An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Research Object
- an emergency downhole shot of a capacity of 240 m3/day;
- local water intake of a capacity of 450 m3/day;
- 36 water pumping stations (hydrophores);
- 11 clean water equalizing tanks of a total capacity of 35,000 m3;
- 190 public wells.
2.2. Methods
2.2.1. The Concept of the Fault Tree Method
- OR gate—an event above the gateway occurs if at least one event below occurs (an exit event occurs when any of the input events occur).
- AND gate—an event above the gateway occurs if all events below occur (an exit event occurs when all input events occur).
2.2.2. Parameters Characterizing the Biological and Chemical Stability of Water
- BDOC: <0.25 mg C/dm3;
- AOC: for non-chlorinated water 10–20 μg C/dm3 and for chlorinated water 50–100 μg C/dm3;
- PO43−: <0.03 mg PO43−/dm3;
- ΣNinorganic: <0.2 mg N/dm3.
3. Application Example
- A—an event involving secondary water pollution in the water supply network;
- B—an event involving the accumulation of sediments (growths) or biofilms;
- C—an event whereby unfavorable hydraulic conditions arise;
- D—an event involving a sudden change of water quality parameters;
- E—an event involving the loss of chemical stability in the water;
- F—an event involving the loss of biological stability in the water;
- G—an event involving the loss of physical stability in the water given turbidity of ≥0.8 NTU [50];
- H—an event arising in which Langelier Saturation Index values are of −4 to −5 or 3 to 4;
- I—an event involving the loss of chemical stability in the water given a Ryznar Index value of >8.5 or <5.5;
- J—an event involving the loss of chemical stability in the water given a Strohecker Index value of >0.5;
- K—an event involving the loss of biological stability in the water given a BDOC of >0.25 gC/m3;
- L—an event involving the loss of biological stability in the water given ΣNinorganic of >0.2 gN/m3;
- M—an event involving the loss of biological stability in the water given PO43− of >0.03 gPO43−/m3.
- The probability of an event wherein secondary pollution arises in the water supply network:P(A) = P(B) × P(C) × P(D),
- The probability of an event wherein sediments are laid down or biofilms formed:P(B) = P(E) + P(F) + P(G) − P(E) × P(F) − P(F) × P(G) − P(E) × P(G) + P(E) × P(F) × P(G),
- The probability of an event involving the loss of chemical stability in the water:P(E) = P(H) + P(I) + P(J) − P(H) × P(I) − P(I) × P(J) − P(H) × P(J) + P(H) × P(I) × P(J),
- The probability of an event involving the loss of biological stability in the water:P(F) = P(K) × P(L) × P(M),
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mlynska, A.; Zielina, M.; Bielski, A. Contamination of drinking water soon after cement mortar lining renovation depending on the disinfectant doses. SN Appl. Sci. 2019, 1, 516. [Google Scholar] [CrossRef] [Green Version]
- Kabsch-Korbutowicz, M.; Kutylowska, M. Use of artificial intelligence in predicting the turbidity retention coefficient during ultrafiltration of water. Environ. Prot. Eng. 2011, 2, 75–84. [Google Scholar]
- Tchórzewska-Cieślak, B. Water supply system reliability management. Env. Prot. Eng. 2009, 35, 29–35. [Google Scholar]
- Kuliczkowska, E. Analysis of defects with a proposal of the method of establishing structural failure probability categories for concrete sewers. Arch. Civ. Mech. Eng. 2015, 4, 1078–1084. [Google Scholar] [CrossRef]
- Ondrejka Harbulakova, V.; Estokova, A.; Kovalcikova, M. Correlation Analysis between Different Types of Corrosion of Concrete Containing Sulfate Resisting Cement. Environments 2017, 4, 44. [Google Scholar] [CrossRef]
- Van Der Kooij, D.; Van Lieverloo, J.; Hein, M.; Schellart, J.; Hiemstra, P. Maintaining quality without disinfectant residual. J. Am. Water Works Assoc. 1999, 1, 55–64. [Google Scholar] [CrossRef]
- Hallam, N.; West, J.; Forster, C.; Simms, J. The potential for biofilm growth in water distribution systems. Water Res. 2001, 35, 4063–4071. [Google Scholar] [CrossRef]
- Manuel, C.M.; Nunes, O.C.; Melo, L.F. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 2007, 41, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Escobar, I.C.; Randall, A.A. Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). Water Res. 2001, 35, 4444–4454. [Google Scholar] [CrossRef]
- Van Der Kooij, D. Biological stability: A multidimensional quality aspect of treated water. Water Air. Soil Pollut. 2000, 123, 25–34. [Google Scholar] [CrossRef]
- Simpson, D.R. Biofilm processes in biologically active carbon water purification. Water Res. 2008, 42, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M.J.; Miettinen, I.T.; Keinänen, M.M.; Kekki, T.K.; Laine, O.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004, 38, 3769–3779. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Water Res. 2001, 35, 1635–1640. [Google Scholar] [CrossRef]
- Wang, Y.H.; Chen, K.C. Removal of Disinfection By-Products from Contaminated Water Using a Synthetic Goethite Catalyst via Catalytic Ozonation and a Biofiltration System. Int. J. Environ. Res. Public Health 2018, 11, 9325. [Google Scholar] [CrossRef] [PubMed]
- Tchorzewska-Cieslak, B.; Szpak, D. A proposal of a method for water supply safety analysis and assessment. Ochr. Sr. 2015, 3, 43–47. [Google Scholar]
- Volk, C.J.; LeChevallier, M.W. Assessing biodegradable organic matter. Am. Water Works Assoc. 2000, 92, 64–76. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Liu, T.; Kong, W.; He, X.; Jin, Y.; Zhang, B. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. PLoS ONE 2015, 10, e0128825. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Lu, C.; Lee, C. Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J. Environ. Manag. 2005, 74, 255–263. [Google Scholar] [CrossRef]
- Wolska, M. Nutrient Removal in the Technology of Purifying Water Intended for Human Consumption; Wrocław University of Technology Publishing House: Wrocław, Poland, 2015. [Google Scholar]
- Tchorzewska-Cieslak, B. Estimating the acceptance of bearing the cost of the risks associated with the management of water supply system. Ochr. Sr. 2007, 29, 69–72. [Google Scholar]
- Nowak, R.; Wisniowska, E.; Wlodarczyk-Makula, M. Effectiveness of degradation and removal of non-steroidal pharmaceuticals which are the most frequently identified in surface water. Desalin. Water Treat. 2018, 134, 211–223. [Google Scholar] [CrossRef]
- Srinivasan, S.; Harrington, G.W. Biostability analysis for drinking water distribution systems. Water Res. 2007, 41, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Estokova, A.; Harbulakova, V.O.; Luptakova, A. Analysis of the Selected Characteristics Changes of Cement Composites Exposed to the Sulphate Environment. Chem. Eng. Trans. 2013, 32, 1597–1602. [Google Scholar]
- Rak, J.; Boryczko, K. Assessment of water supply diversification using the Pielou index. Environ. Eng. 2017, 5, 53–58. [Google Scholar]
- Kordana, S.; Pochwat, K.; Słyś, D.; Starzec, M. Opportunities and Threats of Implementing Drain Water Heat Recovery Units in Poland. Resources 2019, 8, 88. [Google Scholar] [CrossRef]
- Eid, M. Modelling sequential events for risk, safety and maintenance assessments. J. Pol. Saf. Reliab. Assoc. 2010, 1, 83–87. [Google Scholar]
- Tchorzewska-Cieslak, B.; Wlodarczyk-Makula, M.; Rak, J. Safety analysis of the wastewater treatment process in the field of organic pollutants including PAHs. Desalin. Water Treat. 2017, 72, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Urbanik, M.; Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K. Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures. Energies 2019, 12, 3228. [Google Scholar] [CrossRef]
- British Standards Institute. BS EN 61025:2007. Fault Tree Analysis (FTA); British Standards Institute: London, UK, 2007. [Google Scholar]
- Lindhe, A.; Rosen, L.; Norberg, T. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems. Water Res. 2009, 43, 1641–1653. [Google Scholar] [CrossRef]
- Sadiq, R.; Saint-Martin, E.; Kleiner, Y. Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis. Urban Water J. 2008, 5, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Lindhe, A.; Norberg, T.; Rosen, L. Approximate dynamic fault tree calculations for modelling water supply risks. Reliab. Eng. Syst. Saf. 2012, 106, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Taheriyoun, M.; Moradinejad, S. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environ. Monit. Assess. 2015, 187, 4186. [Google Scholar] [CrossRef] [PubMed]
- StatSoft, Inc. STATISTICA. Data Analysis Software System, Version 12. Available online: www.statsoft.com (accessed on 9 June 2019).
- ReliaSoft, Inc. BlockSim. Platform for System Reliability, Availability, Maintainability and Related Analyses. Available online: www.reliasoft.com (accessed on 16 June 2019).
- Pietrucha-Urbanik, K.; Tchorzewska-Cieslak, B.; Papciak, D.; Skrzypczak, I. Analysis of chemical stability of tap water in terms of required level of technological safety. Arch. Environ. Prot. 2017, 4, 3–12. [Google Scholar] [CrossRef]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. 1998. EUR-Lex Web Site. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083 (accessed on 29 June 2019).
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Boryczko, K.; Tchórzewska-Cieślak, B. Application of Fuzzy Fault Tree in Risk Analysis of Collective Water Supply Systems. J. Konbin 2012, 24, 13–24. [Google Scholar] [CrossRef]
- Krolikowska, J.; Krolikowski, A. Applying the treedendrical scheme failure method to evaluate the reliability of sewage collection draining reliability evaluation subsystems. Environ. Eng. 2010, 3, 191–195. [Google Scholar]
- Fu, X.; Gu, C.S.; Su, H.Z.; Qin, X.N. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method. Int. J. Environ. Res. Public Health 2018, 5, 886. [Google Scholar] [CrossRef]
- Tchórzewska-Cieślak, B.; Papciak, D.; Pietrucha-Urbanik, K.; Pietrzyk, A. Safety analysis of tap water biostability. Archit. Civ. Eng. Environ. 2018, 11, 149–154. [Google Scholar] [CrossRef]
- Domon, A.; Papciak, D.; Tchorzewska-Cieslak, B.; Pietrucha-Urbanik, K. Biostability of tap water a qualitative analysis of health risk in the example of groundwater treatment (semi-technical scale). Water 2018, 10, 1764. [Google Scholar] [CrossRef]
- Keinanen, M.M.; Korhonen, L.K.; Lehtola, M.J.; Miettinen, I.T.; Martikainen, P.J.; Vartiainen, T.; Suutari, M.H. The Microbial Community Structure of Drinking Water Biofilms Can Be Affected by Phosphorus Availability. Appl. Environ. Microbiol. 2002, 68, 434–439. [Google Scholar] [CrossRef] [Green Version]
- LeChevallier, M.W.; Shaw, N.E.; Kaplan, L.A.; Bott, T.L. Development of a rapid assimilable organic carbon method for water. Appl. Environ. Microbiol. 1993, 59, 1526–1531. [Google Scholar]
- British Standards Institute. BS EN 12502-1-5:2004. Protection of Metallic Materials against Corrosion; British Standards Institute: London, UK, 2004. [Google Scholar]
- PN-72 C-04609. Preliminary Qualitative Assessment of the Corrosive Effect of Cold Natural Waters on Pipes Made of Cast Iron, Ordinary Steel or Galvanized Steel; PKN: Warsaw, Poland, 1972; Available online: http://sklep.pkn.pl/pn-c-04609-1972p.html.
- Carrier Air Conditioning Company. Handbook of Air Conditioning System Design; McGraw-Hill Books: New York, NY, USA, 1965. [Google Scholar]
- Tchórzewska-Cieślak, B.; Papciak, D.; Pietrucha-Urbanik, K. Estimating the Risk of Changes in Water Quality in Water Supply Networks; Rzeszow University of Technology Publishing House: Rzeszow, Poland, 2017. [Google Scholar]
- Liu, W.; Wu, H.; Wang, Z.; Ong, S.L.; Hu, J.Y.; Ng, W.J. Investigation of assimilable organic carbon (AOC) and regrowth in drinking water distribution system. Water Res. 2002, 36, 891–898. [Google Scholar] [CrossRef]
w1 | w2 | W |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
w1 | w2 | W |
---|---|---|
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K.; Papciak, D. An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis. Resources 2019, 8, 162. https://doi.org/10.3390/resources8040162
Tchórzewska-Cieślak B, Pietrucha-Urbanik K, Papciak D. An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis. Resources. 2019; 8(4):162. https://doi.org/10.3390/resources8040162
Chicago/Turabian StyleTchórzewska-Cieślak, Barbara, Katarzyna Pietrucha-Urbanik, and Dorota Papciak. 2019. "An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis" Resources 8, no. 4: 162. https://doi.org/10.3390/resources8040162
APA StyleTchórzewska-Cieślak, B., Pietrucha-Urbanik, K., & Papciak, D. (2019). An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis. Resources, 8(4), 162. https://doi.org/10.3390/resources8040162