchino, T.; Fujimori, S.; Hatta, I.; Miyazaki, Y.; Kamiya, D.; Fujino, H.; Suzuki, R.; Kirishita, Y.; Eda, T.; Murashima, K.; et al. Development of novel polyglycerol fatty acid ester-based nanoparticles for the dermal delivery of tocopherol acetate. Int. J. Pharm. 2021, 592, 120004. [Google Scholar] [CrossRef] [PubMed]
- Damle, S.; Madankar, C. An overview on eco-friendly polyglycerol esters of fatty acid, synthesis and applications. Tenside Surfactants Deterg. 2023, 60, 611–621. [Google Scholar] [CrossRef]
- Norn, V. Polyglycerol esters. In Emulsifiers in Food Technology; Norn, V., Ed.; John Wiley & Sons: Chichester, UK, 2014; pp. 181–208. [Google Scholar]
- Trott, O.; Vina, A.O.A. Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z. Complex heatmap visualization. iMeta. 2022, 1, e43. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Hortas, L.; Rodriguez, P.; Diaz-Reinoso, B.; Gaspar, M.C.; de Sousa, H.C.; Braga, M.E.; Dominguez, H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J. Supercrit. Fluids 2022, 188, 105652. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Chang, Y.; Wang, Q. Optimization of modified supercritical CO2 extraction of chlorogenic acid from the flower buds of Lonicera japonica Thunb and determination of antioxidant activity of the extracts. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 443–450. [Google Scholar] [CrossRef]
- Kaushal, N.; Singh, M.; Sangwan, R.S. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res. Int. 2022, 157, 111442. [Google Scholar] [CrossRef] [PubMed]
- Chaowuttikul, C.; Palanuvej, C.; Ruangrungsi, N. Pharmacognostic specification, chlorogenic acid content, and in vitro antioxidant activities of Lonicera japonica flowering bud. Pharmacogn. Res. 2017, 9, 128–132. [Google Scholar] [CrossRef]
- Girsang, E.; Ginting, C.N.; Lister, I.N.E.; Gunawan, K.Y.; Widowati, W. Anti-inflammatory and antiaging properties of chlorogenic acid on UV-induced fibroblast cell. PeerJ 2021, 9, e11419. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.U.; Guo, T.; Jiang, W.J.; Dong, G.L.; Chen, D.W.; Yang, S.L.; Li, H.R. Effects of ultrahigh pressure extraction on yield and antioxidant activity of chlorogenic acid and cynaroside extracted from flower buds of Lonicera japonica. Chin. J. Nat. Med. 2015, 13, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Taha, D.; Benali, T.; Zengin, G.; El Omari, N.; El Hachlafi, N.; Khalid, A.; Abdalla, A.N.; Ardianto, C.; Tan, C.S.; et al. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed. Pharmacother. 2023, 161, 114337. [Google Scholar] [CrossRef] [PubMed]
- Moukova, A.; Malina, L.; Kolarova, H.; Bajgar, R. Hyperoside as a UV photoprotective or photostimulating compound—Evaluation of the effect of UV radiation with selected UV-absorbing organic compounds on skin cells. Int. J. Mol. Sci. 2023, 24, 9910. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, M.; Zhang, T.; Wu, J.; Wang, J.; Liu, K.; Zhan, N. Antioxidant and anti-inflammatory activities of cynaroside from Elsholtiza bodinieri. Nat. Prod. Commun. 2018, 13, 1501–1504. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Mandal, S.; Ghorai, M.; Jha, N.K.; Kumar, M.; Radha; Ghosh, A.; Proćków, J.; Perez de la Lastra, J.M.; Dey, A. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. J. Cell. Mol. Med. 2023, 27, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Dung, N.T.; Bajpai, V.K.; Rahman, A.; Yoon, J.I.; Kang, S.C. Phenolic contents, antioxidant and tyrosinase inhibitory activities of Lonicera japonica Thunb. J. Food Biochem. 2011, 35, 148–162. [Google Scholar] [CrossRef]
- Fan, Z.; Li, L.; Bai, X.; Zhang, H.; Liu, Q.; Zhang, H.; Fu, Y.; Moyo, R. Extraction optimization, antioxidant activity, and tyrosinase inhibitory capacity of polyphenols from Lonicera japonica. Food Sci. Nutr. 2019, 7, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, G.; Chang, Y.H. Nutraceuticals and antioxidant properties of Lonicera japonica Thunb. as affected by heating time. Int. J. Food Prop. 2019, 22, 630–645. [Google Scholar] [CrossRef]
- Tan, S.C.; Bhattamisra, S.K.; Chellappan, D.K.; Candasamy, M. Actions and therapeutic potential of madecassoside and other major constituents of Centella asiatica: A review. Appl. Sci. 2021, 11, 8475. [Google Scholar] [CrossRef]
- Lee, S.A.; Park, B.R.; Moon, S.M.; Hong, J.H.; Kim, D.K.; Kim, C.S. Chondroprotective effect of cynaroside in IL-1β-induced primary rat chondrocytes and organ explants via NF-κB and MAPK signaling inhibition. Oxid. Med. Cell. Longev. 2020, 2020, 9358080. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.K.; Zhou, W.; Lee, W.; Han, M.S.; Na, M.; Bae, J.S. Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation 2015, 38, 784–799. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Chaiittianan, R.; Sripanidkulchai, B. Development of a nanoemulsion of Phyllanthus emblica L. branch extract. Drug Dev. Ind. Pharm. 2014, 40, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Yanasan, N.; Wangkananon, W.; Natakankitkul, S.; Kiattisin, K. Nanoemulsions containing Passiflora quadrangularis L. fruit extracts for cosmetic application and skin efficacy study. Cosmetics 2024, 11, 57. [Google Scholar] [CrossRef]
Independent Variables | Type | Level | Coded Level | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
SOR | Numeric | 3 | 1:2 | 1:1 | 2:1 |
LHR | Numeric | 3 | 1:2 | 1:1 | 2:1 |
Type of High HLB surfactant | Categoric | 3 | PG-3L | PG-4L | PG-6L |
Compound | RT (min) | Molecular Formular | m/z | Mass (Theoretical) | Mass (Experimental) | Score | Error (ppm) |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
Glucocaffeic acid | 8.851 | C15H18O9 | 341.0885 | 342.0951 | 342.096 | 92.24 | 2.76 |
Chlorogenic acid | 8.961 | C16H18O9 | 353.0891 | 354.0951 | 354.0963 | 95.61 | 3.37 |
3-O-Caffeoyl-4-O-methylquinic acid | 12.379 | C17H20O9 | 367.1034 | 368.1107 | 368.1107 | 98.49 | −0.06 |
4,5-Di-O-caffeoylquinic acid | 16.598 | C25H24O12 | 515.1197 | 516.1268 | 516.1269 | 99.71 | 0.31 |
1-Feruloyl-5-caffeoylquinic acid | 17.327 | C26H26O12 | 529.1337 | 530.1424 | 530.1409 | 91.07 | −2.86 |
Flavonoids | |||||||
Quercetin 3-alpha-L-arabionopyranoside-7-glucoside | 13.857 | C26H28O16 | 595.1309 | 596.1377 | 596.1384 | 97.06 | 1.12 |
Hyperoside | 16.068 | C21H20O12 | 463.0895 | 464.0955 | 464.0968 | 96.07 | 2.95 |
Luteolin 7-neohesperidoside | 16.249 | C27H30O15 | 593.1506 | 594.1585 | 594.1579 | 94.90 | −0.96 |
Luteolin 7-gentiobioside | 16.328 | C27H30O16 | 609.1471 | 610.1534 | 610.1542 | 93.65 | 1.27 |
Cynaroside | 16.663 | C21H20O11 | 447.0939 | 448.1006 | 448.1011 | 99.07 | 1.23 |
Undulatoside A | 16.804 | C16H18O9 | 353.0885 | 354.0951 | 354.0958 | 98.35 | 1.9 |
Tricin 5-glucoside | 16.968 | C23 H24 O12 | 491.1196 | 492.1268 | 492.1277 | 87.05 | 1.87 |
Myrsinone | 19.841 | C17H26O4 | 293.1772 | 294.1831 | 294.1844 | 93.82 | 4.27 |
Iridoids | |||||||
Hydroxyloganin | 13.605 | C17H26O11 | 451.1451 | 406.1475 | 406.147 | 99.07 | −1.27 |
6′-O-β-Apiofuranosyl sweroside | 13.817 | C21H30O13 | 535.1672 | 490.1686 | 490.1692 | 95.96 | 1.23 |
Saponins | |||||||
Congmunoside XII | 17.158 | C65H106O32 | 744.3332 | 1398.6667 | 1398.6702 | 93.86 | 2.5 |
Dipsacoside B | 17.446 | C53H86O22 | 582.279 | 1074.5611 | 1074.5617 | 98.94 | 0.55 |
Congmunoside XV | 17.449 | C54H88O24 | 559.2756 | 1120.5666 | 1120.5655 | 96.92 | −0.96 |
Madecassoside | 17.591 | C48H78O20 | 973.5012 | 974.5086 | 974.5081 | 96.77 | −0.61 |
Saccharides | |||||||
Sucrose | 1.779 | C12H22O11 | 387.1153 | 342.1162 | 342.1171 | 97.52 | 2.52 |
Runs | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
SOR (X1) | LHR (X2) | Type of High HLB Surfactant (X3) | Droplet Size (Y1) | PDI (Y2) | |
1 | 2:1 | 1:2 | PG-3L | 123.6 | 0.2 |
2 | 1:2 | 2:1 | PG-3L | 912 | 0.52 |
3 | 2:1 | 2:1 | PG-6L | 250.5 | 0.29 |
4 | 1:1 | 2:1 | PG-4L | 495.3 | 0.36 |
5 | 1:2 | 2:1 | PG-6L | 664.2 | 0.42 |
6 | 1:1 | 2:1 | PG-4L | 491.3 | 0.35 |
7 | 2:1 | 1:1 | PG-3L | 154.2 | 0.27 |
8 | 2:1 | 1:1 | PG-4L | 103.5 | 0.21 |
9 | 1:2 | 1:2 | PG-6L | 386.2 | 0.41 |
10 | 1:1 | 1:2 | PG-4L | 292.3 | 0.38 |
11 | 1:1 | 1:2 | PG-4L | 298.4 | 0.37 |
12 | 2:1 | 1:1 | PG-4L | 97.5 | 0.23 |
13 | 1:1 | 2:1 | PG-3L | 521.3 | 0.39 |
14 | 1:2 | 1:1 | PG-4L | 738.2 | 0.5 |
15 | 1:2 | 1:1 | PG-4L | 748.2 | 0.51 |
16 | 1:1 | 1:1 | PG-6L | 285.3 | 0.31 |
17 | 1:2 | 1:1 | PG-3L | 812.6 | 0.49 |
18 | 2:1 | 1:2 | PG-6L | 58.9 | 0.16 |
19 | 2:1 | 2:1 | PG-3L | 234.1 | 0.32 |
20 | 1:1 | 1:1 | PG-3L | 452.9 | 0.36 |
21 | 2:1 | 1:2 | PG-6L | 60.9 | 0.17 |
22 | 1:2 | 1:2 | PG-3L | 707.3 | 0.47 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 1.499 × 106 | 11 | 1.363 × 105 | 2376.47 | <0.0001 | * |
-SOR | 1.117 × 106 | 1 | 1.117 × 106 | 19,479.19 | <0.0001 | * |
-LHR | 1.240 × 105 | 1 | 1.240 × 105 | 2163.26 | <0.0001 | * |
-Type of HS | 65,579.99 | 2 | 32,789.99 | 571.84 | <0.0001 | * |
4424.77 | 1 | 4424.77 | 77.17 | <0.0001 | * | |
58,123.20 | 2 | 29,061.60 | 506.82 | <0.0001 | * | |
3896.42 | 2 | 1948.21 | 33.98 | <0.0001 | * | |
6419.20 | 1 | 6419.20 | 111.95 | <0.0001 | * | |
465.35 | 1 | 465.35 | 8.12 | 0.0173 | ||
Residual | 573.41 | 10 | 57.34 | |||
Lack-of-Fit | 476.80 | 5 | 95.36 | 4.94 | 0.0522 | |
Pure Error | 96.60 | 5 | 19.32 | |||
Cor Total | 1.500 × 106 | 21 | ||||
R2 | 0.9996 | |||||
Adjusted R2 | 0.9992 | |||||
C.V. % | 1.87 | |||||
Adeq Precision | 152.5813 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.2588 | 11 | 0.0235 | 179.67 | <0.0001 | * |
-SOR | 0.2009 | 1 | 0.2009 | 1534.58 | <0.0001 | * |
-LHR | 0.0076 | 1 | 0.0076 | 58.14 | <0.0001 | * |
-Type of HS | 0.0108 | 2 | 0.0054 | 41.26 | <0.0001 | * |
0.0048 | 1 | 0.0048 | 36.34 | 0.0001 | * | |
0.0049 | 2 | 0.0025 | 18.84 | 0.0004 | * | |
0.0061 | 2 | 0.0031 | 23.37 | 0.0002 | * | |
0.0004 | 1 | 0.0004 | 2.87 | 0.1213 | ||
0.0001 | 1 | 0.0001 | 0.6595 | 0.4356 | ||
Residual | 0.0013 | 10 | 0.0001 | |||
Lack-of-Fit | 0.0009 | 5 | 0.0002 | 2.27 | 0.1942 | |
Pure Error | 0.0004 | 5 | 0.0001 | |||
Cor Total | 0.9950 | |||||
R2 | 0.9894 | |||||
Adjusted R2 | 3.27 | |||||
C.V. % | 40.2891 | |||||
Adeq Precision | 3 |
Response | Predicted Value | Actual Value | % Prediction Error |
---|---|---|---|
Y1; droplet size (nm) | 59.831 | 60.2 | 0.61 |
Y2; PDI | 0.168 | 0.17 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaowiwat, N.; Bunmark, P.; Chaichit, S.; Poomanee, W.; Trisopon, K. Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions. Cosmetics 2025, 12, 151. https://doi.org/10.3390/cosmetics12040151
Yaowiwat N, Bunmark P, Chaichit S, Poomanee W, Trisopon K. Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions. Cosmetics. 2025; 12(4):151. https://doi.org/10.3390/cosmetics12040151
Chicago/Turabian StyleYaowiwat, Nara, Pingtawan Bunmark, Siripat Chaichit, Worrapan Poomanee, and Karnkamol Trisopon. 2025. "Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions" Cosmetics 12, no. 4: 151. https://doi.org/10.3390/cosmetics12040151
APA StyleYaowiwat, N., Bunmark, P., Chaichit, S., Poomanee, W., & Trisopon, K. (2025). Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions. Cosmetics, 12(4), 151. https://doi.org/10.3390/cosmetics12040151