Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. Alternative Assays Proposed
3.2.1. Galbiati et al., 2013 and 2014 [33,35]
3.2.2. Martínez et al., 2013 [34]
3.2.3. Stiefel and Schwack, 2014 [36]
3.2.4. Oeda et al., 2016 [37]
3.2.5. Onoue et al., 2016 and 2017 [9,38]
3.2.6. Tsujita-Inoue et al., 2016 [39]
3.2.7. Vayá et al., 2016 [40]
3.2.8. Pérez-Ruíz et al., 2017 [41]
3.2.9. de Àvila et al., 2017 and 2023 [42,48]
3.2.10. Toyoda and Itagaki, 2018 [43]
3.2.11. Patel et al., 2019 [44]
3.2.12. Yamamoto et al., 2020 [45]
3.2.13. Nishida et al., 2021 [46]
3.2.14. Nguyen et al., 2021 [47]
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diepgen, T.L.; Ofenloch, R.F.; Bruze, M.; Bertuccio, P.; Cazzaniga, S.; Coenraads, P.J.; Elsner, P.; Goncalo, M.; Svensson, Å.; Naldi, L. Prevalence of contact allergy in the general population in different European regions. Br. J. Dermatol. 2016, 174, 319–329. [Google Scholar] [CrossRef]
- Lagrelius, M.; Wahlgren, C.F.; Matura, M.; Kull, I.; Lidén, C. High prevalence of contact allergy in adolescence: Results from the population-based BAMSE birth cohort. Contact Dermat. 2016, 74, 44–51. [Google Scholar] [CrossRef]
- Alrashidi, A.; Rhodes, L.E.; Sharif, J.C.H.; Kreeshan, F.C.; Farrar, M.D.; Ahad, T. Systemic drug photosensitivity—Culprits, impact and investigation in 122 patients. Photodermatol. Photoimmunol. Photomed. 2020, 36, 441–451. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Cieślewicz, A.; Chmara, E.; Jabłecka, A.; Pawlaczyk, M. Photosensitivity reactions in the elderly population: Questionnaire-based survey and literature review. Ther. Clin. Risk Manag. 2019, 15, 1111–1119. [Google Scholar] [CrossRef]
- Towle, K.M.; Fung, E.S.; Monnot, A.D. Phototoxicity Evaluation of Hair Cleansing Conditioners. Cosmetics 2019, 6, 53. [Google Scholar] [CrossRef]
- Elkeeb, D.; Elkeeb, L.; Maibach, H. Photosensitivity: A current biological overview. Cutan. Ocul. Toxicol. 2012, 31, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Gonçalo, M. Phototoxic and Photoallergic Contact Reactions. In Contact Dermatitis, 6th ed.; Johansen, J.D., Mahler, V., Lepoittevin, J.P., Frosch, P.J., Eds.; Springer: Cham, Switzerland, 2021; pp. 365–389. [Google Scholar] [CrossRef]
- Glatz, M.; Hofbauer, G.F.L. Phototoxic and photoallergic cutaneous drug reactions. Chem. Immunol. Allergy 2012, 97, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Onoue, S.; Seto, Y.; Sato, H.; Nishida, H.; Hirota, M.; Ashikaga, T.; Api, A.M.; Basketter, D.; Tokura, Y. Chemical photoallergy: Photobiochemical mechanisms, classification, and risk assessments. J. Dermatol. Sci. 2017, 85, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Deleo, V.A. Photocontact dermatitis. Dermatol. Ther. 2004, 17, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.F.; Rato, M.; Martins, C. Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clin. Dermatol. 2016, 34, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.S. Photodermatitis due to tetrachlorsalicylanilide. Brit J. Dermatol. 1961, 73, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y. Drug photoallergy. J. Cutan. Immunol. Allergy 2018, 1, 48–57. [Google Scholar] [CrossRef]
- Snyder, M.; Turrentine, J.E.; Cruz, P.D., Jr. Photocontact Dermatitis and Its Clinical Mimics: An Overview for the Allergist. Clin. Rev. Allergy Immunol. 2019, 56, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Victor, F.C.; Cohen, D.E.; Soter, N.A. A 20-year analysis of previous and emerging allergens that elicit photoallergic contact dermatitis. J. Am. Acad. Dermatol. 2010, 62, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ferriols, A.; de la Cuadra, O. La nueva batería europea de fotoalérgenos. Piel 2013, 28, 66–68. [Google Scholar] [CrossRef]
- Subiabre-Ferrer, D.; Esteve-Martínez, A.; Blasco-Encinas, R.; Sierra-Talamantes, C.; Pérez-Ferriols, A.; Zaragoza-Ninet, V. European photopatch test baseline series: A 3-year experience. Contact Dermat. 2019, 80, 5–8. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). Opinion on Octocrylene (CAS No 6197-30-4, EC No 228-250-8), Preliminary Version of 15 January 2021, Final Version of 30–31 March 2021, SCCS/1627/21. Available online: https://health.ec.europa.eu/system/files/2022-08/sccs_o_249.pdf (accessed on 14 February 2024).
- Aguiar, B.; Carmo, H.; Garrido, J.; Sousa Lobo, J.M.; Almeida, I.F. In Vitro Evaluation of the Photoreactivity and Phototoxicity of Natural Polyphenol Antioxidants. Molecules 2022, 27, 189. [Google Scholar] [CrossRef]
- Lovell, W.W.; Sanders, D.J. Phototoxicity testing in guinea-pigs. Food Chem. Toxicol. 1992, 30, 155–160. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Ryan, C. A predictive mouse ear-swelling model for investigating topical phototoxicity. Food Chem. Toxicol. 1989, 27, 813–819. [Google Scholar] [CrossRef]
- Marzulli, F.N.; Maibach, H.I. Contact allergy: Predictive testing in man. Contact Dermat. 1976, 2, 1–17. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Guidance S10 on Photosafety Evaluation of Pharmaceuticals. 2015. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/ich-guideline-s10-guidance-photosafety-evaluation-pharmaceuticals-step-3_en.pdf (accessed on 31 January 2024).
- European Parliament. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Off. J. Eur Union. 2009, L342, 59–209. Available online: http://data.europa.eu/eli/reg/2009/1223/oj (accessed on 31 January 2024).
- European Commission. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACh), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No. 793/93 and Commission Regulation (EC) No. 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (accessed on 31 January 2024).
- European Medicines Agency. ICH Guideline M3 (R2) on Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorisation for Pharmaceuticals. 2009. Available online: https://www.ema.europa.eu/en/ich-m3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-pharmaceuticals-scientific-guideline (accessed on 31 January 2024).
- Schmeisser, S.; Miccoli, A.; von Bergen, M.; Berggren, E.; Braeuning, A.; Busch, W.; Desaintes, C.; Gourmelon, A.; Grafström, R.; Harrill, J.; et al. New approach methodologies in human regulatory toxicology—Not if, but how and when! Environ. Int. 2023, 178, 108082. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 432: In Vitro 3T3 NRU Phototoxicity Test, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Test No. 495: Ros (Reactive Oxygen Species) Assay for Photoreactivity, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- OECD. Test No. 498: In Vitro Phototoxicity—Reconstructed Human Epidermis Phototoxicity Test Method, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Ak, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Sys. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Bramer, W.M.; de Jonge, G.B.; Rethlefsen, M.L.; Mast, F.; Kleijnen, J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med. Libr. Assoc. 2018, 106, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, V.; Martínez, V.; Bianchi, S.; Mitjans, M.; Corsini, E. Establishment of an in vitro photoallergy test using NCTC2544 cells and IL-18 production. Toxicol. Vitr. 2013, 27, 103–110. [Google Scholar] [CrossRef]
- Martínez, V.; Galbiati, V.; Corsini, E.; Martín-Venegas, R.; Vinardell, M.P.; Mitjans, M. Establishment of an in vitro photoassay using THP-1 cells and IL-8 to discriminate photoirritants from photoallergens. Toxicol. Vitr. 2013, 27, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, V.; Bianchi, S.; Martínez, V.; Mitjans, M.; Corsini, E. NCTC 2544 and IL-18 production: A tool for the in vitro identification of photoallergens. Toxicol. Vitr. 2014, 28, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, C.; Schwack, W. Reactivity of cosmetic UV filters towards skin proteins: Model studies with Boc-lysine, Boc-Gly-Phe-Gly-Lys-OH, BSA and gelatin. Int. J. Cosmet. Sci. 2014, 36, 561–570. [Google Scholar] [CrossRef]
- Oeda, S.; Hirota, M.; Nishida, H.; Ashikaga, T.; Sasa, H.; Aiba, S.; Tokura, Y.; Kouzuki, H. Development of an in vitro photosensitization test based on changes of cell-surface thiols and amines as biomarkers: The photo-SH/NH2 test. J. Toxicol. Sci. 2016, 41, 129–142. [Google Scholar] [CrossRef]
- Onoue, S.; Ohtake, H.; Suzuki, G.; Seto, Y.; Nishida, H.; Hirota, M.; Ashikaga, T.; Kouzuki, H. Comparative study on prediction performance of photosafety testing tools on photoallergens. Toxicol. Vitr. 2016, 33, 147–152. [Google Scholar] [CrossRef]
- Tsujita-Inoue, K.; Hirota, M.; Atobe, T.; Ashikaga, T.; Tokura, Y.; Kouzuki, H. Development of novel in vitro photosafety assays focused on the Keap1-Nrf2-ARE pathway. J. Appl. Toxicol. 2016, 36, 956–968. [Google Scholar] [CrossRef]
- Vayá, I.; Andreu, I.; Monje, V.T.; Jiménez, M.C.; Miranda, M.A. Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with SerumAlbumins. Chem. Res Toxicol. 2016, 29, 40–46. [Google Scholar] [CrossRef]
- Pérez-Ruíz, R.; Lence, E.; Andreu, I.; Limones-Herrero, D.; González-Bello, C.; Miranda, M.A.; Jiménez, M.C. A New Pathway for Protein Haptenation by β-Lactams. Chemistry 2017, 23, 13986–13994. [Google Scholar] [CrossRef]
- de Ávila, R.I.; Teixeira, G.C.; Veloso, D.F.M.C.; Moreira, L.C.; Lima, E.M.; Valadares, M.C. In vitro assessment of skin sensitization, photosensitization and phototoxicity potential of commercial glyphosate-containing formulations. Toxicol. Vitr. 2017, 45, 386–392. [Google Scholar] [CrossRef]
- Toyoda, A.; Itagaki, H. Development of an in vitro photosafety evaluation method utilizing intracellular ROS production in THP-1 cells. J. Toxicol. Sci. 2018, 43, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.H.; Mishra, P.K.; Nagane, R.; Deshpande, A.; Tamboli, I.Y.; Date, R. Comparison of in chemico skin sensitization methods and development of an in chemico skin photosensitization assay. ALTEX 2019, 36, 373–387. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Fujita, M.; Wanibuchi, S.; Sato, A.; Katsuoka, Y.; Kasahara, T. Development of photo-amino acid derivative reactivity assay: A novel in chemico alternative method for predicting photoallergy. J. Appl. Toxicol. 2020, 40, 655–678. [Google Scholar] [CrossRef] [PubMed]
- Nishida, H.; Ohtake, T.; Ashikaga, T.; Hirota, M.; Onoue, S.; Seto, Y.; Tokura, Y.; Kouzuki, H. In chemico sequential testing strategy for assessing the photoallegic potential. Toxicol. Vitr. 2021, 77, 105245. [Google Scholar] [CrossRef]
- Nguyen, R.; Barry, M.; Azevedo Loiola, R.; Ferret, P.-J.; Andres, E. PhotoSENSIL-18 assay development: Enhancing the safety testing of cosmetic raw materials and finished products to support the in vitro photosensitization assessment? Toxicology 2023, 495, 153613. [Google Scholar] [CrossRef]
- de Ávila, R.I.; Aleksic, M.; Zhu, B.; Li, J.; Pendlington, R.; Valadares, M.C. Non-animal approaches for photoallergenicity safety assessment: Needs and perspectives for the toxicology for the 21st century. Regul. Toxicol. Pharmacol. 2023, 145, 105499. [Google Scholar] [CrossRef] [PubMed]
- OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, OECD Series on Testing and Assessment; No. 168; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Mitjans, M.; Galbiati, V.; Lucchi, L.; Viviani, B.; Marinovich, M.; Galli, C.L.; Corsini, E. Use of IL-8 release and p38 MAPK activation in THP-1 cells to identify allergens and to assess their potency in vitro. Toxicol. Vitr. 2010, 24, 1803–1809. [Google Scholar] [CrossRef]
- Stiefel, C.; Schwack, W. Rapid screening method to study the reactivity of UV filter substances towards skin proteins by high-performance thin-layer chromatography. Int. J. Cosmet. Sci. 2013, 35, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Hirota, M.; Hagino, S.; Itagaki, H.; Aiba, S. Evaluation of changes of cell-surface thiols as a new biomarker for in vitro sensitization test. Toxicol. Vitr. 2009, 23, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Lovell, W.W.; Jones, P.A. An Evaluation of Mechanistic In Vitro Tests for the Discrimination of Photoallergic and Photoirritant Potential. Altern. Lab. Anim. 2000, 28, 707–724. [Google Scholar] [CrossRef]
- Onoue, S.; Suzuki, G.; Kato, M.; Hirota, M.; Nishida, H.; Kitagaki, M.; Kouzuki, H.; Yamada, S. Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties. Toxicol. Vitr. 2013, 27, 2316–2324. [Google Scholar] [CrossRef]
- Moore, D.E. Drug-induced cutaneous photosensitivity: Incidence, mechanism, prevention and management. Drug Saf. 2002, 25, 345–372. [Google Scholar] [CrossRef]
- Vargas, F.; Martinez Volkmar, I.; Sequera, J.; Mendez, H.; Rojas, J.; Fraile, G.; Velasquez, M.; Medina, R. Photodegradation and phototoxicity studies of furosemide. Involvement of singlet oxygen in the photoinduced hemolysis and lipid peroxidation. J. Photochem. Photobiol. B. 1998, 42, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Foti, C.; Alsante, K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? Photochem. Photobiol. B. 2009, 96, 57–62. [Google Scholar] [CrossRef]
- OECD. Test No. 101: UV-VIS Absorption Spectra, OECD Guidelines for the Testing of Chemicals; Section 1; OECD Publishing: Paris, France, 1981. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/july-september-2017-potential-signals-serious-risksnew-safety-information-identified-fda-adverse (accessed on 1 February 2024).
- Naisbitt, D.J.; Nattrass, R.G.; Ogese, M.O. In Vitro Diagnosis of Delayed-type Drug Hypersensitivity: Mechanistic Aspects and Unmet Needs. Immunol. Allergy Clin. N. Am. 2014, 34, 691–705. [Google Scholar] [CrossRef]
- OECD. Test No. 442C: In Chemico Skin Sensitisation: Assays Addressing the Adverse Outcome Pathway Key Event on Covalent Binding to Proteins, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Pan, N.; Xia, Y.; Hou, W.; Zhu, G.; Zhang, J.; Lai, W.; Zheng, Y. Assessment of Skin Photoallergy Risk in Cosmetics Containing Herbal Extract Ingredients. Ski. Pharmacol. Physiol. 2021, 34, 253–261. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation 12th Revision, 15 May 2023, Corrigendum 1 on 26 October 2023, Corrigendum 2 on 21 December 2023, SCCS/1647/22. Available online: https://health.ec.europa.eu/latest-updates/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-12th-revision-2023-05-16_en (accessed on 20 February 2024).
- Rato, M.; Gil, F.; Monteiro, A.F.; Parente, J. Fenofibrate photoallergy—Relevance of patch and photopatch testing. Contact Dermat. 2018, 78, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ji, W.; Dicolandrea, T.; Finlay, D.; Supp, D.; Boyce, S.; Wei, K.; Kadekaro, A.L.; Zhang, Y. An improved human skin explant culture method for testing and assessing personal care products. J. Cosmet. Dermatol. 2023, 22, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Amaral, R.; Amores Da Silva, P.; Ansell, J.; Boisleve, F.; Hatao, M.; Hirose, A.; Kasai, Y.; Kern, P.; Kreiling, R.; et al. Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput. Toxicol. 2018, 7, 20–26. [Google Scholar] [CrossRef]
- Ritacco, G.; Hilberer, A.; Lavelle, M.; Api, A.M. Use of alternative test methods in a tiered testing approach to address photoirritation potential of fragrance materials. Regul. Toxicol. Pharm. 2022, 129, 105098. [Google Scholar] [CrossRef] [PubMed]
- Blakely, K.M.; Drucker, A.M.; Rosen, C.F. Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Saf. 2019, 42, 827–847. [Google Scholar] [CrossRef]
- Hofmann, G.A.; Weber, B. Drug-induced photosensitivity: Culprit drugs, potential mechanisms and clinical consequences. J. Dtsch Dermatol. Ges. 2021, 19, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.; Worswick, S. Photosensitizing drug reactions. Clin. Dermatol. 2022, 40, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Beani, J.C. Phototoxicity, Photoirritation, and Photoallergy Detection and Assessment. In Agache’s Measuring the Skin, 2nd ed.; Humbert, P., Fanian, F., Maibach, H., Agache, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 1061–1069. [Google Scholar] [CrossRef]
- Kowalska, J.; Rok, J.; Rzepka, Z.; Wrześniok, D. Drug-Induced Photosensitivity—From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals 2021, 14, 723. [Google Scholar] [CrossRef]
- Davis, A.E.; Kennelley, G.E.; Amaye-Obu, T.; Jowdy, P.F.; Ghadersohi, S.; Nasir-Moin, M.; Paragh, G.; Berman, H.A.; Huss, W.J. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. J. Photochem. Photobiol. 2024, 19, 100221. [Google Scholar] [CrossRef]
- Al-Jarrah, R.; Blasini, A.; Kurgyis, Z.; Brockow, K.; Eberlein, B. Severe photoallergy to systemic dronedarone (Multaq). Contact Dermat. 2020, 83, 241–242. [Google Scholar] [CrossRef]
- Lozzi, F.; Di Raimondo, C.; Lanna, C.; Diluvio, L.; Mazzilli, S.; Garofalo, V.; Dika, E.; Dellambra, E.; Coniglione, F.; Bianchi, L.; et al. Latest Evidence Regarding the Effects of Photosensitive Drugs on the Skin: Pathogenetic Mechanisms and Clinical Manifestations. Pharmaceutics 2020, 12, 1104. [Google Scholar] [CrossRef]
- Rojas Perez-Ezquerra, P.; Torrado-Español, I.; Tejero-Alcalde, M.; Cuevas-Bravo, C.; Noguerado-Mellado, B. Photoallergy to Naproxen. Cureus 2021, 13, e18961. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, H.; Hancu, G.; Kacsó, E.; Papp, L.A. Photosensitivity Reactions Induced by Photochemical Degradation of Drugs. Adv. Pharm. Bull. 2022, 12, 77–85. [Google Scholar] [CrossRef]
- Romita, P.; Foti, C.; Mennuni, B.G.; Ambrogio, F.; Poli, M.A.; Tramontana, M.; Hansel, K.; Stingeni, L. Perioral photoallergic dermatitis to promazine hydrochloride. Contact Dermat. 2022, 86, 561–562. [Google Scholar] [CrossRef]
- Nishida, H.; Hirota, M.; Seto, Y.; Suzuki, G.; Kato, M.; Kitagaki, M.; Sugiyama, M.; Kouzuki, H.; Onoue, S. Non-animal photosafety screening for complex cosmetic ingredients with photochemical and photobiochemical assessment tools. Regul. Toxicol. Pharm. 2015, 72, 578–585. [Google Scholar] [CrossRef]
- Drechsel, D.A.; Towle, K.M.; Fung, E.S.; Novick, R.M.; Paustenbach, D.J.; Monnot, A.D. Skin sensitization induction potential from daily exposure to fragrances in personal care products. Dermatitis 2018, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Monnot, A.D.; Towle, K.M.; Ahmed, S.S.; Dickinson, A.M.; Fung, E.S. An in vitro human assay for evaluating immunogenic and sensitization potential of a personal care and cosmetic product. Toxicol. Mech. Method 2021, 31, 205–211. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, Y.; Wang, D.; Zhu, Y.; Shen, Y.; Xu, J.; Tang, H. Photopatch testing in Chinese patients: A 5-year experience. Contact Dermat. 2021, 85, 78–84. [Google Scholar] [CrossRef]
- Nash, J.F.; Tanner, P.R. Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol. Photoimmunol. Photomed. 2014, 30, 88–95. [Google Scholar] [CrossRef]
- Berardesca, E.; Zuberbier, T.; Sanchez Viera, M.; Marinovich, M. Review of the safety of octocrylene used as an ultraviolet filter in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. S7), 25–33. [Google Scholar] [CrossRef]
- Ludriksone, L.; Elsner, P. Adverse Reactions to Sunscreens. Curr. Probl. Dermatol. 2021, 55, 223–235. [Google Scholar] [CrossRef]
- Pastor-Nieto, M.A.; Gatica-Ortega, M.E. Ubiquity, Hazardous Effects, and Risk Assessment of Fragrances in Consumer Products. Curr. Treat Options Allergy 2021, 8, 21–41. [Google Scholar] [CrossRef]
- Roh, J.; Cheng, H. Ultraviolet filter, fragrance and preservative allergens in New Zealand sunscreens. Australas. J. Dermatol. 2022, 63, e21–e25. [Google Scholar] [CrossRef]
- Ekstein, S.F.; Hylwa, S. Sunscreens: A Review of UV Filters and Their Allergic Potential. Dermatitis 2023, 34, 176–190. [Google Scholar] [CrossRef]
- English, J.S.; White, I.R.; Cronin, E. Sensitivity to sunscreens. Contact Dermat. 1987, 17, 159–162. [Google Scholar] [CrossRef]
- Foubert, K.; Dendooven, E.; Theunis, M.; Naessens, T.; Ivanova, B.; Pieters, L.; Gilissen, L.; Huygens, S.; De Borggraeve, W.; Lambert, J.; et al. The presence of benzophenone in sunscreens and cosmetics containing the organic UV filter octocrylene: A laboratory study. Contact Dermat. 2021, 85, 69–77. [Google Scholar] [CrossRef]
- Bruze, M.; Marmgren, V.; Antelmi, A.; Hindsén-Stenström, M.; Svedman, C.; Zimersson, E.; Mowitz, M. Contact Allergy to Oxidized Linalool and Oxidized Limonene is Over-represented in Individuals with Photocontact Allergy to Ketoprofen. Acta Derm. Venereol. 2021, 101, adv00454. [Google Scholar] [CrossRef] [PubMed]
- Aerts, O.; Goossens, A.; Marguery, M.C.; Castelain, M.; Boursault, L.; Giordano-Labadie, F.; Lambert, J.; Milpied, B. Photoaggravated allergic contact dermatitis and transient photosensitivity caused by methylisothiazolinone. Contact Dermat. 2018, 78, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: Current use and future prospects. Int. J. Cosmet. Sci. 2018, 40, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Tran, V.V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Yamaguchi, H.L.; Yamaguchi, Y.; Peeva, E. Role of Innate Immunity in Allergic Contact Dermatitis: An Update. Int. J. Mol. Sci. 2023, 24, 12975. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, V.; Maddalon, A.; Iulini, M.; Marina Marinovich, M.; Corsini, E. Human keratinocytes and monocytes co-culture cell system: An important contribution for the study of moderate and weak sensitizers. Toxicol. Vitr. 2020, 68, 104929. [Google Scholar] [CrossRef] [PubMed]
- de Avila, R.I.; Veloso, D.F.M.C.; Teixeira, G.C.; Rodrigues, T.L.; Lindberg, T.; Lindstedt, M.; Fonseca, S.G.; Lima, E.M.; Valadares, M.C. Evaluation of in vitro testing strategies for hazard assessment of the skin sensitization potential of “real-life” mixtures: The case of henna-based hair-colouring products containing p-phenylenediamine. Contact Dermat. 2019, 81, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Gibbs, S.; Roggen, E.; Kimber, I.; Basketter, D.A. Skin Sensitization Tests: The LLNA and the RhE IL-18 Potency Assay. In Toxicity Assessement. Methods and Protocols, 1st ed.; Palmeira, C.M.M., de Oliveira, D.P., Dorta, D.J., Eds.; Humana New York: New York, NY, USA, 2021; pp. 13–29. [Google Scholar] [CrossRef]
- OECD. Test No. 442D: In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- OECD. Test No. 442E: In Vitro Skin Sensitisation: In Vitro Skin Sensitisation Assays Addressing the Key Event on Activation of Dendritic Cells on the Adverse Outcome Pathway for Skin Sensitisation, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Forreryd, A.; Johansson, A.; Ritacco, G.; Api, A.M.; Henrik Johansson, H. Hazard Assessment of Photoallergens Using GARD™skin. ALTEX Proc. 2021, 9, 251. [Google Scholar]
- Lindberg, T.; Ritacco, G.; Jerre, A.; Gradin, R.; Forreryd, A.; Johansson, H.; Api, A.M. GARD®skin Dose-Response for Photosensitization: Assessment of Reference Photoirritants and Photoallergens. The 2023 Society of Toxicology (SOT) Annual Meeting. 2023. Available online: https://senzagen.com/2023/03/19/gardskin-dose-response-for-photosensitization-assessment-of-reference-photoirritants-and-photoallergens/ (accessed on 1 February 2024).
- Hinton, A.N.; Goldminz, A.M. Feeling the Burn: Phototoxicity and Photoallergy. Dermatol. Clin. 2020, 38, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.D.; Goon, A.T.; Leow, Y.H.; Chong, T.Y.R.; Tan, E.S.T.; Cheng, W.N.S. Photopatch testing in Singapore: A 10-year retrospective study. Photodermatol. Photoimmunol. Photomed. 2023, 39, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Linares-Navarro, R.; Ruiz González, I.; Olmos Nieva, C.C.; Rodríguez Prieto, M.Á. Photoaggravated Allergic Contact Dermatitis Due to Isoamyl p-Methoxycinnamate in a Pediatric Patient. Actas Dermo-Sifiliográficas 2023, 114, T833–T834. Available online: https://www.actasdermo.org/es-translated-article-photoaggravated-allergic-contact-articulo-S000173102300621X (accessed on 9 February 2024). [CrossRef]
- Ghazavi, M.K.; Johnston, G.A. Photo-allergic contact dermatitis caused by isoamyl p-methoxycinnamate in an ‘organic’ sunscreen. Contact Dermat. 2011, 64, 115–116. [Google Scholar] [CrossRef]
- Ferguson, J.; Kerr, A.C. Photoallergic Contact Dermatitis. In Kanerva’s Occupational Dermatology, 3rd ed.; John, S., Johansen, J., Rustemeyer, T., Elsner, P., Maibach, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 211–227. [Google Scholar] [CrossRef]
- García-Castro, R.; Velasco-Tirado, V.; Alonso-Sardón, M.; González-de Arriba, M. Standard photopatch test battery? Proposal based on current epidemiology and experience in our Skin Allergy Unit. Photodermatol. Photoimmunol. Photomed. 2021, 37, 449–453. [Google Scholar] [CrossRef]
- Di Bartolomeo, L.; Irrera, N.; Campo, G.M.; Borgia, F.; Motolese, A.; Vaccaro, F.; Squadrito, F.; Altavilla, D.; Condorelli, A.G.; Motolese, A.; et al. Drug-Induced Photosensitivity: Clinical Types of Phototoxicity and Photoallergy and Pathogenetic Mechanisms. Front. Allergy 2022, 3, 876695. [Google Scholar] [CrossRef]
- Knight, J.; Rovida, C.; Kreiling, R.; Zhu, C.; Knudsen, M.; Hartung, T. Continuing animal tests on cosmetic ingredients for REACH in the EU. ALTEX 2021, 38, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Filaire, E.; Nachat-Kappes, R.; Laporte, C.; Harmand, M.F.; Marina Simon, M.; Christian Poinsot, C. Alternative in vitro models used in the main safety tests of cosmetic products and new challenges. Int. J. Cosmet. Sci. 2022, 44, 604–613. [Google Scholar] [CrossRef] [PubMed]
Objective | Number of Articles |
---|---|
Photoallergy | 16 |
Photoprotection | 13 |
Phototherapy | 16 |
Phototoxicity 1 | 50 |
Skin 2 | 25 |
Cosmetics 3 | 46 |
Miscellaneous 4 | 78 |
Article | Authors | R. 1 |
---|---|---|
Toxicol In Vitro 2013, 27(1), 103–110 | Galbiati et al. | [33] |
Toxicol In Vitro 2013, 27(6), 1920–1927 | Martínez et al. | [34] |
Toxicol In Vitro 2014, 28(1), 13–17 | Galbiati et al. | [35] |
Int J Cosmetic Sci 2014, 36(6), 561–570 | Stiefel and Schwack | [36] |
J Toxicol Sci 2016, 41(1), 129–142 | Oeda et al. | [37] |
Toxicol In Vitro 2016, 33, 147–152 | Onoue et al. | [38] |
J Appl Toxicol 2016, 36(7), 956–968 | Tsujita-Inoue et al. | [39] |
Chem Res Toxicol 2016, 29(1), 40–46 | Vayá et al. | [40] |
J Dermatol Sci 2017, 85(1), 4–11 | Onoue et al. | [9] |
Chemistry2017, 23(56), 13986–13994 | Pérez-Ruíz et al. | [41] |
Toxicol in Vitro 2017, 45, 386–392 | de Àvila et al. | [42] |
J Cutan Immunol Allergy 2018, 1(2), 48–57 | Tokura | [13] |
J Toxicol Sci 2018, 43(4), 247–256 | Toyoda and Itagaki | [43] |
ALTEX 2019, 36(3), 373–387 | Patel et al. | [44] |
J Appl Toxicol 2020, 40(5), 655–678 | Yamamoto et al. | [45] |
Toxicol In Vitro 2021, 77, 105245 | Nishida et al. | [46] |
Toxicology 2023, 495, 153613 | Nguyen et al. | [47] |
Regul Toxicol Pharmacol 2023, 145, 105499 | de Ávila et al. | [48] |
Key Event | Assay Proposed | Prediction Model | References |
---|---|---|---|
Chemical structure and properties | UV/VIS spectra | MEC 1 < 1000 M−1 cm−1 for pharmaceutical substances | [38,46] |
ROS/mROS data | 25 (ΔA440 nm·103) and 20 (ΔA560 nm·103) | [38,46] | |
Molecular initiating event (protein covalent binding) | Protein reactivity | Not defined | [36,40] |
Amide adduct formation | Not defined | [41] | |
Photo-ADRA | ΔUV 2 ≥ 10 | [44] | |
ΔUV 2 ≥ 15% NAC and NAL or ≥10% in average | [45] | ||
Photo-DPRA | ΔUV 2 ≥ 10 | [44] | |
Mean ΔCys/ΔLys 3 > 6.38% or ΔCys > 13.89% | [46] | ||
Photo-mDPRA | Not defined | [42] | |
Keratinocyte activation | NCTC 2455 | IL18 SI 4 ≥ 1.3, CV 5 ≥ 80% | [33,35] |
PhotoSENSIL | IL18 SI 4 ≥ 1.5 | [47] | |
Photo-ARE | Keap1-Nrf2-ARE pathway induction | [39] | |
Dendritic cell activation | IL-8 release | SI 4 > 2.0, CV ≥ 75% | [34] |
Photo-SH/NH2 | CV 5 > 50%; ∆RFI 6 UVA ≥ 15% | [37] | |
Intracellular ROS | CV 5 ≥ 80; 95% CI 7 lower limit value UVA+ ≥ 2/upper limit value UVA− < 2 | [43] |
Classification | Compound | Activity * | References |
---|---|---|---|
Phototoxic and photoallergen | 4-Aminobenzoic acid (PABA) | UV, C | [33,35,47] |
8-Methoxypsoralen (8-MOP) | PUVA | [46] | |
6-Methylcoumarin (6-MC) | Fragrance, C | [37,38,39,46] | |
3,3′,4′,5-Tetrachlorosalicylanilide | Antibacterial, C | [37,39,45,46] | |
3,4′,5-Tribromosalicylanilide | Antibacterial, C | [37,39,45] | |
Amiodarone HCl | Antiarrhythmic | [44] | |
Anthracene | Dye production | [44] | |
Benzophenone (BNZ) | UV, C | [46] | |
Bithionol | Anti-infectious, C | [37,38,39,46] | |
Chlorpromazine HCl (CPZ) | Antipsychotic | [33,34,35,37,39,43,46,47] | |
Diclofenac sodium salt | NSAID | [37,39,45,46] | |
Enoxacin | Antibacterial | [46] | |
Fenticlor | Antimicrobial, C | [46] | |
Furosemide | Diuretic | [46] | |
Griseofulvin | Antimycotic | [46] | |
Hexachlorophene | Antiseptic | [43] | |
Hydrochlorothiazide | Diuretic | [46] | |
Ketoprofen (KET) | NSAID | [46,47] | |
Lomefloxacin HCl | Antibiotic | [46] | |
Norfloxacin | Antibiotic | [44] | |
Ofloxacin | Antibiotic | [46] | |
Piroxicam | NSAID | [46] | |
Protoporphyrin IX | Porphyrin, natural chromophore | [44] | |
Promethazine | Antipsychotic | [33,35,37,46] | |
Pyridoxine HCl | Vitamin B6, C | [46] | |
Quinine | Antimalarial | [46] | |
Tetracycline HCl | Tetracycline | [46] | |
Photoallergen | 4-Aminobenzoic acid (PABA) | UV, C | [32] |
2-Ethylhexyl-4-methoxycinnamate | UV, C | [33,34,35,47] | |
7-Methoxycoumarin | Fragrance, C | [45,46] | |
8-Methoxypsoralen (8-MOP) | PUVA | [45] | |
6-Methylcoumarin (6-MC) | Fragrance, C | [33,34,35,47] | |
4-Methyl-7-ethoxycoumarin | Fragrance, C | [45,46] | |
Anthracene | Dye production | [37,39] | |
Acridine | Dye | [37,39] | |
Amiodarone HCl | Antiarrhythmic | [37,39,42,45] | |
Avobenzone (Butyl methoxydibenzoylmethane) | UV, C | [33,34,35,36] | |
Benzophenone (BZN) | UV, C | [33,34,35,37,38,39,45] | |
Benzophenone-3 (Oxybenzone) | UV, C | [36] | |
Benzydamine | NSAID | [37,39] | |
Bithionol | Anti-Infectious, C | [43,45] | |
Dibenzoylmethane | UV, C | [36] | |
Dichlorophene | Antimicrobial, C | [38,45,46] | |
Enoxacin | Antibacterial | [37,38,39,45] | |
Fenofibrate | Fibrates | [45] | |
Fenofibric acid | Fibrates | [40] | |
Fenticlor | Antimicrobial, C | [38,45] | |
Furosemide | Diuretic | [37,39] | |
Glibenclamide | Antidiabetic | [38,45] | |
Hexachlorophene | Antiseptic | [37,38,45,47] | |
Hydrochlorothiazide | Diuretic | [38,45] | |
Indomethacin | NSAID | [37,38,39,45] | |
Isoniazid | Antituberculotic | [38,45,46] | |
Ketoprofen (KET) | NSAID | [33,34,35,37,38,39,41,45] | |
Mequitazine | Antihistamines | [46] | |
Musk ambrette | Fragrance, C | [37,38,39,45,46,47] | |
Musk xylene | Fragrance, C | [38,45,46,47] | |
Octocrylene | UV, C | [36] | |
Octyl dimethyl PABA | UV, C | [37,45,46] | |
Omadine Na | Antibacterial/antifungal, C | [37,45,46] | |
p-Phenylenediamine (PPD) | Dye, C | [37,39,45,46] | |
Piroxicam | NSAID | [37,38,39,45] | |
Protoporphyrin IX | Porphyrin, natural chromophore | [42] | |
Pyridoxine HCl | Vitamin B6, C | [37,45] | |
Quinine HCl (2H2O) | Antimalarial | [45] | |
Sulfanilamide | Antibacterial | [37,38,39,43,45,46] | |
Sulfasalazine | Antirheumatic | [37,45,46] | |
Tenoxicam | NSAID | [37,39] | |
Tribromsalan | Antibacterial/antifungal | [37,45] | |
Triclocarban | Antibacterial, C | [37,38,39,45] | |
Phototoxic | 5-Methoxypsoralen | PUVA | [37,39,46] |
8-Methoxypsoralen (8-MOP) | PUVA | [33,34,35,44,47] | |
Acridine | Dye | [33,35] | |
Ibuprofen | NSAID | [33,34,35] | |
Musk ketone | Fragrance, C | [47] | |
Retinoic acid | Vitamin A1 metabolite, Skin affections | [33,34,35] | |
Tetracycline HCl | Tetracyclines | [37] | |
Non-phototoxic | 2-Aminophenol | Dye | [35] |
1,3-Butylene glycol | Antimicrobial, moisturizing, emollient, C | [45,46] | |
2,4-Dinitrochlorobenzene (DNCB) | Developer, industrial intermediate | [47] | |
5-Methoxypsoralen | PUVA | [45] | |
4′-Methylbenzylidene camphor | UV, C | [38,45,46] | |
2-Propanol | Industrial and household chemicals; antiseptics, disinfectants, hand sanitizer and detergents. | [45] | |
Acridine | Dye | [45] | |
Anthracene | Dye production | [45] | |
Aspirin | NSAID | [38,45,46] | |
Ascorbic acid | Vitamins | [37,38,39,45] | |
Benzocaine | Local anesthetic | [38,45,46] | |
Cetyl alcohol | Opacifier, emollient, emulsifier, thickening, C | [45] | |
Chlorhexidine | Disinfectant/antiseptic | [42] | |
Cinnamic acid | Flavor, C | [46] | |
Cinnamaldehyde (Cinnamic aldehyde) | Flavor, C | [42,46] | |
Dextran | Antithrombotic/volume expander | [37,39] | |
Diethylmaleate | Pesticide | [34] | |
Dimethyl sulfoxide (DMSO) | Solvent | [37,39,45] | |
Erythromycin | Antibiotic | [38,45,46] | |
Ethanol | Antiseptic/solvent, C | [45] | |
Ethylhexyl methoxycinnamate | UV | [36] | |
Glycerin | Antimicrobial/antiviral Smoothness/lubrication/humectant, C | [45,46] | |
Glyphosate [N-(phosphonomethyl) glycine] | Herbicide | [42] | |
Hexachlorophene | Antiseptic | [42,44] | |
Isopropyl myristate | Texture enhancer/emollient, C | [45] | |
Lactic acid | Acidifier/flavor enhancer. Antibacterial/moisturizing/exfoliating, C | [33,35,37,39,45,46,47] | |
Lauric acid | Emollient/cleansing, C | [45] | |
L-histidine | Essential amino acid, C | [42,44,46] | |
Methyl-N-methylanthranilate | Fragrance, C | [45] | |
Methyl salicylate | Analgesic, fragrance, flavor, soothing, C | [37,38,39,43,45,46] | |
Musk ketone | Fragrance, C | [45] | |
Nickel sulfate | Dye, printing, coatings, ceramics. | [34] | |
Octanoic acid | Ester production/dye, C | [34] | |
Octyl salicylate | UV, C | [46] | |
p-Phenylenediamine (PPD) | Dye, C | [33,35,47] | |
Penicillin G | Antibiotic | [37,38,39,43,45,46] | |
Phenytoin | Anticonvulsants/barbiturates | [38,45,46] | |
Polyethylated tallow amine | Surfactant | [41] | |
Propylene glycol | Polymer production, solvent, humectant, moisturizer, C | [45] | |
Sodium dodecyl sulfate | Surfactant, C | [33,35,37,39,43,47] | |
Sodium laurate | Soap, C | [45] | |
Sulisobenzone (benzophenone-4) | UV, C | [45,46] | |
Tetracycline HCl | Tetracyclines | [45] | |
Not specified | Ethylhexyl salicylate | UV, C | [36] |
Ethylhexyl triazone | UV, C | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaleno, A.S.; Vinardell, M.P.; Mitjans, M. Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics 2024, 11, 47. https://doi.org/10.3390/cosmetics11020047
Maddaleno AS, Vinardell MP, Mitjans M. Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics. 2024; 11(2):47. https://doi.org/10.3390/cosmetics11020047
Chicago/Turabian StyleMaddaleno, Adriana Solange, Maria Pilar Vinardell, and Montserrat Mitjans. 2024. "Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development" Cosmetics 11, no. 2: 47. https://doi.org/10.3390/cosmetics11020047
APA StyleMaddaleno, A. S., Vinardell, M. P., & Mitjans, M. (2024). Innovative Strategies for Photoallergy Assessment: Breaking Free from Animal Models in Cosmetic Ingredient Development. Cosmetics, 11(2), 47. https://doi.org/10.3390/cosmetics11020047