Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010
Abstract
:1. Introduction
1.1. Material Stock and Flow Analysis and Anthropogenic Disturbance
1.2. Digital Elevation Model Applications in Industrial Ecology
1.3. Objective
2. Method and Data
2.1. Top-Down Methodology: Global Material Flows Database and Federal Statistics
2.2. Bottom-Up Method: Digital Elevation Model and Land Cover
3. Results
3.1. Top-Down Method: Domestic Used and Unused Material Extraction
3.2. Top-Down Methodology: Waste Disposal and Fill
3.3. Bottom-Up Method: Material Extraction and Fill
3.4. Top-Down and Bottom-Up Result Comparison
4. Discussion
4.1. Estimation of Overburden by Comparing Results of Top-Down and Bottom-Up Methods
4.2. Geographical Changes of the German Landscape
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krausmann, F.; Wiedenhofer, D.; Lauk, C.; Haas, W.; Tanikawa, H.; Fishman, T.; Miatto, A.; Schandl, H.; Haberl, H. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. USA 2017, 114, 1880–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; Schaffartzik, A.; et al. Global Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol. 2018, 22, 827–838. [Google Scholar] [CrossRef]
- Schandl, H.; Miatto, A. On the importance of linking inputs and outputs in material flow accounts. The Weight of Nations report revisited. J. Clean. Prod. 2018, 204, 334–343. [Google Scholar] [CrossRef]
- Miatto, A.; Schandl, H.; Fishman, T.; Tanikawa, H. Global Patterns and Trends for Non-Metallic Minerals used for Construction. J. Ind. Ecol. 2017, 21, 924–937. [Google Scholar] [CrossRef]
- Tanikawa, H.; Fishman, T.; Okuoka, K.; Sugimoto, K. The Weight of Society over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010. J. Ind. Ecol. 2015, 19, 778–791. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol. 2015, 19, 538–551. [Google Scholar] [CrossRef] [Green Version]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef]
- Martinico-Perez, M.F.G.; Schandl, H.; Fishman, T.; Tanikawa, H. The Socio-Economic Metabolism of an Emerging Economy: Monitoring Progress of Decoupling of Economic Growth and Environmental Pressures in the Philippines. Ecol. Econ. 2018, 147, 155–166. [Google Scholar] [CrossRef]
- Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, E.; Rogich, D.; Schütz, H. Resource Flows: The Material Basis of Industrial Economies; World Resources Institute: Washington, DC, USA, 1997; ISBN 1-56973-209-4. [Google Scholar]
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H. Methodology and Indicators of Economy-wide Material Flow Accounting. J. Ind. Ecol. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- Matthews, E.; Amann, C.; Bringezu, S.; Fischer-Kowalski, M.; Hüttler, W.; Kleijn, R.; Moriguchi, Y.; Ottke, C.; Rodenburg, E.; Rogich, D. The Weight of Nations: Material Outflows from Industrial Economies; Hutter, C., Ed.; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Fishman, T.; Schandl, H.; Tanikawa, H.; Walker, P.; Krausmann, F. Accounting for the Material Stock of Nations. J. Ind. Ecol. 2014, 18, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.B. Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecol. Econ. 2006, 59, 142–156. [Google Scholar] [CrossRef]
- Krausmann, F.; Gaugl, B.; West, J.; Schandl, H. The metabolic transition of a planned economy: Material flows in the USSR and the Russian Federation 1900 to 2010. Ecol. Econ. 2016, 124, 76–85. [Google Scholar] [CrossRef]
- Fishman, T.; Schandl, H.; Tanikawa, H. Stochastic Analysis and Forecasts of the Patterns of Speed, Acceleration, and Levels of Material Stock Accumulation in Society. Environ. Sci. Technol. 2016, 50, 3729–3737. [Google Scholar] [CrossRef]
- Ortlepp, R.; Gruhler, K.; Schiller, G. Material stocks in Germany’s non-domestic buildings: A new quantification method. Build. Res. Inf. 2016, 44, 840–862. [Google Scholar] [CrossRef]
- Schandl, H.; Schulz, N. Changes in the United Kingdom’s natural relations in terms of society’s metabolism and land-use from 1850 to the present day. Ecol. Econ. 2002, 41, 203–221. [Google Scholar] [CrossRef]
- Bringezu, S.; Schütz, H.; Steger, S.; Baudisch, J. International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 2004, 51, 97–124. [Google Scholar] [CrossRef]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The Changing Metabolism of Cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, G.; Duan, H.; Xi, F.; Liu, G.; Yang, W. Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis. Appl. Energy 2019, 238, 442–452. [Google Scholar] [CrossRef]
- Miatto, A.; Schandl, H.; Tanikawa, H. How important are realistic building lifespan assumptions for material stock and demolition waste accounts? Resour. Conserv. Recycl. 2017, 122, 143–154. [Google Scholar] [CrossRef]
- Aksözen, M.; Hassler, U.; Kohler, N. Reconstitution of the dynamics of an urban building stock. Build. Res. Inf. 2017, 45, 239–258. [Google Scholar] [CrossRef]
- Douglas, I.; Lawson, N. The Human Dimensions of Geomorphological Work in Britain. J. Ind. Ecol. 2000, 4, 9–33. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanikawa, H.; Moriguchi, Y. Where will large amounts of materials accumulated within the economy go?—A material flow analysis of construction minerals for Japan. Waste Manag. 2007, 27, 1725–1738. [Google Scholar] [CrossRef]
- Kohler, N.; Hassler, U. The building stock as a research object. Build. Res. Inf. 2002, 30, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, S.; Moriguchi, Y. Proposal of six indicators of material cycles for describing society’s metabolism: From the viewpoint of material flow analysis. Resour. Conserv. Recycl. 2004, 40, 185–200. [Google Scholar] [CrossRef]
- Ross, M.R.V.; McGlynn, B.L.; Bernhardt, E.S. Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters. Environ. Sci. Technol. 2016, 50, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Tanikawa, H.; Imura, H. Quantification and evaluation of total material requirement related to the urban construction: Case study for residential development. Proc. Jpn. Soc. Civ. Eng. 2001, 2001, 35–48. [Google Scholar] [CrossRef]
- Eurostat. Economy-Wide Material Flow Accounts Handbook; Publications Office of the European Union: Luxemburg, 2018. [Google Scholar]
- Yoshida, K.; Fishman, T.; Okuoka, K.; Tanikawa, H. Material stock’s overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows. Resour. Conserv. Recycl. 2017, 123, 165–175. [Google Scholar] [CrossRef]
- European Environment Agency. Developments in Indicators: Total Material Requirement (TMR). Available online: https://www.eea.europa.eu/publications/signals-2000/page017.html (accessed on 29 April 2019).
- Bringezu, S.; Schütz, H. Total Material Requirement of the European Union; European Environment Agency: Copenhagen, Denmark, 2001. [Google Scholar]
- Baltensweiler, A.; Walthert, L.; Ginzler, C.; Sutter, F.; Purves, R.S.; Hanewinkel, M. Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation. Environ. Model. Softw. 2017, 95, 13–21. [Google Scholar] [CrossRef]
- Rueda, A.; Noguera, J.M.; Martínez-Cruz, C. A flooding algorithm for extracting drainage networks from unprocessed digital elevation models. Comput. Geosci. 2013, 59, 116–123. [Google Scholar] [CrossRef]
- Reddy, G.P.O.; Kumar, N.; Sahu, N.; Singh, S.K. Evaluation of automatic drainage extraction thresholds using ASTER GDEM and Cartosat-1 DEM: A case study from basaltic terrain of Central India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 95–104. [Google Scholar] [CrossRef]
- Wilkes, P.; Lau, A.; Disney, M.; Calders, K.; Burt, A.; Gonzalez de Tanago, J.; Bartholomeus, H.; Brede, B.; Herold, M. Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sens. Environ. 2017, 196, 140–153. [Google Scholar] [CrossRef]
- Yadav, B.; Hatfield, K. Stream network conflation with topographic DEMs. Environ. Model. Softw. 2018, 102, 241–249. [Google Scholar] [CrossRef]
- Saunders, W. Preparation of DEMs for use in environmental modeling analysis. In Proceedings of the ESRI User Conference, Austin, TX, USA, 1 January 2000; pp. 24–30. [Google Scholar]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. CATENA 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Tovar-Pescador, J.; Pozo-Vázquez, D.; Alsamamra, H. A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain. Int. J. Geogr. Inf. Sci. 2009, 23, 1049–1076. [Google Scholar] [CrossRef]
- Van Niel, K.P.; Laffan, S.W.; Lees, B.G. Effect of error in the DEM on environmental variables for predictive vegetation modelling. J. Veg. Sci. 2004, 15, 747–756. [Google Scholar] [CrossRef]
- Borga, M.; Dalla Fontana, G.; Da Ros, D.; Marchi, L. Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ. Geol. 1998, 35, 81–88. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Huang, G. An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models. Environ. Model. Assess. 2005, 10, 33–42. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, L.M.; Gao, L.; Zhu, H.; Zhang, S. Presenting regional shallow landslide movement on three-dimensional digital terrain. Eng. Geol. 2015, 195, 122–134. [Google Scholar] [CrossRef]
- Holmes, K.W.; Chadwick, O.A.; Kyriakidis, P.C. Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. J. Hydrol. 2000, 233, 154–173. [Google Scholar] [CrossRef]
- Wechsler, S.P.; Kroll, C.N. Quantifying DEM Uncertainty and its Effect on Topographic Parameters. Photogramm. Eng. Remote Sens. 2006, 72, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Wilson, J.P.; Bauer, B.O. DEM resolution dependencies of terrain attributes across a landscape. Int. J. Geogr. Inf. Sci. 2007, 21, 187–213. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 205–217. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. Aster Global Digital Elevation Model. Version 2—Summary of Validation Results; NASA: Washington, DC, USA, 2011; p. 27. [Google Scholar]
- Kleemann, F.; Lehner, H.; Szczypińska, A.; Lederer, J.; Fellner, J. Using change detection data to assess amount and composition of demolition waste from buildings in Vienna. Resour. Conserv. Recycl. 2017, 123, 37–46. [Google Scholar] [CrossRef]
- Yoshida, K.; Okuoka, K.; Tanikawa, H. Anthropogenic Disturbance by Domestic Extraction of Construction Minerals in Japan. J. Ind. Ecol. 2018, 22, 145–154. [Google Scholar] [CrossRef]
- Schebek, L.; Schnitzer, B.; Blesinger, D.; Köhn, A.; Miekley, B.; Linke, H.J.; Lohmann, A.; Motzko, C.; Seemann, A. Material stocks of the non-residential building sector: The case of the Rhine-Main area. Resour. Conserv. Recycl. 2017, 123, 24–36. [Google Scholar] [CrossRef]
- Schiller, G.; Gruhler, K.; Ortlepp, R. Quantification of anthropogenic metabolism using spatially differentiated continuous MFA. Chang. Adapt. Socio Ecol. Syst. 2017, 3, 119. [Google Scholar] [CrossRef]
- Schiller, G.; Müller, F.; Ortlepp, R. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resour. Conserv. Recycl. 2017, 123, 93–107. [Google Scholar] [CrossRef]
- UN Environment International Resource Panel. Global Material Flows Database. Available online: http://www.resourcepanel.org/global-material-flows-database (accessed on 22 April 2019).
- Federal Environmental Agency. Environmental Waste Management Record. Available online: https://www.umweltbundesamt.de/daten/ressourcen-abfall/abfallaufkommen#textpart-8 (accessed on 27 April 2019).
- Germany Federal Statistical Office. Waste and Recycling Management Record. Available online: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00000202 (accessed on 18 March 2019).
- United States Geological Survey. Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 March 2019).
- Japan Aerospace Exploration Agency. Alos World 3D. Available online: https://www.eorc.jaxa.jp/ALOS/aw3d/index.htm (accessed on 11 April 2019).
- Copernicus. CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 22 March 2019).
- Ministry of Economy, Trade, and Industry (METI) of Japan. Features of Aster Gdem. Available online: https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/2.html (accessed on 19 June 2019).
- ESRI. ArcGIS Pro Minus. Available online: https://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/minus.htm (accessed on 20 June 2019).
- Japan Aerospace Exploration Agency. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest Map. Available online: https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (accessed on 28 February 2019).
- Sugimoto, K.; Kuroiwa, K.; Okuoka, K.; Tanikawa, H. Anthropogenic disturbance estimation based on surface elevation change using DEM. Environ. Sci. 2015, 28, 153–161. [Google Scholar]
- Kawahara, K.; Tanaka, Y. Quantitative estimation of artificially changed landform in Mt. Buko. Proceedings of the General Meeting of the Association of Japanese Geographers. J. STAGE 2010. [Google Scholar] [CrossRef]
- Federal Ministry for Economic Affairs and Energy of Germany. Annual Economic Report 2018. Available online: https://www.bmwi.de/Redaktion/DE/Publikationen/Wirtschaft/jahreswirtschaftsbericht-2018.html (accessed on 18 March 2019).
- Augiseau, V.; Barles, S. Studying construction materials flows and stock: A review. Resour. Conserv. Recycl. 2017, 123, 153–164. [Google Scholar] [CrossRef]
- Burlakovs, J.; Kriipsalu, M.; Klavins, M.; Bhatnagar, A.; Vincevica-Gaile, Z.; Stenis, J.; Jani, Y.; Mykhaylenko, V.; Denafas, G.; Turkadze, T.; et al. Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization. Resour. Conserv. Recycl. 2017, 123, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Di Noi, C.; Ciroth, A. Environmental and Social Pressures in Mining. Results from a Sustainability Hotspots Screening. Resources 2018, 7, 80. [Google Scholar] [CrossRef]
- Blanchette, M.L.; Lund, M.A. Pit lakes are a global legacy of mining: An integrated approach to achieving sustainable ecosystems and value for communities. Curr. Opin. Environ. Sustain. 2016, 23, 28–34. [Google Scholar] [CrossRef]
- European Environment Agency. Land Recycling in Europe. Approaches to Measuring Extent and Impacts; European Environment Agency: Copenhagen, Denmark, 2016; p. 51. [Google Scholar]
- Wirth, P.; Černič Mali, B.; Fischer, W. Problems and potentials of post-mining regions. In Post-Mining Regions in Central Europe—Problems, Potentials, Possibilities; Oekom Verlag: Munich, Germany, 2012; pp. 14–31. [Google Scholar]
Type | Data Source | Agency | Target Period | Target Material |
---|---|---|---|---|
Used material | Global Material Flows Database | UN Environment International Resource Panel Global Material Flows Database | 2000–2010 | Industrial minerals, ores, construction minerals, coal |
Unused material | ||||
Waste material | Environmental Waste Management Record | Federal Statistics Office of Germany (DSTATIS) | Municipal waste, mining material, waste from production and trade, construction and demolition waste, waste from treatment plants | |
Landfilled material | Waste and Recycling Management | German Environmental Agency |
Type | Dataset | Agency | Acquisition Date | Resolution (m) | DEMs Vertical Accuracy (m) | Feature |
---|---|---|---|---|---|---|
DEMs | SRTM | NASA | 2000 | 90 | 10 m | 11 days STS-99 mission in 2000 produced by NASA |
ASTER GDEM | NASA, JAXA | 2010 | 30 | 7–14 m | Joint operation of NASA and Japan which covers 80% of the earth | |
Landcover | ALOS | JAXA | 2009 | 10 | - | World’s first 10 m resolution map of the global forest and non-forest area |
CORINE | EEA | 2006 | 100 | - | Combination of several satellite’s data that covers most areas of Europe |
Type | Mass (Pg) | Area (Mm2) |
---|---|---|
Extraction | 15.3 | 570 |
Fill | 7.76 | 390 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, K.; Okuoka, K.; Miatto, A.; Schebek, L.; Tanikawa, H. Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010. Resources 2019, 8, 126. https://doi.org/10.3390/resources8030126
Yoshida K, Okuoka K, Miatto A, Schebek L, Tanikawa H. Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010. Resources. 2019; 8(3):126. https://doi.org/10.3390/resources8030126
Chicago/Turabian StyleYoshida, Keisuke, Keijiro Okuoka, Alessio Miatto, Liselotte Schebek, and Hiroki Tanikawa. 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010" Resources 8, no. 3: 126. https://doi.org/10.3390/resources8030126
APA StyleYoshida, K., Okuoka, K., Miatto, A., Schebek, L., & Tanikawa, H. (2019). Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010. Resources, 8(3), 126. https://doi.org/10.3390/resources8030126