Peloids in Skin Care and Cosmeceuticals
Abstract
:1. Introduction
2. Materials and Methods
3. Peloids: Definition, Composition and Classification
3.1. Peloid Definition
3.2. Peloid Classification
3.3. Peloid Composition
4. Relevance of the Components in the Formulation of Peloids and Their Therapeutic Effects
4.1. Relevance of Solid Phase
4.2. Relevance of Liquid Phase
4.3. Relevance of the Biological Fraction
5. Results
6. Discussion
7. Safety and Security of Cosmeceutical Peloids
8. Conclusions and Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baroni, A.; Buommino, E.; De Gregorio, V.; Ruocco, E.; Ruocco, V.; Wolf, R. Structure and Function of the Epidermis Related to Barrier Properties. Clin. Dermatol. 2012, 30, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Madnani, N.; Deo, J.; Dalal, K.; Benjamin, B.; Murthy, V.V.; Hegde, R.; Shetty, T. Revitalizing the Skin: Exploring the Role of Barrier Repair Moisturizers. J. Cosmet. Dermatol. 2024, 23, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Zhi, L.; You, B.; Wang, G.; Wu, N.; Jia, Y. Skin Homeostasis: Mechanism and Influencing Factors. J. Cosmet. Dermatol. 2024, 23, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Regulations (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: http://data.europa.eu/eli/reg/2009/1223/2019-08-13 (accessed on 1 September 2024).
- Kligman, A. The Future of Cosmeceuticals: An Interview with Albert Kligman, MD, PhD. Interview by Zoe Diana Draelos. Dermatol. Surg. 2005, 31 Pt 2, 890–891. [Google Scholar] [PubMed]
- Sathyaseelan, S.; Rao, B.H.; Anushmati, S. Cosmeceuticals: A Transit State from Synthetic to Natural. Indian J. Pharmacol. 2024, 56, 42–51. [Google Scholar] [CrossRef]
- Nguyen, J.K.; Masub, N.; Jagdeo, J. Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence. J. Cosmet. Dermatol. 2020, 19, 1555–1569. [Google Scholar] [CrossRef]
- Chan, L.K.W.; Lee, K.W.A.; Lee, C.H.; Lam, K.W.P.; Lee, K.F.V.; Wu, R.; Wan, J.; Shivananjappa, S.; Sky, W.T.H.; Choi, H.; et al. Cosmeceuticals in photoaging: A review. Skin Res. Technol. 2024, 30, e13730. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y.; Li, H.; Jiao, Y.; Wang, Q.; Zhang, Y.; Ma, N.; Wang, W. Property of mud and its application in cosmetic and medical fields: A review. Environ. Geochem. Health 2022, 44, 4235–4251. [Google Scholar] [CrossRef]
- Porlezza, C. Considerazione sui fanghi terapeutici (peloidi). Thermae 1965, II, 6–57. (In Italian) [Google Scholar]
- Maraver, F. Antecedentes históricos de la peloterapia. An. Hidrol. Médica 2006, 1, 17–42. (In Spanish) [Google Scholar]
- Lewis, J. Thermal properties of peloids. Part II. Arch. Med. Hydrol. 1935, 13, 56–57. [Google Scholar]
- Gomes, C.S.F.; Rautureau, M.; Gomes, J.H.C.; Silva, E.A.F. Interactions of Clay and Clay Minerals with the Human Health. In Minerals Latu Sensu and Human Health; Gomes, C., Rautureau, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 271–375. [Google Scholar] [CrossRef]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and Pelotherapy: Historical Evolution, Classification and Glossary. Appl. Clay Sci. 2013, 75–76, 28–38. [Google Scholar] [CrossRef]
- Legido, J.; Medina, C.; Lourdesmourelle, M.; Carretero, M.; Pozo, M. Comparative Study of the Cooling Rates of Bentonite, Sepiolite and Common Clays for Their Use in Pelotherapy. Appl. Clay Sci. 2007, 36, 148–160. [Google Scholar] [CrossRef]
- Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters. Available online: https://eur-lex.europa.eu/eli/dir/2009/54/oj (accessed on 1 September 2024).
- Spanish Medical Hydrology Association (SEHM). Available online: https://www.hidromed.org/hm/index.php/el-agua (accessed on 1 September 2024).
- Legido, J.L.; Gómez, C.P. Seawater: Composition, Physical and Chemical Properties. In Thalassotherapy and Cosmeceuticals; Mourelle, M.L., Kalasariya, H.S., Eds.; Aquatic Sciences series; CRC Press: Boca Raton, FL, USA, 2025; in press. [Google Scholar]
- Carretero, M.I. Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Appl. Clay Sci. 2020, 189, 105526. [Google Scholar] [CrossRef]
- Carretero, M.I. Clays in pelotherapy. A review. Part II: Organic compounds, microbiology and medical applications. Appl. Clay Sci. 2020, 189, 105531. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C. Pharmaceutical and Cosmetic Applications of Clays. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 267–289. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C.; Cerezo, P. Compositional, Technical and Safety Specifications of Clays to Be Used as Pharmaceutical and Cosmetic Products. Appl. Clay Sci. 2007, 36, 51–63. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C.; Aguzzi, C.; Cerezo, P. Pharmaceutical and Cosmetic Uses of Fibrous Clays. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 3, pp. 299–324. [Google Scholar] [CrossRef]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Min. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Viseras, C.; Sánchez-Espejo, R.; Palumbo, R.; Liccardi, N.; García-Villén, F.; Borrego-Sánchez, A.; Massaro, M.; Riela, S.; López-Galindo, A. Clays in Cosmetics and Personal-Care Products. Clays Clay Min. 2021, 69, 561–575. [Google Scholar] [CrossRef]
- Awad, M.E.; López-Galindo, A.; El-Rahmany, M.M.; El-Desoky, H.M.; Viseras, C. Characterization of Egyptian Kaolins for Health-Care Uses. Appl. Clay Sci. 2017, 135, 176–189. [Google Scholar] [CrossRef]
- Gomes, C.F.; Gomes, J.H.; Da Silva, E.F. Bacteriostatic and Bactericidal Clays: An Overview. Environ. Geochem. Health 2020, 42, 3507–3527. [Google Scholar] [CrossRef]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay Minerals: Properties and Applications to Dermocosmetic Products and Perspectives of Natural Raw Materials for Therapeutic Purposes—A Review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Wargala, E.; Sławska, M.; Zalewska, A.; Toporowska, M. Health Effects of Dyes, Minerals, and Vitamins Used in Cosmetics. Women 2021, 1, 223–237. [Google Scholar] [CrossRef]
- Finkelman, R.B. The Influence of Clays on Human Health: A Medical Geology Perspective. Clays Clay Min. 2019, 67, 1–6. [Google Scholar] [CrossRef]
- Sarruf, F.D.; Contreras, V.J.P.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. The Scenario of Clays and Clay Minerals Use in Cosmetics/Dermocosmetics. Cosmetics 2024, 11, 7. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Caichiolo, M.; Zampieri, R.M.; Adessi, A.; Ciani, M.; Caldara, F.; Dalla Valle, L.; La Rocca, N. Microbial Polysaccharides Extracted from Different Mature Muds of the Euganean Thermal District Show Similar Anti-Inflammatory Activity In Vivo. Int. J. Mol. Sci. 2024, 25, 4999. [Google Scholar] [CrossRef]
- Knorst-Fouran, A.; Casás, L.M.; Legido, J.L.; Coussine, C.; Bessières, D.; Plantier, F.; Lagière, J.; Dubourg, K. Influence of Dilution on the Thermophysical Properties of Dax Peloid (TERDAX®). Thermochim. Acta 2012, 539, 34–38. [Google Scholar] [CrossRef]
- Mihelčić, G.; Kniewald, G.; Ivanišević, G.; Čepelak, R.; Mihelčić, V.; Vdović, N. Physico-Chemical Characteristics of the Peloid Mud from Morinje Bay (Eastern Adriatic Coast, Croatia): Suitability for Use in Balneotherapy. Environ. Geochem. Health 2012, 34, 191–198. [Google Scholar] [CrossRef]
- Komar, D.; Dolenec, T.; Dolenec, M.; Vrhovnik, P.; Lojen, S.; Belak, Ž.L.; Kniewald, G.; Šmuc, N.R. Physico-chemical and geochemical characterization of Makirina Bay peloid mud and its evaluation for potential use in balneotherapy (N Dalmatia, Republic of Croatia). Indian J. Tradit. Knowl. 2015, 14, 5–12. [Google Scholar]
- Bigovic, M.; Roganovic, M.; Milasevic, I.; Djurovic, D.; Slavic, V.; Kosovic, M.; Vlahovic, M.; Perovic, S.; Perovic, A.; Kastratovic, V.; et al. Physico-chemical characterization of Igalo Bay peloid (Montenegro) and assessment of the pollution of potentially toxic elements in the sampling area. Farmacia 2020, 68, 560–571. [Google Scholar] [CrossRef]
- Baricz, A.; Levei, E.A.; Șenilă, M.; Pînzaru, S.C.; Aluaş, M.; Vulpoi, A.; Filip, C.; Tripon, C.; Dădârlat, D.; Buda, D.M.; et al. Comprehensive Mineralogical and Physicochemical Characterization of Recent Sapropels from Romanian Saline Lakes for Potential Use in Pelotherapy. Sci. Rep. 2021, 11, 18633. [Google Scholar] [CrossRef] [PubMed]
- Özay, P.; Karagülle, M.; Kardeş, S.; Karagülle, M.Z. Chemical and Mineralogical Characteristics of Peloids in Turkey. Environ. Monit. Assess. 2020, 192, 805. [Google Scholar] [CrossRef] [PubMed]
- Akimzhanova, K.; Sabitova, A.; Mussabayeva, B.; Kairbekov, Z.; Bayakhmetova, B.; Proch, J. Chemical composition and physicochemical properties of natural therapeutic mud of Kazakhstan salt lakes: A review. Environ. Geochem. Health. 2024, 46, 43. [Google Scholar] [CrossRef] [PubMed]
- Glavaš, N.; Mourelle, M.L.; Gómez, C.P.; Legido, J.L.; Rogan Šmuc, N.; Dolenec, M.; Kovač, N. The Mineralogical, Geochemical, and Thermophysical Characterization of Healing Saline Mud for Use in Pelotherapy. Appl. Clay Sci. 2017, 135, 119–128. [Google Scholar] [CrossRef]
- Kamitsou, M.D.; Sygouni, V.; Kanellopoulou, D.G.; Gardikis, K.; Koutsoukos, P.G. Physicochemical Characterization of Sterilized Muds for Pharmaceutics/Cosmetics Applications. Environ. Geochem. Health 2018, 40, 1449–1464. [Google Scholar] [CrossRef]
- Al-Karablieh, N. Antimicrobial Activity of Bacillus persicus 24-DSM Isolated from Dead Sea Mud. Open Microbiol. J. 2017, 11, 372–383. [Google Scholar] [CrossRef]
- Riyaz, N.; Arakkal, F. Spa Therapy in Dermatology. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 128. [Google Scholar] [CrossRef]
- Pozo, M.; Carretero, M.I.; Maraver, F.; Pozo, E.; Gómez, I.; Armijo, F.; Rubí, J.A.M. Composition and Physico-Chemical Properties of Peloids Used in Spanish Spas: A Comparative Study. Appl. Clay Sci. 2013, 83–84, 270–279. [Google Scholar] [CrossRef]
- Di Pasqua, L.G.; Berardo, C.; Raffo, L.; Ferrigno, A.; Guffanti, E.; Vairetti, M. Analysis of Massaciuccoli Peat after Maturation in Sodium Chloride Water of Undulna Thermae. Int. J. Environ. Res. Public Health 2022, 19, 2169. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Unveiling the Role of Minerals and Trace Elements of Thermal Waters in Skin Health. Appl. Sci. 2024, 14, 6291. [Google Scholar] [CrossRef]
- Pereira, L. Thalassotherapy and Marine Cosmeceuticals. In Therapeutic and Nutritional Uses of Algae, 1st ed.; CRC Press/Taylor & Francis Group: Abingdon, UK, 2017; Chapter 12; pp. 503–522. [Google Scholar]
- Denda, M.; Katagiri, C.; Hirao, T.; Maruyama, N.; Takahashi, M. Some Magnesium Salts and a Mixture of Magnesium and Calcium Salts Accelerate Skin Barrier Recovery. Arch. Dermatol. Res. 1999, 291, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Nissen, H.-P.; Bremgartner, M.; Urquhart, C. Bathing in a Magnesium-Rich Dead Sea Salt Solution Improves Skin Barrier Function, Enhances Skin Hydration, and Reduces Inflammation in Atopic Dry Skin. Int. J. Dermatol. 2005, 44, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Harari, M. Beauty is not only Skin Deep: The Dead Sea features and Cosmetics. An. Hidrol. Méd. 2012, 5, 75–88. [Google Scholar] [CrossRef]
- Portugal-Cohen, M.; Cohen, D.; Ish-Shalom, E.; Laor-Costa, Y.; Ma’or, Z. Dead Sea Minerals: New Findings on Skin and the Biology Beyond. Exp. Dermatol. 2019, 28, 585–592. [Google Scholar] [CrossRef]
- Yan, X.; Bao, X.; Cheng, S.; Ba, Q.; Chang, J.; Zhou, K.; Yan, X. Anti-aging and Rejuvenating Effects and Mechanism of Dead Sea Water in Skin. Int. J. Cosmet. Sci 2024, 46, 307–317. [Google Scholar] [CrossRef]
- Moro, I.; Rascio, N.; La Rocca, N.; Di Bella, M.; Andreoli, C. Cyanobacterium aponinum, a New Cyanoprokaryote from the Microbial Mat of Euganean Thermal Springs (Padua, Italy). Algol. Stud. 2007, 123, 1–15. [Google Scholar] [CrossRef]
- Moro, I.; Rascio, N.; La Rocca, N.; Sciuto, K.; Albertano, P.; Bruno, L.; Andreoli, C. Polyphasic Characterization of a Thermo-Tolerant Filamentous Cyanobacterium Isolated from the Euganean Thermal Muds (Padua, Italy). Eur. J. Phycol. 2010, 45, 143–154. [Google Scholar] [CrossRef]
- Gris, B.; Sforza, E.; Morosinotto, T.; Bertucco, A.; La Rocca, N. Influence of Light and Temperature on Growth and High-Value Molecules Productivity from Cyanobacterium aponinum. J. Appl. Phycol. 2017, 29, 1781–1790. [Google Scholar] [CrossRef]
- Berrini, C.C.; De Appolonia, F.; Dalla Valle, L.; Komárek, J.; Andreoli, C. Morphological and Molecular Characterization of a Thermophilic Cyanobacterium (Oscillatoriales) from the Euganean Thermal Springs (Padua, Italy). Arch. Hydrobiol. Algol. Stud. 2004, 113, 73–85. [Google Scholar] [CrossRef]
- Marcolongo, G.; De Appolonia, F.; Venzo, A.; Berrie, C.P.; Carofiglio, T.; Ceschi Berrini, C. Diacylglycerolipids Isolated from a Thermophile Cyanobacterium from the Euganean Hot Springs. Nat. Prod. Res. 2006, 20, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Gris, B.; Treu, L.; Zampieri, R.M.; Caldara, F.; Romualdi, C.; Campanaro, S.; La Rocca, N. Microbiota of the Therapeutic Euganean Thermal Muds with a Focus on the Main Cyanobacteria Species. Microorganisms 2020, 8, 1590. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, R.M.; Adessi, A.; Caldara, F.; Codato, A.; Furlan, M.; Rampazzo, C.; De Philippis, R.; La Rocca, N.; Dalla Valle, L. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, R.M.; Adessi, A.; Caldara, F.; De Philippis, R.; Dalla Valle, L.; La Rocca, N. In Vivo Anti-Inflammatory and Antioxidant Effects of Microbial Polysaccharides Extracted from Euganean Therapeutic Muds. Int. J. Biol. Macromol. 2022, 209, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Moro, I.; Fuiano, M.A.; Rascio, N.; De Philippis, R.; La Rocca, N. Phylogenetic, Morphological and Biochemical Studies on Thermospirulina andreolii gen. & sp. nov. (Cyanophyta) from the Euganean Thermal District (Italy). Phycologia 2021, 60, 487–496. [Google Scholar] [CrossRef]
- Duval, C.; Hamlaoui, S.; Piquet, B.; Toutirais, G.; Yéprémian, C.; Reinhardt, A.; Duperron, S.; Marie, B.; Demay, J.; Bernard, C. Diversity of Cyanobacteria from Thermal Muds (Balaruc-Les-Bains, France) with the Description of Pseudochroococcus Coutei gen. nov., sp. nov. FEMS Microbes 2021, 2, xtab006. [Google Scholar] [CrossRef]
- Demay, J.; Halary, S.; Knittel-Obrecht, A.; Villa, P.; Duval, C.; Hamlaoui, S.; Roussel, T.; Yéprémian, C.; Reinhardt, A.; Bernard, C.; et al. Anti-Inflammatory, Antioxidant, and Wound-Healing Properties of Cyanobacteria from Thermal Mud of Balaruc-Les-Bains, France: A Multi-Approach Study. Biomolecules 2020, 11, 28. [Google Scholar] [CrossRef]
- Halary, S.; Duperron, S.; Demay, J.; Duval, C.; Hamlaoui, S.; Piquet, B.; Reinhardt, A.; Bernard, C.; Marie, B. Metagenome-Based Exploration of Bacterial Communities Associated with Cyanobacteria Strains Isolated from Thermal Muds. Microorganisms 2022, 10, 2337. [Google Scholar] [CrossRef]
- Petursdottir, S.K.; Kristjansson, J.K. The relationship between physical and chemical conditions and low microbial diversity in the Blue Lagoon geothermal lake in Iceland. FEMS Microbiol. Ecol. 1996, 19, 39–45. [Google Scholar] [CrossRef]
- Petursdottir, S.K.; Kristjansson, J.K. Silicibacter lacuscaerulensis gen. nov., sp. nov., a Mesophilic Moderately Halophilic Bacterium Characteristic of the Blue Lagoon Geothermal Lake in Iceland. Extremophiles 1997, 1, 94–99. [Google Scholar] [CrossRef]
- Petursdottir, S.K.; Bjornsdottir, S.H.; Hreggvidsson, G.O.; Hjorleifsdottir, S.; Kristjansson, J.K. Analysis of the Unique Geothermal Microbial Ecosystem of the Blue Lagoon. FEMS Microbiol. Ecol. 2009, 70, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Palinska, K.A.; Vogt, J.C.; Surosz, W. Biodiversity Analysis of the Unique Geothermal Microbial Ecosystem of the Blue Lagoon (Iceland) Using next-Generation Sequencing (NGS). Hydrobiologia 2018, 811, 93–102. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Omarsdottir, S.; Brynjolfsdottir, A.; Paulsen, B.S.; Olafsdottir, E.S.; Freysdottir, J. Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland Increase IL-10 Secretion by Human Dendritic Cells and Their Ability to Reduce the IL-17+RORγt+/IL-10+FoxP3+ Ratio in CD4+ T Cells. Immunol. Lett. 2015, 163, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, A.B.; Brynjolfsdottir, A.; Olafsdottir, E.S.; Hardardottir, I.; Freysdottir, J. Exopolysaccharides from Cyanobacterium aponinum Induce a Regulatory Dendritic Cell Phenotype and Inhibit SYK and CLEC7A Expression in Dendritic Cells, T Cells and Keratinocytes. Int. Immunopharmacol. 2019, 69, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Ma’or, Z.; Henis, Y.; Alon, Y.; Orlov, E.; Sørensen, K.B.; Oren, A. Antimicrobial Properties of Dead Sea Black Mineral Mud. Int. J. Dermatol. 2006, 45, 504–511. [Google Scholar] [CrossRef]
- Oren, A.; Ginzburg, M.; Ginzburg, B.Z.; Hochstein, L.I.; Volcani, B.E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int. J. Syst. Bacteriol. 1990, 40, 209–210. [Google Scholar] [CrossRef]
- Obeidat, M. Isolation and characterization of extremely halotolerant Bacillus species from Dead Sea black mud and determination of their antimicrobial and hydrolytic activities. Afr. J. Microbiol. Res. 2017, 11, 1303–1314. [Google Scholar]
- Tserenpil, S.; Dolmaa, G.; Voronkov, M.G. Organic Matters in Healing Muds from Mongolia. Appl. Clay Sci. 2010, 49, 55–63. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Mühlberg, K.; Brenden, H.; Felsner, I.; Brynjólfsdóttir, Á.; Einarsson, S.; Krutmann, J. Bioactive Molecules from the Blue Lagoon: In Vitro and in Vivo Assessment of Silica Mud and Microalgae Extracts for Their Effects on Skin Barrier Function and Prevention of Skin Ageing. Exp. Dermatol. 2008, 17, 771–779. [Google Scholar] [CrossRef]
- Abu-Al-Bas, M.A. Histological Evaluation of the Healing Properties of Dead Sea Black Mud on Full-Thickness Excision Cutaneous Wounds in BALB/c Mice. Pak. J. Biol. Sci. 2012, 15, 306–315. [Google Scholar] [CrossRef]
- Hamed, S.; Almalty, A.-M. Skin Tolerance of Three Types of Dead Sea Mud on Healthy Skin: A Short-Term Study. J. Cosmet. Sci. 2018, 69, 269–278. [Google Scholar] [PubMed]
- Hamed, S.; Almalty, A.; Alkhatib, H.S. The Cutaneous Effects of Long-term Use of Dead Sea Mud on Healthy Skin: A 4-week Study. Int. J. Dermatol. 2021, 60, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Melandri, D.; Albano, V.M.; Venturi, M.; Flamigni, A.; Vairetti, M. Efficacy of Combined Liman Peloid Baths and Heliotherapy in the Treatment of Psoriasis at Cervia Spa, Emilia, Italy. Int. J. Biometeorol. 2020, 64, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Delfino, M.; Russo, N.; Migliaccio, G.; Carraturo, N. Studio sperimentale sull’efficacia dei fanghi termali dell’isola di Ischia associati a balneoterapia nella cura della psoriasi volgare a placche [Experimental study on efficacy of thermal muds of Ischia Island combined with balneotherapy in the treatment of psoriasis vulgaris with plaques]. Clin. Ter. 2003, 154, 167–171. (In Italian) [Google Scholar]
- Di Onofrio, V.; Maione, A.; Guida, M.; De Castro, O.; Liguori, R.; Carraturo, F.; Galdiero, E. Screening and Isolation of Microbes from a Mud Community of Ischia Island Thermal Springs: Preliminary Analysis of a Bioactive Compound. J. Prev. Med. Hyg. 2021, 62, E479–E488. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, J.; Lee, H.-B.; Shin, J.H.; Kim, E.-K. Water-Retentive and Anti-Inflammatory Properties of Organic and Inorganic Substances from Korean Sea Mud. Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef]
- Potpara, Z.; Duborija-Kova, A. Effects of the Peloid Cream from the Montenegrin Adriatic Coast on Skin Humidity, Transepidermal Water Loss and Erythema Index, Examined with Skin Bioengeneering In Vivo Methods. Farmacia 2012, 60, 524–534. [Google Scholar]
- Potpara, Z.; Pantovic, S.; Duborija-Kovacevic, N.; Tadic, V.; Vojinovic, T.; Marstijepovic, N. The Properties of the Ulcinj Peloid Make It Unique Biochemical Laboratory Required for the Treatment of Problematic Skin and Health Care. Nat. Prod. Commun. 2017, 12, 1934578X1701200. [Google Scholar] [CrossRef]
- Potpara, Z.; Pantovic, S.; Zecevic, A.A. Peloid-Based Cosmeutics Is Effective in the Treatment of Acnotic Skin—Prospective Study from Montenegro. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Du, Y.; Deng, X.; Li, L.; Dong, Y. The Investigation of Function of Mineral Mud for the Skin. Asian J. Beauty Cosmetol. 2016, 14, 98–104. [Google Scholar] [CrossRef]
- Arribas, M.; Meijide, R.; Mourelle, M.L. Long-term effects of psoriasis treatment with mineral water and peloids of la Toja. Balnea 2012, 6, 289–290. [Google Scholar]
- Arribas, M.; Gómez, C.P.; Mourelle, M.L. Nuevos casos clínicos tratados con peloide La Toja. In Proceedings of the V Congreso Iberoamericano de Peloides, Badajoz, Spain, 11–14 June 2017. (In Spanish). [Google Scholar]
- Cabana, B.; Galiñares, M.; Mourelle, L. Estudio preliminar con peloides en paciente con psoriasis. In Proceedings of the V Congreso Iberoamericano de Peloides, Badajoz, Spain, 11–14 June 2017. (In Spanish). [Google Scholar]
- Centini, M.; Tredici, M.R.; Biondi, N.; Buonocore, A.; Maffei Facino, R.; Anselmi, C. Thermal Mud Maturation: Organic Matter and Biological Activity. Int. J Cosmet. Sci. 2015, 37, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Pedrinazzi, C.; Andreoli, S.; Battistini, E.; D’Errigo, M.L.; Gregotti, C.; Richelmi, P. Efficacia di una maschera di torba e acqua termale salsobromoiodica nel trattamento della dermatite seborroica del viso. J. Plast. Dermatol. 2009, 5, 294. (In Italian) [Google Scholar]
- Rondanelli, M.; Opizzi, A.; Perna, S.; Faliva, M.A.; Buonocore, D.; Pezzoni, G.; Michelotti, A.; Marchetti, R.; Marzatico, F. Efficacia significativa del trattamento di due settimane con associazione di torba del Massaciuccoli ed acqua clorurato-sodica delle terme di Undulna sulla lipodistrofia a localizzazione ginoide in un gruppo di donne sovrappeso. [Significant two-weeks clinical efficacy of an association between Massaciuccoli peat and sodium chloride water of Undulna Thermae measured on gynoid lipodystrophy in a group of overweight female]. Ann. Ig 2012, 24, 369. (In Italian) [Google Scholar] [PubMed]
- Cacciapuoti, S.; Luciano, M.; Megna, M.; Annunziata, M.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef]
- Moini Jazani, A.; Ayati, M.H.; Nadiri, A.A.; Nasimi Doost Azgomi, R. Efficacy of Hydrotherapy, Spa Therapy, and Balneotherapy for Psoriasis and Atopic Dermatitis: A Systematic Review. Int. J. Dermatol. 2023, 62, 177–189. [Google Scholar] [CrossRef]
- Protano, C.; Vitali, M.; De Giorgi, A.; Marotta, D.; Crucianelli, S.; Fontana, M. Balneotherapy Using Thermal Mineral Water Baths and Dermatological Diseases: A Systematic Review. Int. J. Biometeorol. 2024, 68, 1005–1013. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Phycocosmetics and Other Marine Cosmetics, Specific Cosmetics Formulated Using Marine Resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef]
- Khiari, I.; Mefteh, S.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; López-Galindo, A.; Jamoussi, F.; Viseras Iborra, C. Study of Traditional Tunisian Medina Clays Used in Therapeutic and Cosmetic Mud-Packs. Appl. Clay Sci. 2014, 101, 141–148. [Google Scholar] [CrossRef]
- Karakaya, C.M.; Karakaya, N.; Aydin, S. The Physical and Physicochemical Properties of Some Turkish Thermal Muds and Pure Clay Minerals and Their Uses in Therapy. Turk. J. Earth Sci. 2017, 26, 395–409. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D. Mud Therapy and Skin Microbiome: A Review. Int. J. Biometeorol. 2018, 62, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsdóttir, J.H.; Sigurgeirsson, B.; Ólafsson, J.H.; Fridriksson, T.; Agnarsson, B.A.; Davíðsson, S.; Valdimarsson, H.; Lúðvíksson, B.R. The Role of Th17/Tc17 Peripheral Blood T Cells in Psoriasis and Their Positive Therapeutic Response. Scand. J. Immunol. 2013, 78, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsdóttir, J.H.; Ólafsson, J.H.; Agnarsson, B.A.; Lúðvíksson, B.R.; Sigurgeirsson, B. Psoriasis Treatment: Faster and Long-standing Results after Bathing in Geothermal Seawater. A Randomized Trial of Three UVB Phototherapy Regimens. Photodermatol. Photoimmunol. Photomed. 2014, 30, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Brenden, H.; Felsner, I.; Aue, N.; Brynjolfsdottir, A.; Krutmann, J. Blue Lagoon Algae Improve Uneven Skin Pigmentation: Results from in Vitro Studies and from a Monocentric, Randomized, Double-Blind, Vehicle-Controlled, Split-Face Study. Skin Pharmacol. Physiol. 2022, 35, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Bawab, A.A.; Bozeya, A.; Abu-Mallouh, S.; Abu Irmaileh, B.; Daqour, I.; Abu-Zurayk, R.A. The Dead Sea Mud and Salt: A Review of Its Characterization, Contaminants, and Beneficial Effects. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012003. [Google Scholar] [CrossRef]
- Błońska-Sikora, E.M.; Klimek-Szczykutowicz, M.; Michalak, M.; Kulik-Siarek, K.; Wrzosek, M. Potential Possibilities of Using Peat, Humic Substances, and Sulfurous Waters in Cosmetology. Appl. Sci. 2024, 14, 6912. [Google Scholar] [CrossRef]
- Vadlja, D.; Bujak, M.; Čož-Rakovac, R.; Roje, M.; Čižmek, L.; Horvatić, A.; Svetličić, E.; Diminić, J.; Rakovac, S.; Oros, D.; et al. Bioprospecting for Microorganisms in Peloids—Extreme Environment Known for Its Healing Properties. Front. Mar. Sci. 2022, 9, 822139. [Google Scholar] [CrossRef]
- PA, I.; Kakhetelidze, M.; Gabelaya, M.; Churadze, L. Cosmeceutical masks using therapeutic mud of Akhtala (Georgia) and products from plant materials. World J. Pharm. Res. 2020, 9, 189–194. [Google Scholar]
- Bokuchava, N. Therapeutic Mud of Georgia; Publishing House “Technical University”: Tbilisi, Georgia, 2009; ISBN 978-9941-14-371-7. (In Russian) [Google Scholar]
- Baschini, M.T.; Pettinari, G.R.; Vallés, J.M.; Aguzzi, C.; Cerezo, P.; López-Galindo, A.; Setti, M.; Viseras, C. Suitability of Natural Sulphur-Rich Muds from Copahue (Argentina) for Use as Semisolid Health Care Products. Appl. Clay Sci. 2010, 49, 205–212. [Google Scholar] [CrossRef]
- Spilioti, E.; Vargiami, M.; Letsiou, S.; Gardikis, K.; Sygouni, V.; Koutsoukos, P.; Chinou, I.; Kassi, E.; Moutsatsou, P. Biological Properties of Mud Extracts Derived from Various Spa Resorts. Environ. Geochem. Health 2017, 39, 821–833. [Google Scholar] [CrossRef]
- Amuso, D.; Medoro, A.; Scapagnini, G.; Gambacorta, A.; Davinelli, S.; Iorio, E.L.; Bonetti, L.R.; Sbarbati, A. A Pilot Study on the Efficacy of a Seaweed Mud Application in the Treatment of Cellulite. J. Cosmet. Dermatol. 2024, 23, 2181–2189. [Google Scholar] [CrossRef] [PubMed]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Microalgal Peloids for Cosmetic and Wellness Uses. Mar. Drugs 2021, 19, 666. [Google Scholar] [CrossRef] [PubMed]
- Ma’or, Z.; Cohen, D.; Assis, A. Formulating Dead Sea Mud in Cosmetic Products, Its Effects on Skin, and the Underlying Biological Mechanism: A Review. J. Cosmet. Dermatol. Sci. Appl. 2024, 14, 276–288. [Google Scholar] [CrossRef]
- Tateo, F.; Ravaglioli, A.; Andreoli, C.; Bonina, F.; Coiro, V.; Degetto, S.; Giaretta, A.; Menconi Orsini, A.; Puglia, C.; Summa, V. The In-Vitro Percutaneous Migration of Chemical Elements from a Thermal Mud for Healing Use. Appl. Clay Sci. 2009, 44, 83–94. [Google Scholar] [CrossRef]
- Bastos, C.M.; Rocha, F.; Patinha, C.; Marinho-Reis, P. Characterization of Percutaneous Absorption of Calcium, Magnesium, and Potentially Toxic Elements in Two Tailored Sulfurous Therapeutic Peloids: A Comprehensive in Vitro Pilot Study. Int. J. Biometeorol. 2024, 68, 1061–1072. [Google Scholar] [CrossRef]
- Ma’or, Z.; Halicz, L.; Portugal-Cohen, M.; Russo, M.Z.; Robino, F.; Vanhaecke, T.; Rogiers, V. Safety evaluation of traces of nickel and chrome in cosmetics: The case of Dead Sea mud. Regul. Toxicol. Pharmacol. 2015, 73, 797–801. [Google Scholar] [CrossRef]
- Karpińska, M.; Mnich, K.; Kapała, J.; Bielawska, A.; Kulesza, G.; Mnich, S. Radioactivity of Peat Mud Used in Therapy. J. Environ. Radioact. 2016, 152, 97–100. [Google Scholar] [CrossRef]
- Cantaluppi, C.; Carraro, A.; Tateo, F.; Fasson, A. Gamma-Emitting Radionuclides in Therapeutic Muds of the Euganean Thermal District (Padua, Italy). Appl. Clay Sci. 2023, 245, 107142. [Google Scholar] [CrossRef]
- Park, C.; Kim, J.-H.; Choi, W.; Kim, D.; No, S.-G.; Chung, D.; Lee, H.; Seo, S.; Seo, S.M. Natural Peloids Originating from Subsea Depths of 200 m in the Hupo Basin, South Korea: Physicochemical Properties for Potential Pelotherapy Applications. Environ. Geochem. Health 2024, 46, 240. [Google Scholar] [CrossRef]
- Baldovin, T.; Amoruso, I.; Caldara, F.; Buja, A.; Baldo, V.; Cocchio, S.; Bertoncello, C. Microbiological Hygiene Quality of Thermal Muds: A Pilot Study in Pelotherapy Facilities of the Euganean Thermal District (NE Italy). Int. J. Environ. Res. Public Health 2020, 17, 5040. [Google Scholar] [CrossRef]
- Bastos, C.M.; Rocha, F.; Gomes, N.; Marinho-Reis, P. The Challenge in Combining Pelotherapy and Electrotherapy (Iontophoresis) in One Single Therapeutic Modality. Appl. Sci. 2022, 12, 1509. [Google Scholar] [CrossRef]
- Bastos, C.M.; Rocha, F. Experimental Peloid Formulation Using a Portuguese Bentonite and Different Mineral-Medicinal Waters Suitable for Therapeutic and Well-Being Purposes. Clays Clay Min. 2023, 71, 684–706. [Google Scholar] [CrossRef]
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
Mineral Content > 1 g/L | |
Chloride | Heavy (>50 g/L) |
Medium (>10 <50 g/L) | |
Light (<10 g/L) | |
Sulphate | Sodium |
Magnesium | |
Calcium | |
Bicarbonate | Mixed: Chloride, Bicarbonate |
Sodium | |
Calcium | |
Mixed | |
With special mineralizing elements/compounds | |
Sulphur rich | >1 mg of SH2 and SH−/L |
Carbon-dioxide rich | >250 mg of free CO2/L |
Iron rich | >5 mg of total Fe/L |
Radon rich | >67.3 Bq of Rd/L |
Less than 1 g/L (low mineralization) |
Peloid | Origin | Main Composition | Therapeutic/Cosmetic use | Type of Study | Observed Effects and Specific Activities | References |
---|---|---|---|---|---|---|
Blue Lagoon | Natural Grandvik Iceland | Silica-rich mud | Skin pigmentation | In vitro In vivo | Decreased TEWL Skin barrier improvement | [77] |
Dead Sea | Natural Dead Sea (Israel) Dead Sea | Hypersaline, sulphide-rich (Illite–smectite phases, Kaolinite, Calcite, Quartz, Chlorite) | Psoriasis Atopic dermatitis | In vitro | Antimicrobial activity | [73] |
Wound healing | In vivo | Acceleration of wound healing process | [78] | |||
- | In vitro | Antimicrobial activity | [44] | |||
Healthy skin | Clinical study | Skin hydration improvement | [79] | |||
Healthy skin | Clinical study | No significative changes on TEWL, pH, melanin, and erythema levels Slight improvement in skin firmness Maintenance of skin barrier | [80] | |||
DermudTM (AHAVA) Dead sea mud + Aloe vera extract and vitamins | Healthy skin | In vitro | Protective, anti-oxidant and anti-inflammatory effect after UVB irradiation | [52] | ||
Cervia liman peloid | Liman peloid (Italy) | Silica-rich | Psoriasis | Clinical study | Decreased PASI Reduction in the topical use of drugs | [81] |
Ischia island mud | Natural Ischia (Campanian Archipelago, Italy) | Volcanic-derived clay | Psoriasis | Clinical trial | Decreased PASI | [82] |
- | Clinical trial | Antibacterial | [83] | |||
Korean Sea Mud | Natural Boryeong, Chungnam (Korea) | Sea mud (Humic substances-rich) | Dermocosmetic potential use | In vitro | Anti-inflammatory activity | [84] |
Ulcinj cream peloid * | Natural Ulcinj (Montenegro) | Saline (Quartz, Kaolinite, Illite, Halite, Sylvite | Skin care (moisturizing) | In vivo | Increased stratum corneum humidity | [85] |
Natural Ulcinj (Montenegro) | Dermocosmetic potential use | In vitro | Antimicrobial activity | [86] | ||
Ulcinj peloid + medicinal herbs | Natural Ulcinj (Montenegro) | Acne | Clinical study | Reduction of sebum secretion Antimicrobial, and anti-inflammatory effects | [87] | |
Xiushan Island sea mud | Natural Zhejiang province (China) | Marine mud (algae, crustaceans and aquatic animal and plant debris) | Not mentioned | Not mentioned | Antioxidant effect Inhibitory effect on tyrosinase Antibacterial effect | [88] |
La Toja peloid | Prepared “ad hoc” (Spain) | Hectorite Iron-rich | Psoriasis | Clinical study | Decreased PASI | [89,90] |
Compostela peloid | Prepared “ad hoc” (Spain) | Hectorite | Psoriasis | Clinical study | Decreased PASI | [91] |
Saturnia mud | Prepared “ad hoc” Saturnia Terme (Italy) | Montmorrillonite with presence of Illite and Kaolinite | Not mentioned | In vitro | Antioxidant activity | [92] |
Massaciuccoli peat | Prepared “ad hoc” Uldunla Thermae (Italy) | Peat maturation with salty bromine–iodine water | Seborrheic dermatitis | Clinical trial | Decreased SD index (Koca et al. index) Decreased sebum levels Improvement of skin hydration | [93] |
Gynoid lipodystrophy | Clinical trial | Decreased body diameters and body water Improvement of skin elasticity subcutaneous perfusion improvement Reduction of thickness of subcutaneous fat | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Peloids in Skin Care and Cosmeceuticals. Cosmetics 2024, 11, 202. https://doi.org/10.3390/cosmetics11060202
Mourelle ML, Gómez CP, Legido JL. Peloids in Skin Care and Cosmeceuticals. Cosmetics. 2024; 11(6):202. https://doi.org/10.3390/cosmetics11060202
Chicago/Turabian StyleMourelle, M. Lourdes, Carmen P. Gómez, and José L. Legido. 2024. "Peloids in Skin Care and Cosmeceuticals" Cosmetics 11, no. 6: 202. https://doi.org/10.3390/cosmetics11060202
APA StyleMourelle, M. L., Gómez, C. P., & Legido, J. L. (2024). Peloids in Skin Care and Cosmeceuticals. Cosmetics, 11(6), 202. https://doi.org/10.3390/cosmetics11060202