Formulation and Optimization of Nanoemulsions Loaded with Gamma−Aminobutyric Acid (GABA) for Dermatological Application: Assessing Skin Permeation and Penetration Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nanoemulsions Preparation
2.2.2. Nanoemulsion Characterization
Size, Size Distribution, and Zeta−Potential
Viscosity Measurement
pH Measurement
% Loading Efficiency
2.2.3. HPLC Determination of GABA
GABA Derivatization
- GABA−HN derivatization
- GABA−OPA/MPA derivatization (for the samples from receptor compartment in in vitro skin permeation study)
HPLC Analytical Method
- GABA−HN derivative
Column | Phenomenex Luna C18 (4.6 × 250 mm) |
Mobile phase | methanol:water (66:34, v/v) |
Injection volume | 5 µL |
Flow rate | 0.8 mL/min |
Detector | UV detector at 330 nm |
Temperature | 25 °C |
Duration | 20 min |
Concentration range | 40–600 μg/mL |
- GABA−OPA/MPA derivative
Column | Agilent Zorbax 300SB−C18 (4.6 × 150 mm) |
Mobile phase | 0.05 M sodium acetate:tetrahydrofuran:methanol (50:1:49, v/v) pH 4.0 |
Injection volume | 10 µL |
Flow rate | 1.0 mL/min |
Detector | Fluorescence detector |
Excitation wavelength | 337 nm |
Emission wavelength | 454 nm |
Temperature | 25 °C |
Duration | 10 min |
Concentration range | 0.2–0.9 μg/mL |
2.2.4. Stability Testing
Physical Stability
Chemical Stability
2.2.5. In Vitro Skin Permeation Study
2.2.6. Statistical Analysis
3. Results
3.1. Nanoemulsion Preparation and Characterization
3.1.1. Size, Size Distribution, and Zeta−Potential
3.1.2. % Loading Efficiency
3.2. Nanoemulsion Stability Studies
3.2.1. Physical Stability
3.2.2. Chemical Stability
3.3. In Vitro Skin Permeation Study
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of Gamma−Aminobutyric Acid (GABA) by Lactobacillus plantarum DSM19463: Functional Grape must Beverage and Dermatological Applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef]
- Uehara, E.; Hokazono, H.; Sasaki, T.; Yoshioka, H.; Matsuo, N. Effects of GABA on the Expression of Type I Collagen Gene in Normal Human Dermal Fibroblasts. Biosci. Biotechnol. Biochem. 2017, 81, 376–379. [Google Scholar] [CrossRef]
- Ito, K.; Tanaka, K.; Nishibe, Y.; Hasegawa, J.; Ueno, H. GABA−Synthesizing Enzyme, GAD67, from Dermal Fibroblasts: Evidence for a New Skin Function. Biochim. Biophys. Acta (BBA)−Gen. Subj. 2007, 1770, 291–296. [Google Scholar] [CrossRef]
- Han, D.; Kim, H.-Y.; Lee, H.-J.; Shim, I.; Hahm, D.-H. Wound Healing Activities of Gamma−Aminobutyric acid (GABA) in Rats. J. Microbiol. Biotechnol. 2007, 17, 1661–1669. [Google Scholar]
- Molagoda, I.M.N.; Kavinda, M.H.D.; Ryu, H.W.; Choi, Y.H.; Jeong, J.-W.; Kang, S.; Kim, G.-Y. Gamma−Aminobutyric Acid (GABA) Inhibits α−Melanocyte−Stimulating Hormone−Induced Melanogenesis through GABAA and GABAB Receptors. Int. J. Mol. Sci. 2021, 22, 8257. [Google Scholar] [CrossRef]
- Zhao, H.; Park, B.; Kim, M.J.; Hwang, S.H.; Kim, T.J.; Kim, S.U.; Kwon, I.; Hwang, J.S. The Effect of γ−Aminobutyric Acid Intake on UVB− Induced Skin Damage in Hairless Mice. Biomol. Ther. 2023, 31, 640–647. [Google Scholar] [CrossRef]
- Le, P.H.; Le, T.T.; Raes, K. Effects of pH and Heat Treatment on the Stability of γ−Aminobutyric Acid (GABA) in Germinated Soymilk. J. Food Process. Preserv. 2020, 44, e14301. [Google Scholar] [CrossRef]
- Zhang, L.-W.; Al-Suwayeh, S.A.; Hung, C.-F.; Chen, C.-C.; Fang, J.-Y. Oil Components Modulate the Skin Delivery of 5−Aminolevulinic Acid and Its Ester Prodrug from Oil−in−Water and Water−in−Oil Nanoemulsions. Int. J. Nanomed. 2011, 6, 693–704. [Google Scholar] [CrossRef]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti−Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.; Singh, H. Microemulsions: A Potential Delivery System for Bioactives in Food. Crit. Rev. Food Sci. Nutr. 2006, 46, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, B.S.M.; Hasani, M. The Effect of Chemical and Physical Enhancers on Trolamine Salicylate Permeation through Rat Skin. Trop. J. Pharm. Res. 2011, 9, 541–548. [Google Scholar] [CrossRef]
- Abd, E.; Benson, H.A.E.; Roberts, M.S.; Grice, J.E. Follicular Penetration of Caffeine from Topically Applied Nanoemulsion Formulations Containing Penetration Enhancers: In Vitro Human Skin Studies. Skin Pharmacol. Physiol. 2018, 31, 252–260. [Google Scholar] [CrossRef]
- Abd, E.; Benson, H.A.E.; Roberts, M.S.; Grice, J.E. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic acid: Enhanced Diffusivity and Follicular Targeting. Pharmaceutics 2018, 10, 19. [Google Scholar] [CrossRef]
- Singpanna, K.; Charnvanich, D.; Panapisal, V. Effect of the Hydrophilic−Lipophilic Balance Values of Non−Ionic Surfactants on Size and Size Distribution and Stability of Oil/Water Soybean Oil Nanoemulsions. Thai J. Pharm. Sci. 2021, 45, 487–491. [Google Scholar]
- Panrod, K.; Tansirikongkol, A.; Panapisal, V. Comparison of Validated High Performance Liquid Chromatography Methods using Two Derivatizing Agents for Gamma−Aminobutyric Acid Quantification. Thai J. Pharm. Sci. 2016, 40, 203–208. [Google Scholar]
- Borman, P.; Elder, D. Q2(R1) Validation of Analytical Procedures. In ICH Quality Guidelines; The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH): Geneva, Switzerland, 2017; pp. 127–166. [Google Scholar]
- Khan, W.; Bhatt, P.C.; Panda, B. Degradation Kinetics of Gamma Amino Butyric Acid in Monascus−Fermented Rice. J. Food Qual. 2015, 38, 123–129. [Google Scholar] [CrossRef]
- Yiase, S.G. Amino Acids as Potential Emulsifiers in Stabilizing Oil/Water Emulsions. Int. J. Innov. Sci. Res. 2015, 15, 409–414. [Google Scholar]
- Thaiphanit, S.; Anprung, P. Physicochemical and Emulsion Properties of Edible Protein Concentrate from Coconut (Cocos nucifera L.) Processing By−Products and the Influence of Heat Treatment. Food Hydrocoll. 2016, 52, 756–765. [Google Scholar] [CrossRef]
- Kotyla, T.; Kuo, F.; Moolchandani, V.; Wilson, T.; Nicolosi, R. Increased Bioavailability of a Transdermal Application of a Nano−Sized Emulsion Preparation. Int. J. Pharm. 2008, 347, 144–148. [Google Scholar] [CrossRef]
- Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing Possibilities in Drug Delivery. Eur. J. Nanomed. 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Baughman, W.F.; Jamieson, G.S. The Chemical Composition of Soya Bean Oil. J. Am. Chem. Soc. 1922, 44, 2947–2952. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Penetration Enhancers. Adv. Drug Del. Rev. 2012, 64, 128–137. [Google Scholar] [CrossRef]
- Shaker, D.S.; Ishak, R.A.H.; Ghoneim, A.; Elhuoni, M.A. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019, 87, 17. [Google Scholar] [CrossRef]
- Dash, U.; Meher, J.; Misra, P.K. Organization of Amphiphiles, Part XII: Studies on the Interaction of Glycine with Aqueous Micelles of Polyoxyethylated Nonyl Phenols. J. Mol. Liq. 2013, 177, 317–324. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.D.; Chai, Y.P.; Zhang, H.; Peng, P.; Yang, X.X. Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules 2016, 21, 1709. [Google Scholar] [CrossRef]
- Agner, T.; Serup, J. Time Course of Occlusive Effects on Skin Evaluated by Measurement of Transepidermal Water Loss (TEWL) Including Patch Tests with Sodium lauryl sulphate and Water. Contact Dermat. 1993, 28, 6–9. [Google Scholar] [CrossRef]
Substance | Concentration (% w/w) | |
---|---|---|
with 1,8−Cineole | without 1,8−Cineole | |
GABA | 10 | 10 |
Tween® 80 | 1.73 | 1.73 |
Span® 80 | 3.27 | 3.27 |
Soybean Oil | 10 | 10 |
1,8−cineole | 5 | − |
Deionized Water q.s. | 100 | 100 |
Formulation | Size (nm) | PDI | Zeta−Potential (mV) |
---|---|---|---|
Blank NE | 169.4 ± 1.1 | 0.081 ± 0.015 | −39.05 ± 2.05 |
GABA−NE | 131.1 ± 1.4 | 0.126 ± 0.013 | −39.81 ± 2.12 |
GABA−NE with 1,8−cineole | 130.7 ± 0.6 | 0.081 ± 0.010 | n/a |
Formulation | % GABA | |||
---|---|---|---|---|
Donor Part (Q24) | Skin (Qskin) | Receptor Part 2 | % Recovery | |
Solution | 94.12 ± 4.58 | 2.52 ± 1.53 | 0.13 ± 0.09 | 96.78 ± 3.49 |
GABA−NE | 86.10 ± 7.29 | 7.27 ± 3.15 1 | 0.15 ± 0.11 | 93.53 ± 7.09 |
GABA−NE with 1,8−cineole | 83.33 ± 8.03 | 8.50 ± 3.13 1 | 0.18 ± 0.12 | 92.01 ± 8.18 |
GABA−NE with 1,8−cineole (occlusion) | 85.20 ± 12.68 | 5.82 ± 2.72 | 0.30 ± 0.15 | 91.32 ± 9.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charnvanich, D.; Singpanna, K.; Panapisal, V. Formulation and Optimization of Nanoemulsions Loaded with Gamma−Aminobutyric Acid (GABA) for Dermatological Application: Assessing Skin Permeation and Penetration Enhancement. Cosmetics 2024, 11, 19. https://doi.org/10.3390/cosmetics11010019
Charnvanich D, Singpanna K, Panapisal V. Formulation and Optimization of Nanoemulsions Loaded with Gamma−Aminobutyric Acid (GABA) for Dermatological Application: Assessing Skin Permeation and Penetration Enhancement. Cosmetics. 2024; 11(1):19. https://doi.org/10.3390/cosmetics11010019
Chicago/Turabian StyleCharnvanich, Dusadee, Kamonwan Singpanna, and Vipaporn Panapisal. 2024. "Formulation and Optimization of Nanoemulsions Loaded with Gamma−Aminobutyric Acid (GABA) for Dermatological Application: Assessing Skin Permeation and Penetration Enhancement" Cosmetics 11, no. 1: 19. https://doi.org/10.3390/cosmetics11010019
APA StyleCharnvanich, D., Singpanna, K., & Panapisal, V. (2024). Formulation and Optimization of Nanoemulsions Loaded with Gamma−Aminobutyric Acid (GABA) for Dermatological Application: Assessing Skin Permeation and Penetration Enhancement. Cosmetics, 11(1), 19. https://doi.org/10.3390/cosmetics11010019