Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results
Abstract
:1. Introduction
- We generate criticality assessments for 2008 and 2012 for Australia;
- We compare the results over time at the global level, at the country level, and metal to metal;
- The assessments are performed for six metals: aluminum, iron, nickel, copper, and zinc, used in large quantities throughout the world in major industrial sectors such as construction, infrastructure, electrification, and transportation, plus indium as an example of a metal with higher scarcity concerns and employment in very specialized applications.
2. Methodology
3. Results
3.1. Comparing Criticality over Time
3.2. Comparing Country Level Criticality
3.3. Comparing Criticality Metal to Metal
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Buijs, B.; Sievers, H. Critical Thinking about Critical Minerals: Assessing Risks Related to Resource Security; German Geological Survey: Hannover, Germany, 2011.
- U.S. National Research Council (NRC). Minerals, Critical Minerals, and the U.S. Economy; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- U.S. Department of Energy (DOE). Critical Materials Strategy; DOE: Washington, DC, USA, 2010.
- European Commission. Report on Critical Raw Materials for the EU; Report of the Ad-hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- European Commission. Report on Critical Raw Materials for the EU; Report of the Ad-hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- British Geological Survey. Risk List 2011; British Geological Survey: Nottingham, UK, 2011.
- British Geological Survey. Risk List 2015; British Geological Survey: Nottingham, UK, 2015.
- Skirrow, R.G.; Huston, D.L.; Mernagh, T.P.; Thorne, J.P.; Dulfer, H.; Senior, A.B. Critical Commodities for a High-Tech World: Australia’s Potential to Supply Global Demand; Geoscience Australia: Canberra, Australia, 2013.
- Duclos, S.J.; Otto, J.P.; Konitzer, G.K. Design in an era of constrained resources. Mech. Eng. 2010, 132, 36–40. [Google Scholar]
- Buijs, B.; Sievers, H.; Tercero Espinosa, L. Limits to the critical raw materials approach. Waste Resour. Manag. 2012, 165, 201–208. [Google Scholar] [CrossRef]
- Graedel, T.E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christoffersen, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N.T.; et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2012, 46, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Achzet, B.; Helbig, C. How to evaluate raw material supply risks—An overview. Resour. Policy 2013, 38, 435–447. [Google Scholar] [CrossRef]
- Moss, R.L.; Tzimas, E.; Willis, P.; Arendorf, J.; Tercero Espinosa, L. Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector; Joint Research Centre: Petten, The Netherlands, 2013. [Google Scholar]
- Roelich, K.; Dawson, D.A.; Purnell, P.; Knoeri, C.; Revell, R.; Busch, J.; Steinberger, J.K. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity. Appl. Energy 2014, 123, 378–386. [Google Scholar] [CrossRef]
- Glöser, S.; Tercero Espinosa, L.; Ganddenberger, C.; Faulstich, M. Raw material criticality in the context of classical risk assessment. Resour. Policy 2015, 44, 35–46. [Google Scholar] [CrossRef]
- Habib, K.; Wenzel, H. Reviewing resource criticality assessment from a dynamic and technology specific perspective—Using the case of direct drive wind turbines. J. Clean. Prod. 2016, 112, 3852–3863. [Google Scholar] [CrossRef]
- Helbig, C.; Wietschel, L.; Thorenz, A.; Tuma, A. How to evaluate raw material vulnerability—An overview. Resour. Policy 2016, 48, 13–24. [Google Scholar] [CrossRef]
- Graedel, T.E.; Reck, B.K. Six years of criticality assessments—What have we learned so far? J. Ind. Ecol. 2016, 20, 692–699. [Google Scholar] [CrossRef]
- Nassar, N.T.; Barr, R.; Browning, M.; Diao, Z.; Friedlander, E.; Harper, E.M.; Henly, C.; Kavlak, G.; Kwatra, S.; Jun, C.; et al. The criticality of the geological copper family. Environ. Sci. Technol. 2012, 46, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Nuss, P.; Reck, B.K. The criticality of metals and metalloids. Proc. Natl. Acad. Sci. USA 2015, 112, 4257–4262. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.M.; Kavlak, G.; Burmeister, L.; Eckelman, M.J.; Erbis, S.; Espinoza, V.S.; Nuss, P.; Graedel, T.E. Criticality of the geological zinc, tin, and lead family. J. Ind. Ecol. 2015, 19, 628–644. [Google Scholar] [CrossRef]
- Nuss, P.; Harper, E.M.; Nassar, N.T.; Reck, B.K.; Graedel, T.E. Criticality of iron and its principal alloying elements. Environ. Sci. Technol. 2014, 48, 4171–4177. [Google Scholar] [CrossRef] [PubMed]
- U.S. Geological Survey. Mineral Commodity Summaries 2014; U.S. Geological Survey: Reston, VA, USA, 2014.
- Nassar, N.T.; Du, X.; Graedel, T.E. Criticality of the rare earth elements. J. Ind. Ecol. 2015, 19, 1044–1054. [Google Scholar] [CrossRef]
Criticality Dimensions | Criticality Dimensions | |||||||
---|---|---|---|---|---|---|---|---|
SR | EI | VSR | SR | EI | VSR | |||
Aluminum | Copper | |||||||
US (2008) | 43 | 3 | 58 | US (2008) | 54 | 17 | 60 | |
US (2012) | 44 | 47 | US (2012) | 55 | 57 | |||
AU (2008) | 43 | 47 | AU (2008) | 54 | 53 | |||
AU (2012) | 44 | 43 | AU (2012) | 55 | 49 | |||
World (2008) | 0 | 36 | World (2008) | 24 | 48 | |||
World (2012) | 0 | 37 | World (2012) | 29 | 48 | |||
Iron | Zinc | |||||||
US (2008) | 46 | 1 | 52 | US (2008) | 59 | 3 | 53 | |
US (2012) | 56 | 55 | US (2012) | 61 | 52 | |||
AU (2008) | 46 | 53 | AU (2008) | 59 | 43 | |||
AU (2012) | 56 | 54 | AU (2012) | 61 | 41 | |||
World (2008) | 0 | 57 | World (2008) | 46 | 51 | |||
World (2012) | 0 | 55 | World (2012) | 47 | 52 | |||
Nickel | Indium | |||||||
US (2008) | 50 | 10 | 47 | US (2008) | 77 | 22 | 54 | |
US (2012) | 55 | 52 | US (2012) | 78 | 56 | |||
AU (2008) | 50 | 41 | AU (2008) | 77 | 54 | |||
AU (2012) | 55 | 40 | AU (2012) | 78 | 55 | |||
World (2008) | 1 | 42 | World (2008) | 98 | 55 | |||
World (2012) | 1 | 43 | World (2012) | 98 | 56 | |||
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciacci, L.; Nuss, P.; Reck, B.K.; Werner, T.T.; Graedel, T.E. Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results. Resources 2016, 5, 29. https://doi.org/10.3390/resources5040029
Ciacci L, Nuss P, Reck BK, Werner TT, Graedel TE. Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results. Resources. 2016; 5(4):29. https://doi.org/10.3390/resources5040029
Chicago/Turabian StyleCiacci, Luca, Philip Nuss, Barbara K. Reck, T. T. Werner, and T. E. Graedel. 2016. "Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results" Resources 5, no. 4: 29. https://doi.org/10.3390/resources5040029
APA StyleCiacci, L., Nuss, P., Reck, B. K., Werner, T. T., & Graedel, T. E. (2016). Metal Criticality Determination for Australia, the US, and the Planet—Comparing 2008 and 2012 Results. Resources, 5(4), 29. https://doi.org/10.3390/resources5040029