Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function
Abstract
:1. Introduction
Malassezia in Skin Microecology
- (1)
- Surface Structure and Adhesion Factors
- (2)
- Enzyme Secretion
- (3)
- Toxins and Metabolites
- (4)
- Immune Evasion Mechanisms
- (5)
- Host Immune Response
- (6)
- Host Genetic Factors
- (7)
- Malassezia Extracellular Vesicles (MalaExs)
2. Lipid Metabolism of Skin
2.1. Structure and Function of Sebaceous Glands
2.2. Mechanism of Sebum Production and Secretion
2.3. Sebaceous Gland Lipid Secretion Pathway
- (1)
- Lipid Secretion Pathway of Keratinocytes: Keratinocytes synthesize lipid precursors and secrete them in the form of lamellar bodies. These lipid precursors are catalyzed by lipid-synthesizing enzymes to produce lipids. As keratinocytes grow, metabolize, and decompose, the lipids dispersed among them are distributed to the skin surface;
- (2)
- Lipid Metabolism Pathway of Skin Microbiota: A large number of microbial flora survive on the skin surface, with most microorganisms feeding on keratinocyte debris or lipids. During metabolism, they can produce lipids, such as short-chain fatty acids;
- (3)
- Enzymes Related to Lipid Metabolism: Enzymes involved in lipid metabolism, such as kallikrein, enzymes for the elongation of very-long-chain fatty acids, hydrolytic enzymes, and lipid-synthesizing enzymes, participate in the skin barrier function and structure.
3. Lipid Metabolism of Skin Diseases
3.1. Skin Lipid Barrier
3.2. Lipid Metabolism Abnormalities and Skin Diseases
3.3. Molecular Mechanisms and Pathways of Skin Lipid Regulation
4. Malassezia and Sebum Metabolism
4.1. Effect of Malassezia on Sebum Composition
4.2. Interaction Between Malassezia and Sebaceous Glands
- (1)
- The Lipase-Mediated Sebum Decomposition Process: The lipase released by Malassezia can effectively decompose triglycerides produced by sebaceous glands, generating free fatty acids, such as oleic acid. These free fatty acids directly act on the sebaceous glands, stimulating them to secrete more sebum, forming a positive feedback loop. The additional sebum produced by the sebaceous glands provides more nutrients for Malassezia, promoting its growth and metabolism, and further exacerbating sebum secretion and decomposition [63,64];
- (2)
- Affecting Sebaceous Glands through Signaling Pathways: Malassezia metabolites activate specific signaling pathways (such as the NF-κB pathway) in sebaceous gland cells, thereby regulating the sebaceous gland function. This signaling effect leads to the release of more lipids by the sebaceous gland cells, enhancing the nutritional supply to Malassezia. Additionally, the metabolites may also affect transcription factors within sebaceous gland cells, altering the expression levels of genes involved in lipid metabolism and making the sebaceous glands more sensitive and active under external stress [65,66];
- (3)
- Altering the Sebaceous Gland Microenvironment to Promote Malassezia Proliferation: The metabolites of Malassezia alter the microenvironment of the sebaceous glands, making it more conducive to the growth of Malassezia [67]. For example, the free fatty acids generated by the decomposition of sebum by Malassezia acidify the skin’s surface, creating a low-pH environment that is more favorable for Malassezia proliferation. At the same time, the fatty acids contained in sebum, such as oleic acid, provide abundant nutrients for Malassezia, promoting its rapid proliferation in the sebaceous gland area [68];
- (4)
- Generating Oxidative Stress: The oxidative substances produced by Malassezia metabolism promote oxidative stress responses, exacerbating the metabolic activity of sebaceous glands. These substances induce oxidative stress in sebaceous gland cells, further activating local inflammatory responses in the skin and affecting the normal metabolic function of sebaceous glands. This oxidative stress response may further stimulate sebum production, causing the sebaceous glands to remain in an active state. Over time, the metabolic burden on the sebaceous glands will gradually increase, potentially leading to oily skin and subsequently causing issues such as clogged pores and acne [69];
- (5)
- Regulating the Microbial Balance Around Sebaceous Glands: When sebaceous glands are actively secreting, Malassezia proliferation accelerates. This rapid growth may inhibit the development of other skin microorganisms, leading to an imbalance in the skin’s microbiome [70]. For example, overly proliferating Malassezia can outcompete other commensal bacteria, potentially disrupting the skin’s immune system responses [71,72]. Conversely, abnormalities in the sebaceous gland function may also cause an imbalance in the proliferation of Malassezia and other microorganisms, leading to inflammatory or infectious skin diseases [73].
4.3. Malassezia and Skin Lipid Barrier Disruption
5. Prospects for the Application of Skin Lipid Metabolism Regulation in the Treatment of Malassezia-Related Skin Diseases
5.1. Treatment for Regulating Abnormal Skin Lipid Metabolism
- (1)
- Topical Medications
- (2)
- Laser and Radiofrequency Treatments
- (3)
- Plant-Based Active Ingredients
- (4)
- Biological Therapy
5.2. Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Pityriasis versicolor |
MF | Malassezia folliculitis |
SD | Seborrheic dermatitis/dandruff |
AD | Atopic dermatitis |
IgE | Immunoglobulin E |
MalaExs | Malassezia extracellular vesicles |
LXRs | Liver-X receptors |
CERs | Ceramides |
CHOL | Cholesterol |
FFAs | Free fatty acids |
PPARs | Peroxisome proliferator-activated receptors |
FAS | Fatty acid synthase |
ZFP750 | Zinc finger protein 750 |
References
- Zhao, K.; Zhao, Y.; Guo, A.; Xiao, S.; Tu, C. Oral Microbiota Variations in Psoriasis Patients Without Comorbidity. Clin. Cosmet. Investig. Dermatol. 2024, 17, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.; Zhou, W.; Oh, J. Strains to go: Interactions of the skin microbiome beyond its species. Curr. Opin. Microbiol. 2022, 70, 102222. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Renaud, G.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Wolfsberg, T.G.; Turner, M.L.; Segre, J.A. A diversity profile of the human skin microbiota. Genome Res. 2008, 18, 1043–1050. [Google Scholar] [CrossRef]
- Ercival, S.L.; Hill, K.E.; Williams, D.W.; Hooper, S.J.; Thomas, D.W.; Costerton, J.W. A review of the scientific evidence for biofilms in wounds. Wound Repair. Regen. 2012, 20, 647–657. [Google Scholar] [CrossRef]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Kim, M. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022, 23, 13071. [Google Scholar] [CrossRef]
- Severn, M.M.; Horswill, A.R. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat. Rev. Microbiol. 2022, 21, 97–111. [Google Scholar] [CrossRef]
- Goldman, W.E.; Saunders, C.W.; Scheynius, A.; Heitman, J. Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases. PLoS Pathog. 2012, 8, e1002701. [Google Scholar] [CrossRef]
- Ianiri, G.; LeibundGut-Landmann, S.; Dawson, D.T., Jr. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu. Rev. Microbiol. 2022, 76, 757–782. [Google Scholar] [CrossRef] [PubMed]
- Saunte, D.M.L.; Gaitanis, G.; Hay, R.J. Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment. Front. Cell. Infect. Microbiol. 2020, 10, 112. [Google Scholar] [CrossRef]
- Xu, H.; Li, H. Acne, the Skin Microbiome, and Antibiotic Treatment. Am. J. Clin. Dermatol. 2019, 20, 335–344. [Google Scholar] [CrossRef]
- Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia Genus in Skin and Systemic Diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Dawson, T.L., Jr. Host-microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 2017, 40, 81–87. [Google Scholar] [CrossRef]
- Cafarchia, C.; Gasser, R.B.; Figueredo, L.A.; Latrofa, M.S.; Otranto, D. Advances in the identification of Malassezia. Mol. Cell. Probes 2011, 25, 1–7. [Google Scholar] [CrossRef]
- Sparber, F.; Ruchti, F.; LeibundGut-Landmann, S. Host Immunity to Malassezia in Health and Disease. Front. Cell. Infect. Microbiol. 2020, 10, 198. [Google Scholar] [CrossRef]
- Theelen, B.; Cafarchia, C.; Gaitanis, G.; Bassukas, I.D.; Boekhout, T.; Dawson, T.L. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018, 56 (Suppl. S1), S10–S25. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.S.C.; Hu, P.; Grant, R.A.; Boekhout, T.; Kuramae, E.E.; Kronstad, J.W.; Deangelis, Y.M.; Reeder, N.L.; Johnstone, K.R.; Leland, M.; et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc. Natl. Acad. Sci. USA 2007, 104, 18730–18735. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kim, T.; Croll, D.; Park, M.; Kim, D.; Keum, H.L.; Sul, W.J.; Jung, W.H. Genome of Malassezia arunalokei and Its Distribution on Facial Skin. Microbiol. Spectr. 2022, 10, e0050622. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Park, S.; Jung, W.H. Skin Commensal Fungus Malassezia and Its Lipases. J. Microbiol. Biotechnol. 2021, 31, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Sparber, F.; LeibundGut-Landmann, S. Host Responses to Malassezia spp. in the Mammalian Skin. Front. Immunol. 2017, 8, 1614. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.L., Jr. Malassezia: The Forbidden Kingdom Opens. Cell Host Microbe 2019, 25, 345–347. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Yang, S.; Han, T.; Wang, X.M.; Chen, Y.R. Research progress of sebaceous glands in the field of skin care. China Surfactant Deterg. Cosmet. 2022, 52, 904–912. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, M.; Song, L. A review of fatty acids influencing skin condition. J. Cosmet. Dermatol. 2020, 19, 3199–3204. [Google Scholar] [CrossRef]
- Balaji, H.; Heratizadeh, A.; Wichmann, K.; Niebuhr, M.; Crameri, R.; Scheynius, A.; Werfel, T. Malassezia sympodialis thioredoxin–specific T cells are highly cross-reactive to human thioredoxin in atopic dermatitis. J. Allergy Clin. Immunol. 2011, 128, 92–99.e94. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.; Gehrmann, U.; Qazi, K.R.; Johansson, C.; Hultenby, K.; Karlsson, M.; Lundeberg, L.; Gabrielsson, S.; Scheynius, A. Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses—Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema. PLoS ONE 2011, 6, e21480. [Google Scholar] [CrossRef]
- Glatz, M.; Bosshard, P.; Hoetzenecker, W.; Schmid-Grendelmeier, P. The Role of Malassezia spp. in Atopic Dermatitis. J. Clin. Med. 2015, 4, 1217–1228. [Google Scholar] [CrossRef]
- Velegraki, A.; Cafarchia, C.; Gaitanis, G.; Iatta, R.; Boekhout, T. Malassezia infections in humans and animals: Pathophysiology, detection, and treatment. PLoS Pathog. 2015, 11, e1004523. [Google Scholar] [CrossRef]
- Shi, V.Y.; Leo, M.; Hassoun, L.; Chahal, D.S.; Maibach, H.I.; Sivamani, R.K. Role of sebaceous glands in inflammatory dermatoses. J. Am. Acad. Dermatol. 2015, 73, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Spatz, M.; Richard, M.L. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front. Cell. Infect. Microbiol. 2020, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Picardo, M.; Ju, Q.; Kurokawa, I.; Törőcsik, D.; Bíró, T.; Schneider, M.R. Beyond acne: Current aspects of sebaceous gland biology and function. Rev. Endocr. Metab. Disord. 2016, 17, 319–334. [Google Scholar] [CrossRef]
- Picardo, M.; Ottaviani, M.; Camera, E.; Mastrofrancesco, A. Sebaceous gland lipids. Dermato-Endocrinology 2014, 1, 68–71. [Google Scholar] [CrossRef]
- Vijaya Chandra, S.H.; Srinivas, R.; Dawson, T.L.; Common, J.E. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front. Cell. Infect. Microbiol. 2021, 10, 614446. [Google Scholar] [CrossRef]
- Makrantonaki, E.; Ganceviciene, R.; Zouboulis, C.C. An update on the role of the sebaceous gland in the pathogenesis of acne. Dermato-Endocrinology 2014, 3, 41–49. [Google Scholar] [CrossRef]
- Jung, K.; Pawluk, M.A.; Lane, M.; Nabai, L.; Granville, D.J. Granzyme B in epithelial barrier dysfunction and related skin diseases. Am. J. Physiol.-Cell Physiol. 2022, 323, C170–C189. [Google Scholar] [CrossRef]
- Lu, B.; Liu, Y.; Li, S.; Wang, G. Structure, function and reconstruction of skin surface lipid film. Chin. J. Burn. 2016, 32, 126–128. [Google Scholar]
- Tóth, B.I.; Oláh, A.; Szöllosi, A.G.; Czifra, G.; Bíró, T. “Sebocytes’ makeup”: Novel mechanisms and concepts in the physiology of the human sebaceous glands. Pflug. Arch. 2011, 461, 593–606. [Google Scholar] [CrossRef]
- Greene, R.S.; Downing, D.T.; Pochi, P.E.; Strauss, J.S. Anatomical Variation in the Amount and Composition of Human Skin Surface Lipid. J. Investig. Dermatol. 1970, 54, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Paus, R. Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion. Int. J. Biochem. Cell Biol. 2009, 42, 181–185. [Google Scholar] [CrossRef]
- Smith, K.R.; Thiboutot, D.M. Thematic review series: Skin Lipids. Sebaceous gland lipids: Friend or foe? J. Lipid Res. 2008, 49, 271–281. [Google Scholar] [CrossRef]
- Zouboulis, C.C. Acne and sebaceous gland function. Clin. Dermatol. 2004, 22, 360–366. [Google Scholar] [CrossRef]
- Clayton, R.W.; Langan, E.A.; Ansell, D.M.; de Vos, I.J.H.M.; Göbel, K.; Schneider, M.R.; Picardo, M.; Lim, X.; Van Steensel, M.A.M.; Paus, R. Neuroendocrinology and neurobiology of sebaceous glands. Biol. Rev. Camb. Philos. Soc. 2020, 95, 592–624. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Baron, J.M.; Böhm, M.; Kippenberger, S.; Kurzen, H.; Reichrath, J.; Thielitz, A. Frontiers in sebaceous gland biology and pathology. Exp. Dermatol. 2008, 17, 542–551. [Google Scholar] [CrossRef]
- Thiboutot, D. Regulation of Human Sebaceous Glands. J. Investig. Dermatol. 2004, 123, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Downing, D.T.; Strauss, J.S. On the mechanism of sebaceous secretion. Arch. Dermatol. Res. 1982, 272, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Millns, J.L.; Maibach, H.I. Mechanisms of sebum production and delivery in man. Arch. Dermatol. Res. 1982, 272, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, C.; Chen, Z.; Zhou, C.; Gan, Y.; Jia, Y. A review of the role of sebum in the mechanism of acne pathogenesis. J. Cosmet. Dermatol. 2017, 16, 168–173. [Google Scholar] [CrossRef]
- Clark, G.W.; Pope, S.M.; Jaboori, K.A. Diagnosis and treatment of seborrheic dermatitis. Am. Fam. Physician 2015, 91, 185–190. [Google Scholar]
- Yin, H.; Qiu, Z.; Zhu, R.; Wang, S.; Gu, C.; Yao, X.; Li, W. Dysregulated lipidome of sebum in patients with atopic dermatitis. Allergy 2023, 78, 1524–1537. [Google Scholar] [CrossRef] [PubMed]
- Prohic, A.; Jovovic Sadikovic, T.; Krupalija-Fazlic, M.; Kuskunovic-Vlahovljak, S. Malassezia species in healthy skin and in dermatological conditions. Int. J. Dermatol. 2016, 55, 494–504. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front. Immunol. 2018, 9, 745. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Wu, S.; Liu, Y.; Guerrero-Juarez, C.F.; Liu, W.; Huang, J.; Yao, Q.; Yin, M.; Li, J.; et al. Dynamic interplay between IL-1 and WNT pathways in regulating dermal adipocyte lineage cells during skin development and wound regeneration. Cell Rep. 2023, 42, 112647. [Google Scholar] [CrossRef] [PubMed]
- Butera, A.; Agostini, M.; Cassandri, M.; De Nicola, F.; Fanciulli, M.; D’Ambrosio, L.; Falasca, L.; Nardacci, R.; Wang, L.; Piacentini, M.; et al. ZFP750 affects the cutaneous barrier through regulating lipid metabolism. Sci. Adv. 2023, 9, eadg5423. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53, 124–144. [Google Scholar] [CrossRef]
- Yan, T.; Luo, Y.; Yan, N.; Hamada, K.; Zhao, N.; Xia, Y.; Wang, P.; Zhao, C.; Qi, D.; Yang, S.; et al. Intestinal peroxisome proliferator-activated receptor α-fatty acid-binding protein 1 axis modulates nonalcoholic steatohepatitis. Hepatology 2023, 77, 239–255. [Google Scholar] [CrossRef]
- Triana, S.; de Cock, H.; Ohm, R.A.; Danies, G.; Wösten, H.A.B.; Restrepo, S.; González Barrios, A.F.; Celis, A. Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling. Front. Microbiol. 2017, 8, 1772. [Google Scholar] [CrossRef]
- Celis Ramírez, A.M.; Amézquita, A.; Cardona Jaramillo, J.E.C.; Matiz-Cerón, L.F.; Andrade-Martínez, J.S.; Triana, S.; Mantilla, M.J.; Restrepo, S.; Barrios, A.F.G.; Cock, H.d. Analysis of Malassezia Lipidome Disclosed Differences Among the Species and Reveals Presence of Unusual Yeast Lipids. Front. Cell. Infect. Microbiol. 2020, 10, 338. [Google Scholar] [CrossRef]
- Pagac, M.P.; Davient, B.; Plado, L.A.; Lam, H.Y.I.; Lee, S.M.; Ravikrishnan, A.; Chua, W.L.E.; Muralidharan, S.; Sridharan, A.; Irudayaswamy, A.S.; et al. Life stage impact on the human skin ecosystem: Lipids and the microbial community. npj Biofilms Microbiomes 2025, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.L. Malassezia globosa and restricta: Breakthrough Understanding of the Etiology and Treatment of Dandruff and Seborrheic Dermatitis through Whole-Genome Analysis. J. Investig. Dermatol. Symp. Proc. 2007, 12, 15–19. [Google Scholar] [CrossRef]
- Pagac, M.P.; Gempeler, M.; Campiche, R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024, 12, 1711. [Google Scholar] [CrossRef]
- Choi, K.; Jin, M.; Zouboulis, C.C.; Lee, Y. Increased Lipid Accumulation under Hypoxia in SZ95 Human Sebocytes. Dermatology 2021, 237, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Ro, B.I.; Dawson, T.L. The Role of Sebaceous Gland Activity and Scalp Microfloral Metabolism in the Etiology of Seborrheic Dermatitis and Dandruff. J. Investig. Dermatol. Symp. Proc. 2005, 10, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.; Barnard, E.; Dawson, T.L.; Li, H. The role of the skin microbiota in acne pathophysiology. Br. J. Dermatol. 2019, 181, 691–699. [Google Scholar] [CrossRef]
- DeAngelis, Y.M.; Saunders, C.W.; Johnstone, K.R.; Reeder, N.L.; Coleman, C.G.; Kaczvinsky, J.R.; Gale, C.; Walter, R.; Mekel, M.; Lacey, M.P.; et al. Isolation and Expression of a Malassezia globosa Lipase Gene, LIP1. J. Investig. Dermatol. 2007, 127, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Hülpüsch, C.; Weins, A.B.; Traidl-Hoffmann, C.; Reiger, M. A new era of atopic eczema research: Advances and highlights. Allergy 2021, 76, 3408–3421. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-M.; Zhu, H.-H.; Bai, J.; Tian, Z.-Y.; Zhao, Y.-J.; Boekhout, T.; Wang, Q.-M. Breast cancer colonization by Malassezia globosa accelerates tumor growth. Microb. Pathog. 2024, 15, e0199324. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ouyang, J.; Pi, D.; Feng, L.; Yang, J. Malassezia in Inflammatory Bowel Disease: Accomplice of Evoking Tumorigenesis. Front. Immunol. 2022, 13, 846469. [Google Scholar] [CrossRef] [PubMed]
- Wikramanayake, T.C.; Borda, L.J.; Miteva, M.; Paus, R. Seborrheic dermatitis—Looking beyond Malassezia. Exp. Dermatol. 2019, 28, 991–1001. [Google Scholar] [CrossRef]
- Adalsteinsson, J.A.; Kaushik, S.; Muzumdar, S.; Guttman-Yassky, E.; Ungar, J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp. Dermatol. 2020, 29, 481–489. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Zhao, S.; Zheng, X.; Zhu, W.; Zhang, J.; Meng, H.; Dong, Y. Impact of skin sensitivity mechanisms on sebum secretion: Management strategies for oily sensitive skin. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100017. [Google Scholar] [CrossRef]
- Jiao, Q.; Zhi, L.; You, B.; Wang, G.; Wu, N.; Jia, Y. Skin homeostasis: Mechanism and influencing factors. J. Cosmet. Dermatol. 2024, 23, 1518–1526. [Google Scholar] [CrossRef]
- Bay, L.; Jemec, G.B.; Ring, H.C. Microenvironmental host–microbe interactions in chronic inflammatory skin diseases. Apmis 2024, 132, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, X.; Su, X.; Ji, B.; Chang, Y.; Huang, Q.; Zhang, Y.; Wang, X.; Wang, P. Extracellular Vehicles from Commensal Skin Malassezia restricta Inhibit Staphylococcus aureus Proliferation and Biofilm Formation. ACS Infect. Dis. 2024, 10, 624–637. [Google Scholar] [CrossRef]
- Eyerich, S.; Eyerich, K.; Traidl-Hoffmann, C.; Biedermann, T. Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol. 2018, 39, 315–327. [Google Scholar] [CrossRef]
- Gaitanis, G.; Magiatis, P.; Stathopoulou, K.; Bassukas, I.D.; Alexopoulos, E.C.; Velegraki, A.; Skaltsounis, A.-L. AhR Ligands, Malassezin, and Indolo [3,2-b] Carbazole are Selectively Produced by Malassezia furfur Strains Isolated from Seborrheic Dermatitis. J. Investig. Dermatol. 2008, 128, 1620–1625. [Google Scholar] [CrossRef]
- Juntachai, W.; Oura, T.; Murayama, S.Y.; Kajiwara, S. The lipolytic enzymes activities of Malassezia species. Med. Mycol. 2009, 47, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U. The role of topical calcineurin inhibitors for skin diseases other than atopic dermatitis. Am. J. Clin. Dermatol. 2007, 8, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Hald, M.; Arendrup, M.; Svejgaard, E.; Lindskov, R.; Foged, E.; Saunte, D. Evidence-based Danish Guidelines for the Treatment of Malassezia-related Skin Diseases. Acta Derm. Venereol. 2015, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.H. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int. J. Mol. Sci. 2024, 25, 5302. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fu, H.; Yang, X.; Leng, F.; Huang, Y.; Deng, H.; Xiang, Q.; Zhang, S. Polygalaxanthone III downregulates inflammation in the lipopolysaccharide-stimulated RAW264.7 macrophages: A quantibody array analysis. J. Pharmacol. Sci. 2021, 147, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xiong, B.; Yuan, Z.; Liao, H.; Liu, X.; Wu, Y.; Zhang, S.; Xiang, Q. Polygalaxanthone III, an Active Ingredient in Polygala japonica Houtt., Repaired Malassezia-Stimulated Skin Injury via STAT3 Phosphorylated Activation. Molecules 2022, 27, 7520. [Google Scholar] [CrossRef]
- Olbrich, H.; Sadik, C.D.; Ludwig, R.J.; Thaçi, D.; Boch, K. Dupilumab in Inflammatory Skin Diseases: A Systematic Review. Biomolecules 2023, 13, 634. [Google Scholar] [CrossRef] [PubMed]
- Rogliani, P.; Manzetti, G.M.; Bettin, F.R.; D’Auria, M.; Calzetta, L. Investigational thymic stromal lymphopoietin inhibitors for the treatment of asthma: A systematic review. Expert. Opin. Investig. Drugs 2024, 33, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ma, Y.; Xiang, Q. New Frontiers in the Production of Functional Recombinant Proteins. Bioengineering 2025, 12, 351. [Google Scholar] [CrossRef]
- Xin, H.; Cai, Z.; Hao, J.; An, J.; Li, Y.; Wen, M.; Jia, Z. Macro/Microgel-Encapsulated, Biofilm-Armored Living Probiotic Platform for Regenerating Bacteria-Infected Diabetic Wounds. Adv. Healthc. Mater. 2025, 14, e2403476. [Google Scholar] [CrossRef]
- Hjort, G.; Schwarz, C.W.; Skov, L.; Loft, N. Clinical Characteristics Associated with Response to Biologics in the Treatment of Psoriasis: A Meta-analysis. JAMA Dermatol. 2024, 160, 830–837. [Google Scholar] [CrossRef]
Malassezia Species | Primary Distribution | Disease Associations |
---|---|---|
Human-Associated | ||
M. furfur | Unclear. Human skin via culture, less so in molecular studies. Only species found in blood and urine | Neonatal-invasive/septic infections |
M. arunalokei | Rare, human skin, India | |
M. yamatoensis | Rare, human skin | |
M. slooffiae | Rare, human skin, occasionally animals | |
M. japonica | Rare, human skin, Japanese female | Unknown, reported in atopic dermatitis |
M. obtusa | Rare, human groin, nasal vestibule, and also from animals | Unknown, reported in atopic dermatitis |
M. obtusa | Rare, human groin, nasal vestibule, and also from animals | Unknown, reported in atopic dermatitis |
M. restricta | Skin of all humans, ear, face, scalp; domestic cats | Dandruff/seborrheic dermatitis, pityriasis versicolor |
M. globosa | Skin of all humans, face, scalp, back | Dandruff/seborrheic dermatitis, pityriasis versicolor |
M. sympodialis | Skin of all humans, face, scalp | Atopic eczema |
M. dermatis | Rare, human skin | Mostly unknown, reported changes in atopic dermatitis |
Animal Associated | ||
M. equina | Horse | Healthy and diseased skin |
M. pachydermatis | All animals, likely very diverse and species-specific associations | Healthy and diseased skin of many animals, potential role in inhalational allergy |
M. nana | Domestic cat, cow, horse ear | Healthy and diseased skin |
M. caprae | Goat | |
M. brasiliensis | Parrot (Brazil) | |
M. cuniculi | Rabbit | |
M. psitaci | Parrot (Brazil) |
Target | Mechanism | Clinical Correlation |
---|---|---|
pH dysregulation | Inhibits antimicrobial peptide activity and barrier defense | Microbial colonization |
Stratum corneum | Parakeratosis and reduced tight junction proteins | Transepidermal water loss |
Lipid matrix | Ceramide/cholesterol ratio imbalance | Xerosis, desquamation |
Immune barrier | Induces IL-1α/TNF-α release | Erythema and pruritus |
Category | Mechanism | Limitations |
---|---|---|
Retinoids | Modulate keratinocyte differentiation, reduce sebum production | Skin irritation, dryness, erythema |
Antifungals | Ergosterol synthesis disruption | Skin irritation, hepatotoxicity |
Anti-androgens | Block androgen receptors, reduce sebaceous gland activity | Menstrual irregularities, hyperkalemia |
Vitamin D analogs | Regulate keratinocyte proliferation and immune modulation | Local irritation, hypercalcemia |
Salicylic acid | Exfoliates stratum corneum, unclogs pores | Dryness, irritation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Cong, J.; Xu, J.; Tang, L.; Zhou, Z.; Yang, X.; Hu, Y.; Li, Y.; He, R.; Xiang, Q. Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function. Cosmetics 2025, 12, 67. https://doi.org/10.3390/cosmetics12020067
Cheng Y, Cong J, Xu J, Tang L, Zhou Z, Yang X, Hu Y, Li Y, He R, Xiang Q. Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function. Cosmetics. 2025; 12(2):67. https://doi.org/10.3390/cosmetics12020067
Chicago/Turabian StyleCheng, Yating, Jianhang Cong, Jiahui Xu, Lifeng Tang, Ziyan Zhou, Xiaobin Yang, Yunfeng Hu, Yifang Li, Rongrong He, and Qi Xiang. 2025. "Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function" Cosmetics 12, no. 2: 67. https://doi.org/10.3390/cosmetics12020067
APA StyleCheng, Y., Cong, J., Xu, J., Tang, L., Zhou, Z., Yang, X., Hu, Y., Li, Y., He, R., & Xiang, Q. (2025). Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function. Cosmetics, 12(2), 67. https://doi.org/10.3390/cosmetics12020067