Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. Alternative Assays Proposed
3.2.1. Galbiati et al., 2013 and 2014 [33,35]
3.2.2. Martínez et al., 2013 [34]
3.2.3. Stiefel and Schwack, 2014 [36]
3.2.4. Oeda et al., 2016 [37]
3.2.5. Onoue et al., 2016 and 2017 [9,38]
3.2.6. Tsujita-Inoue et al., 2016 [39]
3.2.7. Vayá et al., 2016 [40]
3.2.8. Pérez-Ruíz et al., 2017 [41]
3.2.9. de Àvila et al., 2017 and 2023 [42,48]
3.2.10. Toyoda and Itagaki, 2018 [43]
3.2.11. Patel et al., 2019 [44]
3.2.12. Yamamoto et al., 2020 [45]
3.2.13. Nishida et al., 2021 [46]
3.2.14. Nguyen et al., 2021 [47]
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diepgen, T.L.; Ofenloch, R.F.; Bruze, M.; Bertuccio, P.; Cazzaniga, S.; Coenraads, P.J.; Elsner, P.; Goncalo, M.; Svensson, Å.; Naldi, L. Prevalence of contact allergy in the general population in different European regions. Br. J. Dermatol. 2016, 174, 319–329. [Google Scholar] [CrossRef]
- Lagrelius, M.; Wahlgren, C.F.; Matura, M.; Kull, I.; Lidén, C. High prevalence of contact allergy in adolescence: Results from the population-based BAMSE birth cohort. Contact Dermat. 2016, 74, 44–51. [Google Scholar] [CrossRef]
- Alrashidi, A.; Rhodes, L.E.; Sharif, J.C.H.; Kreeshan, F.C.; Farrar, M.D.; Ahad, T. Systemic drug photosensitivity—Culprits, impact and investigation in 122 patients. Photodermatol. Photoimmunol. Photomed. 2020, 36, 441–451. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Cieślewicz, A.; Chmara, E.; Jabłecka, A.; Pawlaczyk, M. Photosensitivity reactions in the elderly population: Questionnaire-based survey and literature review. Ther. Clin. Risk Manag. 2019, 15, 1111–1119. [Google Scholar] [CrossRef]
- Towle, K.M.; Fung, E.S.; Monnot, A.D. Phototoxicity Evaluation of Hair Cleansing Conditioners. Cosmetics 2019, 6, 53. [Google Scholar] [CrossRef]
- Elkeeb, D.; Elkeeb, L.; Maibach, H. Photosensitivity: A current biological overview. Cutan. Ocul. Toxicol. 2012, 31, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Gonçalo, M. Phototoxic and Photoallergic Contact Reactions. In Contact Dermatitis, 6th ed.; Johansen, J.D., Mahler, V., Lepoittevin, J.P., Frosch, P.J., Eds.; Springer: Cham, Switzerland, 2021; pp. 365–389. [Google Scholar] [CrossRef]
- Glatz, M.; Hofbauer, G.F.L. Phototoxic and photoallergic cutaneous drug reactions. Chem. Immunol. Allergy 2012, 97, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Onoue, S.; Seto, Y.; Sato, H.; Nishida, H.; Hirota, M.; Ashikaga, T.; Api, A.M.; Basketter, D.; Tokura, Y. Chemical photoallergy: Photobiochemical mechanisms, classification, and risk assessments. J. Dermatol. Sci. 2017, 85, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Deleo, V.A. Photocontact dermatitis. Dermatol. Ther. 2004, 17, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.F.; Rato, M.; Martins, C. Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clin. Dermatol. 2016, 34, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.S. Photodermatitis due to tetrachlorsalicylanilide. Brit J. Dermatol. 1961, 73, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y. Drug photoallergy. J. Cutan. Immunol. Allergy 2018, 1, 48–57. [Google Scholar] [CrossRef]
- Snyder, M.; Turrentine, J.E.; Cruz, P.D., Jr. Photocontact Dermatitis and Its Clinical Mimics: An Overview for the Allergist. Clin. Rev. Allergy Immunol. 2019, 56, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Victor, F.C.; Cohen, D.E.; Soter, N.A. A 20-year analysis of previous and emerging allergens that elicit photoallergic contact dermatitis. J. Am. Acad. Dermatol. 2010, 62, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ferriols, A.; de la Cuadra, O. La nueva batería europea de fotoalérgenos. Piel 2013, 28, 66–68. [Google Scholar] [CrossRef]
- Subiabre-Ferrer, D.; Esteve-Martínez, A.; Blasco-Encinas, R.; Sierra-Talamantes, C.; Pérez-Ferriols, A.; Zaragoza-Ninet, V. European photopatch test baseline series: A 3-year experience. Contact Dermat. 2019, 80, 5–8. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). Opinion on Octocrylene (CAS No 6197-30-4, EC No 228-250-8), Preliminary Version of 15 January 2021, Final Version of 30–31 March 2021, SCCS/1627/21. Available online: https://health.ec.europa.eu/system/files/2022-08/sccs_o_249.pdf (accessed on 14 February 2024).
- Aguiar, B.; Carmo, H.; Garrido, J.; Sousa Lobo, J.M.; Almeida, I.F. In Vitro Evaluation of the Photoreactivity and Phototoxicity of Natural Polyphenol Antioxidants. Molecules 2022, 27, 189. [Google Scholar] [CrossRef]
- Lovell, W.W.; Sanders, D.J. Phototoxicity testing in guinea-pigs. Food Chem. Toxicol. 1992, 30, 155–160. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Ryan, C. A predictive mouse ear-swelling model for investigating topical phototoxicity. Food Chem. Toxicol. 1989, 27, 813–819. [Google Scholar] [CrossRef]
- Marzulli, F.N.; Maibach, H.I. Contact allergy: Predictive testing in man. Contact Dermat. 1976, 2, 1–17. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Guidance S10 on Photosafety Evaluation of Pharmaceuticals. 2015. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/ich-guideline-s10-guidance-photosafety-evaluation-pharmaceuticals-step-3_en.pdf (accessed on 31 January 2024).
- European Parliament. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Off. J. Eur Union. 2009, L342, 59–209. Available online: http://data.europa.eu/eli/reg/2009/1223/oj (accessed on 31 January 2024).
- European Commission. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACh), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No. 793/93 and Commission Regulation (EC) No. 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (accessed on 31 January 2024).
- European Medicines Agency. ICH Guideline M3 (R2) on Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorisation for Pharmaceuticals. 2009. Available online: https://www.ema.europa.eu/en/ich-m3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-pharmaceuticals-scientific-guideline (accessed on 31 January 2024).
- Schmeisser, S.; Miccoli, A.; von Bergen, M.; Berggren, E.; Braeuning, A.; Busch, W.; Desaintes, C.; Gourmelon, A.; Grafström, R.; Harrill, J.; et al. New approach methodologies in human regulatory toxicology—Not if, but how and when! Environ. Int. 2023, 178, 108082. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 432: In Vitro 3T3 NRU Phototoxicity Test, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Test No. 495: Ros (Reactive Oxygen Species) Assay for Photoreactivity, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Test No. 498: In Vitro Phototoxicity—Reconstructed Human Epidermis Phototoxicity Test Method, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Ak, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Sys. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Bramer, W.M.; de Jonge, G.B.; Rethlefsen, M.L.; Mast, F.; Kleijnen, J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med. Libr. Assoc. 2018, 106, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, V.; Martínez, V.; Bianchi, S.; Mitjans, M.; Corsini, E. Establishment of an in vitro photoallergy test using NCTC2544 cells and IL-18 production. Toxicol. Vitr. 2013, 27, 103–110. [Google Scholar] [CrossRef]
- Martínez, V.; Galbiati, V.; Corsini, E.; Martín-Venegas, R.; Vinardell, M.P.; Mitjans, M. Establishment of an in vitro photoassay using THP-1 cells and IL-8 to discriminate photoirritants from photoallergens. Toxicol. Vitr. 2013, 27, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, V.; Bianchi, S.; Martínez, V.; Mitjans, M.; Corsini, E. NCTC 2544 and IL-18 production: A tool for the in vitro identification of photoallergens. Toxicol. Vitr. 2014, 28, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, C.; Schwack, W. Reactivity of cosmetic UV filters towards skin proteins: Model studies with Boc-lysine, Boc-Gly-Phe-Gly-Lys-OH, BSA and gelatin. Int. J. Cosmet. Sci. 2014, 36, 561–570. [Google Scholar] [CrossRef]
- Oeda, S.; Hirota, M.; Nishida, H.; Ashikaga, T.; Sasa, H.; Aiba, S.; Tokura, Y.; Kouzuki, H. Development of an in vitro photosensitization test based on changes of cell-surface thiols and amines as biomarkers: The photo-SH/NH2 test. J. Toxicol. Sci. 2016, 41, 129–142. [Google Scholar] [CrossRef]
- Onoue, S.; Ohtake, H.; Suzuki, G.; Seto, Y.; Nishida, H.; Hirota, M.; Ashikaga, T.; Kouzuki, H. Comparative study on prediction performance of photosafety testing tools on photoallergens. Toxicol. Vitr. 2016, 33, 147–152. [Google Scholar] [CrossRef]
- Tsujita-Inoue, K.; Hirota, M.; Atobe, T.; Ashikaga, T.; Tokura, Y.; Kouzuki, H. Development of novel in vitro photosafety assays focused on the Keap1-Nrf2-ARE pathway. J. Appl. Toxicol. 2016, 36, 956–968. [Google Scholar] [CrossRef]
- Vayá, I.; Andreu, I.; Monje, V.T.; Jiménez, M.C.; Miranda, M.A. Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with SerumAlbumins. Chem. Res Toxicol. 2016, 29, 40–46. [Google Scholar] [CrossRef]
- Pérez-Ruíz, R.; Lence, E.; Andreu, I.; Limones-Herrero, D.; González-Bello, C.; Miranda, M.A.; Jiménez, M.C. A New Pathway for Protein Haptenation by β-Lactams. Chemistry 2017, 23, 13986–13994. [Google Scholar] [CrossRef]
- de Ávila, R.I.; Teixeira, G.C.; Veloso, D.F.M.C.; Moreira, L.C.; Lima, E.M.; Valadares, M.C. In vitro assessment of skin sensitization, photosensitization and phototoxicity potential of commercial glyphosate-containing formulations. Toxicol. Vitr. 2017, 45, 386–392. [Google Scholar] [CrossRef]
- Toyoda, A.; Itagaki, H. Development of an in vitro photosafety evaluation method utilizing intracellular ROS production in THP-1 cells. J. Toxicol. Sci. 2018, 43, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.H.; Mishra, P.K.; Nagane, R.; Deshpande, A.; Tamboli, I.Y.; Date, R. Comparison of in chemico skin sensitization methods and development of an in chemico skin photosensitization assay. ALTEX 2019, 36, 373–387. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Fujita, M.; Wanibuchi, S.; Sato, A.; Katsuoka, Y.; Kasahara, T. Development of photo-amino acid derivative reactivity assay: A novel in chemico alternative method for predicting photoallergy. J. Appl. Toxicol. 2020, 40, 655–678. [Google Scholar] [CrossRef] [PubMed]
- Nishida, H.; Ohtake, T.; Ashikaga, T.; Hirota, M.; Onoue, S.; Seto, Y.; Tokura, Y.; Kouzuki, H. In chemico sequential testing strategy for assessing the photoallegic potential. Toxicol. Vitr. 2021, 77, 105245. [Google Scholar] [CrossRef]
- Nguyen, R.; Barry, M.; Azevedo Loiola, R.; Ferret, P.-J.; Andres, E. PhotoSENSIL-18 assay development: Enhancing the safety testing of cosmetic raw materials and finished products to support the in vitro photosensitization assessment? Toxicology 2023, 495, 153613. [Google Scholar] [CrossRef]
- de Ávila, R.I.; Aleksic, M.; Zhu, B.; Li, J.; Pendlington, R.; Valadares, M.C. Non-animal approaches for photoallergenicity safety assessment: Needs and perspectives for the toxicology for the 21st century. Regul. Toxicol. Pharmacol. 2023, 145, 105499. [Google Scholar] [CrossRef] [PubMed]
- OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, OECD Series on Testing and Assessment; No. 168; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Mitjans, M.; Galbiati, V.; Lucchi, L.; Viviani, B.; Marinovich, M.; Galli, C.L.; Corsini, E. Use of IL-8 release and p38 MAPK activation in THP-1 cells to identify allergens and to assess their potency in vitro. Toxicol. Vitr. 2010, 24, 1803–1809. [Google Scholar] [CrossRef]
- Stiefel, C.; Schwack, W. Rapid screening method to study the reactivity of UV filter substances towards skin proteins by high-performance thin-layer chromatography. Int. J. Cosmet. Sci. 2013, 35, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Hirota, M.; Hagino, S.; Itagaki, H.; Aiba, S. Evaluation of changes of cell-surface thiols as a new biomarker for in vitro sensitization test. Toxicol. Vitr. 2009, 23, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Lovell, W.W.; Jones, P.A. An Evaluation of Mechanistic In Vitro Tests for the Discrimination of Photoallergic and Photoirritant Potential. Altern. Lab. Anim. 2000, 28, 707–724. [Google Scholar] [CrossRef]
- Onoue, S.; Suzuki, G.; Kato, M.; Hirota, M.; Nishida, H.; Kitagaki, M.; Kouzuki, H.; Yamada, S. Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties. Toxicol. Vitr. 2013, 27, 2316–2324. [Google Scholar] [CrossRef]
- Moore, D.E. Drug-induced cutaneous photosensitivity: Incidence, mechanism, prevention and management. Drug Saf. 2002, 25, 345–372. [Google Scholar] [CrossRef]
- Vargas, F.; Martinez Volkmar, I.; Sequera, J.; Mendez, H.; Rojas, J.; Fraile, G.; Velasquez, M.; Medina, R. Photodegradation and phototoxicity studies of furosemide. Involvement of singlet oxygen in the photoinduced hemolysis and lipid peroxidation. J. Photochem. Photobiol. B. 1998, 42, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Foti, C.; Alsante, K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? Photochem. Photobiol. B. 2009, 96, 57–62. [Google Scholar] [CrossRef]
- OECD. Test No. 101: UV-VIS Absorption Spectra, OECD Guidelines for the Testing of Chemicals; Section 1; OECD Publishing: Paris, France, 1981. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/july-september-2017-potential-signals-serious-risksnew-safety-information-identified-fda-adverse (accessed on 1 February 2024).
- Naisbitt, D.J.; Nattrass, R.G.; Ogese, M.O. In Vitro Diagnosis of Delayed-type Drug Hypersensitivity: Mechanistic Aspects and Unmet Needs. Immunol. Allergy Clin. N. Am. 2014, 34, 691–705. [Google Scholar] [CrossRef]
- OECD. Test No. 442C: In Chemico Skin Sensitisation: Assays Addressing the Adverse Outcome Pathway Key Event on Covalent Binding to Proteins, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Pan, N.; Xia, Y.; Hou, W.; Zhu, G.; Zhang, J.; Lai, W.; Zheng, Y. Assessment of Skin Photoallergy Risk in Cosmetics Containing Herbal Extract Ingredients. Ski. Pharmacol. Physiol. 2021, 34, 253–261. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation 12th Revision, 15 May 2023, Corrigendum 1 on 26 October 2023, Corrigendum 2 on 21 December 2023, SCCS/1647/22. Available online: https://health.ec.europa.eu/latest-updates/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-12th-revision-2023-05-16_en (accessed on 20 February 2024).
- Rato, M.; Gil, F.; Monteiro, A.F.; Parente, J. Fenofibrate photoallergy—Relevance of patch and photopatch testing. Contact Dermat. 2018, 78, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ji, W.; Dicolandrea, T.; Finlay, D.; Supp, D.; Boyce, S.; Wei, K.; Kadekaro, A.L.; Zhang, Y. An improved human skin explant culture method for testing and assessing personal care products. J. Cosmet. Dermatol. 2023, 22, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Amaral, R.; Amores Da Silva, P.; Ansell, J.; Boisleve, F.; Hatao, M.; Hirose, A.; Kasai, Y.; Kern, P.; Kreiling, R.; et al. Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput. Toxicol. 2018, 7, 20–26. [Google Scholar] [CrossRef]
- Ritacco, G.; Hilberer, A.; Lavelle, M.; Api, A.M. Use of alternative test methods in a tiered testing approach to address photoirritation potential of fragrance materials. Regul. Toxicol. Pharm. 2022, 129, 105098. [Google Scholar] [CrossRef] [PubMed]
- Blakely, K.M.; Drucker, A.M.; Rosen, C.F. Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Saf. 2019, 42, 827–847. [Google Scholar] [CrossRef]
- Hofmann, G.A.; Weber, B. Drug-induced photosensitivity: Culprit drugs, potential mechanisms and clinical consequences. J. Dtsch Dermatol. Ges. 2021, 19, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.; Worswick, S. Photosensitizing drug reactions. Clin. Dermatol. 2022, 40, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Beani, J.C. Phototoxicity, Photoirritation, and Photoallergy Detection and Assessment. In Agache’s Measuring the Skin, 2nd ed.; Humbert, P., Fanian, F., Maibach, H., Agache, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 1061–1069. [Google Scholar] [CrossRef]
- Kowalska, J.; Rok, J.; Rzepka, Z.; Wrześniok, D. Drug-Induced Photosensitivity—From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals 2021, 14, 723. [Google Scholar] [CrossRef]
- Davis, A.E.; Kennelley, G.E.; Amaye-Obu, T.; Jowdy, P.F.; Ghadersohi, S.; Nasir-Moin, M.; Paragh, G.; Berman, H.A.; Huss, W.J. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. J. Photochem. Photobiol. 2024, 19, 100221. [Google Scholar] [CrossRef]
- Al-Jarrah, R.; Blasini, A.; Kurgyis, Z.; Brockow, K.; Eberlein, B. Severe photoallergy to systemic dronedarone (Multaq). Contact Dermat. 2020, 83, 241–242. [Google Scholar] [CrossRef]
- Lozzi, F.; Di Raimondo, C.; Lanna, C.; Diluvio, L.; Mazzilli, S.; Garofalo, V.; Dika, E.; Dellambra, E.; Coniglione, F.; Bianchi, L.; et al. Latest Evidence Regarding the Effects of Photosensitive Drugs on the Skin: Pathogenetic Mechanisms and Clinical Manifestations. Pharmaceutics 2020, 12, 1104. [Google Scholar] [CrossRef]
- Rojas Perez-Ezquerra, P.; Torrado-Español, I.; Tejero-Alcalde, M.; Cuevas-Bravo, C.; Noguerado-Mellado, B. Photoallergy to Naproxen. Cureus 2021, 13, e18961. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, H.; Hancu, G.; Kacsó, E.; Papp, L.A. Photosensitivity Reactions Induced by Photochemical Degradation of Drugs. Adv. Pharm. Bull. 2022, 12, 77–85. [Google Scholar] [CrossRef]
- Romita, P.; Foti, C.; Mennuni, B.G.; Ambrogio, F.; Poli, M.A.; Tramontana, M.; Hansel, K.; Stingeni, L. Perioral photoallergic dermatitis to promazine hydrochloride. Contact Dermat. 2022, 86, 561–562. [Google Scholar] [CrossRef]
- Nishida, H.; Hirota, M.; Seto, Y.; Suzuki, G.; Kato, M.; Kitagaki, M.; Sugiyama, M.; Kouzuki, H.; Onoue, S. Non-animal photosafety screening for complex cosmetic ingredients with photochemical and photobiochemical assessment tools. Regul. Toxicol. Pharm. 2015, 72, 578–585. [Google Scholar] [CrossRef]
- Drechsel, D.A.; Towle, K.M.; Fung, E.S.; Novick, R.M.; Paustenbach, D.J.; Monnot, A.D. Skin sensitization induction potential from daily exposure to fragrances in personal care products. Dermatitis 2018, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Monnot, A.D.; Towle, K.M.; Ahmed, S.S.; Dickinson, A.M.; Fung, E.S. An in vitro human assay for evaluating immunogenic and sensitization potential of a personal care and cosmetic product. Toxicol. Mech. Method 2021, 31, 205–211. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, Y.; Wang, D.; Zhu, Y.; Shen, Y.; Xu, J.; Tang, H. Photopatch testing in Chinese patients: A 5-year experience. Contact Dermat. 2021, 85, 78–84. [Google Scholar] [CrossRef]
- Nash, J.F.; Tanner, P.R. Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol. Photoimmunol. Photomed. 2014, 30, 88–95. [Google Scholar] [CrossRef]
- Berardesca, E.; Zuberbier, T.; Sanchez Viera, M.; Marinovich, M. Review of the safety of octocrylene used as an ultraviolet filter in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. S7), 25–33. [Google Scholar] [CrossRef]
- Ludriksone, L.; Elsner, P. Adverse Reactions to Sunscreens. Curr. Probl. Dermatol. 2021, 55, 223–235. [Google Scholar] [CrossRef]
- Pastor-Nieto, M.A.; Gatica-Ortega, M.E. Ubiquity, Hazardous Effects, and Risk Assessment of Fragrances in Consumer Products. Curr. Treat Options Allergy 2021, 8, 21–41. [Google Scholar] [CrossRef]
- Roh, J.; Cheng, H. Ultraviolet filter, fragrance and preservative allergens in New Zealand sunscreens. Australas. J. Dermatol. 2022, 63, e21–e25. [Google Scholar] [CrossRef]
- Ekstein, S.F.; Hylwa, S. Sunscreens: A Review of UV Filters and Their Allergic Potential. Dermatitis 2023, 34, 176–190. [Google Scholar] [CrossRef]
- English, J.S.; White, I.R.; Cronin, E. Sensitivity to sunscreens. Contact Dermat. 1987, 17, 159–162. [Google Scholar] [CrossRef]
- Foubert, K.; Dendooven, E.; Theunis, M.; Naessens, T.; Ivanova, B.; Pieters, L.; Gilissen, L.; Huygens, S.; De Borggraeve, W.; Lambert, J.; et al. The presence of benzophenone in sunscreens and cosmetics containing the organic UV filter octocrylene: A laboratory study. Contact Dermat. 2021, 85, 69–77. [Google Scholar] [CrossRef]
- Bruze, M.; Marmgren, V.; Antelmi, A.; Hindsén-Stenström, M.; Svedman, C.; Zimersson, E.; Mowitz, M. Contact Allergy to Oxidized Linalool and Oxidized Limonene is Over-represented in Individuals with Photocontact Allergy to Ketoprofen. Acta Derm. Venereol. 2021, 101, adv00454. [Google Scholar] [CrossRef] [PubMed]
- Aerts, O.; Goossens, A.; Marguery, M.C.; Castelain, M.; Boursault, L.; Giordano-Labadie, F.; Lambert, J.; Milpied, B. Photoaggravated allergic contact dermatitis and transient photosensitivity caused by methylisothiazolinone. Contact Dermat. 2018, 78, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: Current use and future prospects. Int. J. Cosmet. Sci. 2018, 40, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Tran, V.V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Yamaguchi, H.L.; Yamaguchi, Y.; Peeva, E. Role of Innate Immunity in Allergic Contact Dermatitis: An Update. Int. J. Mol. Sci. 2023, 24, 12975. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, V.; Maddalon, A.; Iulini, M.; Marina Marinovich, M.; Corsini, E. Human keratinocytes and monocytes co-culture cell system: An important contribution for the study of moderate and weak sensitizers. Toxicol. Vitr. 2020, 68, 104929. [Google Scholar] [CrossRef] [PubMed]
- de Avila, R.I.; Veloso, D.F.M.C.; Teixeira, G.C.; Rodrigues, T.L.; Lindberg, T.; Lindstedt, M.; Fonseca, S.G.; Lima, E.M.; Valadares, M.C. Evaluation of in vitro testing strategies for hazard assessment of the skin sensitization potential of “real-life” mixtures: The case of henna-based hair-colouring products containing p-phenylenediamine. Contact Dermat. 2019, 81, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Gibbs, S.; Roggen, E.; Kimber, I.; Basketter, D.A. Skin Sensitization Tests: The LLNA and the RhE IL-18 Potency Assay. In Toxicity Assessement. Methods and Protocols, 1st ed.; Palmeira, C.M.M., de Oliveira, D.P., Dorta, D.J., Eds.; Humana New York: New York, NY, USA, 2021; pp. 13–29. [Google Scholar] [CrossRef]
- OECD. Test No. 442D: In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- OECD. Test No. 442E: In Vitro Skin Sensitisation: In Vitro Skin Sensitisation Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse Outcome Pathway for Skin Sensitisation, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Forreryd, A.; Johansson, A.; Ritacco, G.; Api, A.M.; Henrik Johansson, H. Hazard Assessment of Photoallergens Using GARD™skin. ALTEX Proc. 2021, 9, 251. [Google Scholar]
- Lindberg, T.; Ritacco, G.; Jerre, A.; Gradin, R.; Forreryd, A.; Johansson, H.; Api, A.M. GARD®skin Dose-Response for Photosensitization: Assessment of Reference Photoirritants and Photoallergens. The 2023 Society of Toxicology (SOT) Annual Meeting. 2023. Available online: https://senzagen.com/2023/03/19/gardskin-dose-response-for-photosensitization-assessment-of-reference-photoirritants-and-photoallergens/ (accessed on 1 February 2024).
- Hinton, A.N.; Goldminz, A.M. Feeling the Burn: Phototoxicity and Photoallergy. Dermatol. Clin. 2020, 38, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.D.; Goon, A.T.; Leow, Y.H.; Chong, T.Y.R.; Tan, E.S.T.; Cheng, W.N.S. Photopatch testing in Singapore: A 10-year retrospective study. Photodermatol. Photoimmunol. Photomed. 2023, 39, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Linares-Navarro, R.; Ruiz González, I.; Olmos Nieva, C.C.; Rodríguez Prieto, M.Á. Photoaggravated Allergic Contact Dermatitis Due to Isoamyl p-Methoxycinnamate in a Pediatric Patient. Actas Dermo-Sifiliográficas 2023, 114, T833–T834. Available online: https://www.actasdermo.org/es-translated-article-photoaggravated-allergic-contact-articulo-S000173102300621X (accessed on 9 February 2024). [CrossRef]
- Ghazavi, M.K.; Johnston, G.A. Photo-allergic contact dermatitis caused by isoamyl p-methoxycinnamate in an ‘organic’ sunscreen. Contact Dermat. 2011, 64, 115–116. [Google Scholar] [CrossRef]
- Ferguson, J.; Kerr, A.C. Photoallergic Contact Dermatitis. In Kanerva’s Occupational Dermatology, 3rd ed.; John, S., Johansen, J., Rustemeyer, T., Elsner, P., Maibach, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 211–227. [Google Scholar] [CrossRef]
- García-Castro, R.; Velasco-Tirado, V.; Alonso-Sardón, M.; González-de Arriba, M. Standard photopatch test battery? Proposal based on current epidemiology and experience in our Skin Allergy Unit. Photodermatol. Photoimmunol. Photomed. 2021, 37, 449–453. [Google Scholar] [CrossRef]
- Di Bartolomeo, L.; Irrera, N.; Campo, G.M.; Borgia, F.; Motolese, A.; Vaccaro, F.; Squadrito, F.; Altavilla, D.; Condorelli, A.G.; Motolese, A.; et al. Drug-Induced Photosensitivity: Clinical Types of Phototoxicity and Photoallergy and Pathogenetic Mechanisms. Front. Allergy 2022, 3, 876695. [Google Scholar] [CrossRef]
- Knight, J.; Rovida, C.; Kreiling, R.; Zhu, C.; Knudsen, M.; Hartung, T. Continuing animal tests on cosmetic ingredients for REACH in the EU. ALTEX 2021, 38, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Filaire, E.; Nachat-Kappes, R.; Laporte, C.; Harmand, M.F.; Marina Simon, M.; Christian Poinsot, C. Alternative in vitro models used in the main safety tests of cosmetic products and new challenges. Int. J. Cosmet. Sci. 2022, 44, 604–613. [Google Scholar] [CrossRef] [PubMed]
Objective | Number of Articles |
---|---|
Photoallergy | 16 |
Photoprotection | 13 |
Phototherapy | 16 |
Phototoxicity 1 | 50 |
Skin 2 | 25 |
Cosmetics 3 | 46 |
Miscellaneous 4 | 78 |
Article | Authors | R. 1 |
---|---|---|
Toxicol In Vitro 2013, 27(1), 103–110 | Galbiati et al. | [33] |
Toxicol In Vitro 2013, 27(6), 1920–1927 | Martínez et al. | [34] |
Toxicol In Vitro 2014, 28(1), 13–17 | Galbiati et al. | [35] |
Int J Cosmetic Sci 2014, 36(6), 561–570 | Stiefel and Schwack | [36] |
J Toxicol Sci 2016, 41(1), 129–142 | Oeda et al. | [37] |
Toxicol In Vitro 2016, 33, 147–152 | Onoue et al. | [38] |
J Appl Toxicol 2016, 36(7), 956–968 | Tsujita-Inoue et al. | [39] |
Chem Res Toxicol 2016, 29(1), 40–46 | Vayá et al. | [40] |
J Dermatol Sci 2017, 85(1), 4–11 | Onoue et al. | [9] |
Chemistry2017, 23(56), 13986–13994 | Pérez-Ruíz et al. | [41] |
Toxicol in Vitro 2017, 45, 386–392 | de Àvila et al. | [42] |
J Cutan Immunol Allergy 2018, 1(2), 48–57 | Tokura | [13] |
J Toxicol Sci 2018, 43(4), 247–256 | Toyoda and Itagaki | [43] |
ALTEX 2019, 36(3), 373–387 | Patel et al. | [44] |
J Appl Toxicol 2020, 40(5), 655–678 | Yamamoto et al. | [45] |
Toxicol In Vitro 2021, 77, 105245 | Nishida et al. | [46] |
Toxicology 2023, 495, 153613 | Nguyen et al. | [47] |
Regul Toxicol Pharmacol 2023, 145, 105499 | de Ávila et al. | [48] |
Key Event | Assay Proposed | Prediction Model | References |
---|---|---|---|
Chemical structure and properties | UV/VIS spectra | MEC 1 < 1000 M−1 cm−1 for pharmaceutical substances | [38,46] |
ROS/mROS data | 25 (ΔA440 nm·103) and 20 (ΔA560 nm·103) | [38,46] | |
Molecular initiating event (protein covalent binding) | Protein reactivity | Not defined | [36,40] |
Amide adduct formation | Not defined | [41] | |
Photo-ADRA | ΔUV 2 ≥ 10 | [44] | |
ΔUV 2 ≥ 15% NAC and NAL or ≥10% in average | [45] | ||
Photo-DPRA | ΔUV 2 ≥ 10 | [44] | |
Mean ΔCys/ΔLys 3 > 6.38% or ΔCys > 13.89% | [46] | ||
Photo-mDPRA | Not defined | [42] | |
Keratinocyte activation | NCTC 2455 | IL18 SI 4 ≥ 1.3, CV 5 ≥ 80% | [33,35] |
PhotoSENSIL | IL18 SI 4 ≥ 1.5 | [47] | |
Photo-ARE | Keap1-Nrf2-ARE pathway induction | [39] | |
Dendritic cell activation | IL-8 release | SI 4 > 2.0, CV ≥ 75% | [34] |
Photo-SH/NH2 | CV 5 > 50%; ∆RFI 6 UVA ≥ 15% | [37] | |
Intracellular ROS | CV 5 ≥ 80; 95% CI 7 lower limit value UVA+ ≥ 2/upper limit value UVA− < 2 | [43] |
Classification | Compound | Activity * | References |
---|---|---|---|
Phototoxic and photoallergen | 4-Aminobenzoic acid (PABA) | UV, C | [33,35,47] |
8-Methoxypsoralen (8-MOP) | PUVA | [46] | |
6-Methylcoumarin (6-MC) | Fragrance, C | [37,38,39,46] | |
3,3′,4′,5-Tetrachlorosalicylanilide | Antibacterial, C | [37,39,45,46] | |
3,4′,5-Tribromosalicylanilide | Antibacterial, C | [37,39,45] | |
Amiodarone HCl | Antiarrhythmic | [44] | |
Anthracene | Dye production | [44] | |
Benzophenone (BNZ) | UV, C | [46] | |
Bithionol | Anti-infectious, C | [37,38,39,46] | |
Chlorpromazine HCl (CPZ) | Antipsychotic | [33,34,35,37,39,43,46,47] | |
Diclofenac sodium salt | NSAID | [37,39,45,46] | |
Enoxacin | Antibacterial | [46] | |
Fenticlor | Antimicrobial, C | [46] | |
Furosemide | Diuretic | [46] | |
Griseofulvin | Antimycotic | [46] | |
Hexachlorophene | Antiseptic | [43] | |
Hydrochlorothiazide | Diuretic | [46] | |
Ketoprofen (KET) | NSAID | [46,47] | |
Lomefloxacin HCl | Antibiotic | [46] | |
Norfloxacin | Antibiotic | [44] | |
Ofloxacin | Antibiotic | [46] | |
Piroxicam | NSAID | [46] | |
Protoporphyrin IX | Porphyrin, natural chromophore | [44] | |
Promethazine | Antipsychotic | [33,35,37,46] | |
Pyridoxine HCl | Vitamin B6, C | [46] | |
Quinine | Antimalarial | [46] | |
Tetracycline HCl | Tetracycline | [46] | |
Photoallergen | 4-Aminobenzoic acid (PABA) | UV, C | [32] |
2-Ethylhexyl-4-methoxycinnamate | UV, C | [33,34,35,47] | |
7-Methoxycoumarin | Fragrance, C | [45,46] | |
8-Methoxypsoralen (8-MOP) | PUVA | [45] | |
6-Methylcoumarin (6-MC) | Fragrance, C | [33,34,35,47] | |
4-Methyl-7-ethoxycoumarin | Fragrance, C | [45,46] | |
Anthracene | Dye production | [37,39] | |
Acridine | Dye | [37,39] | |
Amiodarone HCl | Antiarrhythmic | [37,39,42,45] | |
Avobenzone (Butyl methoxydibenzoylmethane) | UV, C | [33,34,35,36] | |
Benzophenone (BZN) | UV, C | [33,34,35,37,38,39,45] | |
Benzophenone-3 (Oxybenzone) | UV, C | [36] | |
Benzydamine | NSAID | [37,39] | |
Bithionol | Anti-Infectious, C | [43,45] | |
Dibenzoylmethane | UV, C | [36] | |
Dichlorophene | Antimicrobial, C | [38,45,46] | |
Enoxacin | Antibacterial | [37,38,39,45] | |
Fenofibrate | Fibrates | [45] | |
Fenofibric acid | Fibrates | [40] | |
Fenticlor | Antimicrobial, C | [38,45] | |
Furosemide | Diuretic | [37,39] | |
Glibenclamide | Antidiabetic | [38,45] | |
Hexachlorophene | Antiseptic | [37,38,45,47] | |
Hydrochlorothiazide | Diuretic | [38,45] | |
Indomethacin | NSAID | [37,38,39,45] | |
Isoniazid | Antituberculotic | [38,45,46] | |
Ketoprofen (KET) | NSAID | [33,34,35,37,38,39,41,45] | |
Mequitazine | Antihistamines | [46] | |
Musk ambrette | Fragrance, C | [37,38,39,45,46,47] | |
Musk xylene | Fragrance, C | [38,45,46,47] | |
Octocrylene | UV, C | [36] | |
Octyl dimethyl PABA | UV, C | [37,45,46] | |
Omadine Na | Antibacterial/antifungal, C | [37,45,46] | |
p-Phenylenediamine (PPD) | Dye, C | [37,39,45,46] | |
Piroxicam | NSAID | [37,38,39,45] | |
Protoporphyrin IX | Porphyrin, natural chromophore | [42] | |
Pyridoxine HCl | Vitamin B6, C | [37,45] | |
Quinine HCl (2H2O) | Antimalarial | [45] | |
Sulfanilamide | Antibacterial | [37,38,39,43,45,46] | |
Sulfasalazine | Antirheumatic | [37,45,46] | |
Tenoxicam | NSAID | [37,39] | |
Tribromsalan | Antibacterial/antifungal | [37,45] | |
Triclocarban | Antibacterial, C | [37,38,39,45] | |
Phototoxic | 5-Methoxypsoralen | PUVA | [37,39,46] |
8-Methoxypsoralen (8-MOP) | PUVA | [33,34,35,44,47] | |
Acridine | Dye | [33,35] | |
Ibuprofen | NSAID | [33,34,35] | |
Musk ketone | Fragrance, C | [47] | |
Retinoic acid | Vitamin A1 metabolite, Skin affections | [33,34,35] | |
Tetracycline HCl | Tetracyclines | [37] | |
Non-phototoxic | 2-Aminophenol | Dye | [35] |
1,3-Butylene glycol | Antimicrobial, moisturizing, emollient, C | [45,46] | |
2,4-Dinitrochlorobenzene (DNCB) | Developer, industrial intermediate | [47] | |
5-Methoxypsoralen | PUVA | [45] | |
4′-Methylbenzylidene camphor | UV, C | [38,45,46] | |
2-Propanol | Industrial and household chemicals; antiseptics, disinfectants, hand sanitizer and detergents. | [45] | |
Acridine | Dye | [45] | |
Anthracene | Dye production | [45] | |
Aspirin | NSAID | [38,45,46] | |
Ascorbic acid | Vitamins | [37,38,39,45] | |
Benzocaine | Local anesthetic | [38,45,46] | |
Cetyl alcohol | Opacifier, emollient, emulsifier, thickening, C | [45] | |
Chlorhexidine | Disinfectant/antiseptic | [42] | |
Cinnamic acid | Flavor, C | [46] | |
Cinnamaldehyde (Cinnamic aldehyde) | Flavor, C | [42,46] | |
Dextran | Antithrombotic/volume expander | [37,39] | |
Diethylmaleate | Pesticide | [34] | |
Dimethyl sulfoxide (DMSO) | Solvent | [37,39,45] | |
Erythromycin | Antibiotic | [38,45,46] | |
Ethanol | Antiseptic/solvent, C | [45] | |
Ethylhexyl methoxycinnamate | UV | [36] | |
Glycerin | Antimicrobial/antiviral Smoothness/lubrication/humectant, C | [45,46] | |
Glyphosate [N-(phosphonomethyl) glycine] | Herbicide | [42] | |
Hexachlorophene | Antiseptic | [42,44] | |
Isopropyl myristate | Texture enhancer/emollient, C | [45] | |
Lactic acid | Acidifier/flavor enhancer. Antibacterial/moisturizing/exfoliating, C | [33,35,37,39,45,46,47] | |
Lauric acid | Emollient/cleansing, C | [45] | |
L-histidine | Essential amino acid, C | [42,44,46] | |
Methyl-N-methylanthranilate | Fragrance, C | [45] | |
Methyl salicylate | Analgesic, fragrance, flavor, soothing, C | [37,38,39,43,45,46] | |
Musk ketone | Fragrance, C | [45] | |
Nickel sulfate | Dye, printing, coatings, ceramics. | [34] | |
Octanoic acid | Ester production/dye, C | [34] | |
Octyl salicylate | UV, C | [46] | |
p-Phenylenediamine (PPD) | Dye, C | [33,35,47] | |
Penicillin G | Antibiotic | [37,38,39,43,45,46] | |
Phenytoin | Anticonvulsants/barbiturates | [38,45,46] | |
Polyethylated tallow amine | Surfactant | [41] | |
Propylene glycol | Polymer production, solvent, humectant, moisturizer, C | [45] | |
Sodium dodecyl sulfate | Surfactant, C | [33,35,37,39,43,47] | |
Sodium laurate | Soap, C | [45] | |
Sulisobenzone (benzophenone-4) | UV, C | [45,46] | |
Tetracycline HCl | Tetracyclines | [45] | |
Not specified | Ethylhexyl salicylate | UV, C | [36] |
Ethylhexyl triazone | UV, C | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaleno, A.S.; Vinardell, M.P.; Mitjans, M. Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics 2024, 11, 47. https://doi.org/10.3390/cosmetics11020047
Maddaleno AS, Vinardell MP, Mitjans M. Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics. 2024; 11(2):47. https://doi.org/10.3390/cosmetics11020047
Chicago/Turabian StyleMaddaleno, Adriana Solange, Maria Pilar Vinardell, and Montserrat Mitjans. 2024. "Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development" Cosmetics 11, no. 2: 47. https://doi.org/10.3390/cosmetics11020047
APA StyleMaddaleno, A. S., Vinardell, M. P., & Mitjans, M. (2024). Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics, 11(2), 47. https://doi.org/10.3390/cosmetics11020047