Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rap-Landslide Method
- Environmental Dimension: focuses on the effectiveness of vegetation in preventing erosion and landslides, soil conservation measures, and overall ecosystem conditions.
- Social Dimension: evaluates community preparedness for landslides, the role and performance of farmer groups, and education related to conservation, agroforestry, and disaster mitigation.
- Economic Dimension: considers capital investment and agroforestry development costs, financial support for farmers, potential economic benefits of agroforestry systems, and their overall feasibility.
- Technological Dimension: examines land management and conservation techniques for landslide mitigation, appropriate vegetation selection for conservation and mitigation purposes, and harvesting and post-harvest processing technologies.
- Institutional Dimension: assesses government involvement in farmer group activities, policies or regulations supporting agroforestry as a landslide mitigation strategy, and coordination among relevant institutions.
2.3. Data Collection and Analysis
2.4. Agroforestry Sustainability Analysis
2.5. Leverage Factor Analysis
2.6. Validity Assessment Through Monte Carlo Simulation
3. Results and Discussion
3.1. Sustainability Analysis
3.2. Leverage Analysis
3.2.1. Environmental Dimension
3.2.2. Social Dimension
3.2.3. Economic Dimension
3.2.4. Technological Dimension
3.2.5. Institutional Dimension
3.3. Monte Carlo Analysis
3.4. Enhancing Agroforestry Sustainability for Landslide Mitigation and Farmer Income Improvement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FGD | Focus Group Discussion |
MCA | Multi-Criteria Analysis |
MDS | Multidimensional Scaling |
POME | Palm Oil Mill Effluent |
Rap | Rapid Appraisal |
RapCF | Rapid Appraisal for Community Forestry |
RapPforest | Rapid Appraisal for Forest |
Rapfish | Rapid Appraisal for Fisheries |
RapLandUse | Rapid Appraisal for Agricultural |
Rap-Landslide | Rapid Appraisal for Landslide |
SOC | Soil Organic Carbon |
SQR | Square Root |
TLS | Terrestrial Laser Scanning |
UAS | Unmanned Aerial System |
References
- Yulianto, S.; Apriyadi, R.K.; Aprilyanto, A.; Winugroho, T.; Ponangsera, I.S.; Wilopo, W. Histori Bencana dan Penanggulangannya di Indonesia Ditinjau Dari Perspektif Keamanan Nasional. PENDIPA J.Sci. Educ. 2021, 5, 180–187. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Jegankumar, R.; Dhanabalan, S.P. An integrated assessment of landslide: Type, causes, pre-post scenario and risk impact of the Pettimudi incident in Idukki District, India. Results Earth Sci. 2024, 2, 100050. [Google Scholar]
- Fang, Z.; Morales, A.B.; Wang, Y.; Lombardo, L. Climate change has increased rainfall-induced landslide damages in central China. Int.J. Disaster Risk Reduct. 2025, 119, 105320. [Google Scholar] [CrossRef]
- Gori Maia, A.; Eusebio, G.d.S.; Fasiaben, M. do C.R.; Moraes, A.S.; Assad, E.D.; Pugliero, V.S. The economic impacts of the diffusion of agroforestry in Brazil. Land Use Pol. 2021, 108, 105489. [Google Scholar] [CrossRef]
- Zhang, K.; Gong, F.; Li, L.; Ng, A.H.-M.; Liu, P. Mapping the long-term evolution of the post-event deformation of the Guang’an Village Landslide, Chongqing, China using multibaseline InSAR techniques. Forests 2022, 13, 887. [Google Scholar] [CrossRef]
- Jumiyati, S.; Hadid, A.; Toknok, B.; Nurdin, R.; Paramitha, T.A. Climate-smart agriculture: Mitigation of landslides and increasing of farmers’ household food security. IOP Conf. Ser. Earth Environ. Sci. 2021, 708, 012073. [Google Scholar] [CrossRef]
- Choi, C.E.; Cui, Y.; Zhou, G.G. Utilizing crowdsourcing to enhance the mitigation and management of landslides. Landslides 2018, 15, 1889–1899. [Google Scholar] [CrossRef]
- Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Muhsoni, F.F.; Zainuri, M.; Abida, I.W. Evaluasi pemanfaatan pelabuhan kamal untuk wisata bahari pasca pembangunan jembatan Suramadu menggunakan pemodelan Rapfish. J. Kebijak. Sosek KP 2021, 11, 63–73. [Google Scholar] [CrossRef]
- Santoso, A.D.; Hariyanti, J.; Pinardi, D.; Kusretuwardani, K.; Widyastuti, N.; Djarot, I.N.; Handayani, T.; Sitomurni, A.I.; Apriyanto, H. Sustainability index analysis of microalgae cultivation from biorefinery palm oil mill effluent. Glob. J. Environ. Sci. Manag. 2023, 9, 559–576. [Google Scholar]
- Qurania, A.; Mardiani, S.A. Analisis Keberlanjutan Budidaya Jeruk Malang Melalui Pendekatan MDS (Multidimensional Scaling). Folium J. Ilmu Pertan. 2023, 7, 13–28. [Google Scholar] [CrossRef]
- Jasmawadi, L.A.; Budastra, I.K.; Tajidan, T.; Zaini, A.; Siddik, M. Sustainability Analysis on Economic and Ecological Aspects of Dry Land Management in Jerowaru District Using Multi-Dimensional Scaling (MDS). Prism. Sains J. Pengkaj. Ilmu Dan Pembelajaran Mat. IPA IKIP Mataram 2022, 10, 478–488. [Google Scholar] [CrossRef]
- Gusman, M.; Efendi, N.; Barlian, E.; Dewata, I.; Syah, N.; Umar, I.; Putra, A. Sustainability Assessment of Post-Mining Land Using Multidimensional Scaling: Insights From The Indonesian Coal Mining Sector. Geogr. Tech. 2024, 20, 64–78. [Google Scholar] [CrossRef]
- Kahirun, K.; Sudia, L.B.; Sabaruddin, L. Sustainability of Urban Watershed Management in Kendari City, Southeast Sulawesi, Indonesia. Environ. Asia. 2023, 16, 26. [Google Scholar]
- Sujiman, S.; Sundek, H.; Santoso, A.B. Mine Landslide Management Sustainability Model in Kutai Kartanegara Regency, East Kalimantan, Indonesia. Environ. Res. Eng. Manag. 2024, 80, 50–63. [Google Scholar] [CrossRef]
- Hery, S.; Eny, S.; Hefri, O.; Mustopa, R.; Ridha, N.; Budiyanto, B. Sustainability assessment of economic recovery program in post disaster area at Susup Village, Central Bengkulu, Indonesia. E3S Web Conf. EDP Sci. 2023, 464, 05001. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I. Landslides in a changing world. Landslides 2025. [Google Scholar] [CrossRef]
- Google Earth Pro. Satellite imagery of Nyomplong, West Java, Indonesia; Imagery Date: August 2020. Google Inc.: Mountain View, CA, USA, 2020. Available online: https://earth.google.com (accessed on 6 March 2025).
- Garmin; OpenStreetMap Contributors; GIS User Community. Imagery with Labels Basemap; Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community; Esri: Redlands, CA, USA, 2025. [Google Scholar]
- Pitcher, T.J.; Lam, M.E.; Ainsworth, C.H.; Martindale, A.; Nakamura, R.; Trevor Ward, P. Improvements to Rapfish: A rapid evaluation technique for fisheries integrating ecological and human dimensions. J. Fish Biol. 2013, 83, 865–889. [Google Scholar] [CrossRef]
- Keerthika, A.; Lakshmi, S.B.P.; Chavan, V.; Lakshmi, S.; Kamla, K.; Choudhary, M.B.; Noor Mohamed, A.R.; Chichaghare, A.V.; Gupta, D.K. Multistrata Agroforestry Systems: Spatial and Temporal Utilization of Resources for Higher Production and Better Income. In Agroforestry Solutions for Climate Change and Environmental Restoration; Kumar, S., Alam, B., Taria, S., Singh, P., Yadav, A., Arunachalam, A., Eds.; Springer: Singapore, 2024; pp. 33–61. [Google Scholar]
- Pitcher, T.J.; Preikshot, D. RAPFISH: A rapid appraisal technique to evaluate the sustainability status of fisheries. Fish. Res. 2001, 49, 255–270. [Google Scholar] [CrossRef]
- Arofi, F.; Rukmana, D.; Ibrahim, B. The Analysis of Integration Sustainability of Coffee Plantation and Goat Husbandry, A Case Study in Ampelgading subdistrict, Malang Regency, East Java, Indonesia. J. Econ. Sustain. Dev. 2015, 6, 1–8. [Google Scholar]
- Kavanagh, P.; Pitcher, T.J. Implementing Microsoft Excel Software for Rapfish: A Technique for the Rapid Appraisal of Fisheries Status. Fisheries Centre. University of British Columbia: Vancouver, BC, Canada, 2004. [Google Scholar]
- Xu, Y.; Sheng, J.; Zhang, L.; Sun, G.; Zheng, J. Organic fertilizer substitution increased soil organic carbon through the association of microbial necromass C with iron oxides. Soil Tillage Res. 2025, 248, 106402. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, M.; Xing, Y.; Han, J.; Wang, X. Reduction of nitrogen fertilizer and simultaneously application of organic fertilizer optimizes yield, water productivity and nitrogen metabolism of spring maize by improving soil properties in the Loess Plateau of China. J. Agric. Food Res. 2025, 19, 101634. [Google Scholar] [CrossRef]
- Mariyono, J. Farmer training to simultaneously increase productivity of soybean and rice in Indonesia. Int. J. Prod. Perform. Manag. 2019, 68, 1120–1140. [Google Scholar] [CrossRef]
- B’eliveau, A.; Lucotte, M.; Davidson, R.; Paquet, S.; Mertens, F.; Passos, C.J.; Romana, C.A. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon. J. Environ. Manag. 2017, 203, 522–532. [Google Scholar] [CrossRef]
- Tsegaye, N.T. The impact of agroforestry practice on forest conservation and community livelihood improvement: A case of Buno Bedele Zone of west Ethiopia’S Chora district. Environ. Sustain. Indic. 2023, 17, 100229. [Google Scholar] [CrossRef]
- Rondhi, M.; Aji, J.M.M.; Khasan, A.F.; Yanuarti, R. Factors affecting farmers’ participation in contract farming: The case of broiler sector in Indonesia. Trop. Anim. Sci. J. 2020, 43, 183–190. [Google Scholar] [CrossRef]
- Amare, D.; Darr, D. Farmers’ intentions toward sustained agroforestry adoption: An application of the theory of planned behavior. J. Sustain. For. 2023, 42, 869–886. [Google Scholar] [CrossRef]
- Cadger, K.; Quaicoo, A.K.; Dawoe, E.; Isaac, M.E. Development interventions and agriculture adaptation: A social network analysis of farmer knowledge transfer in Ghana. Agriculture 2016, 6, 32. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Le Feuvre, D. Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field Crops Res. 2013, 149, 269–275. [Google Scholar] [CrossRef]
- Loughrey, J.; Donnellan, T.; Hennessy, T.; Hanrahan, K. The Role of Pluriactivity in Farm Exit and Labour Supply Decisions. 2013. Available online: https://www.researchgate.net/publication/271524338_The_Role_of_Pluriactivity_in_Farm_Exit_and_Labour_Supply_Decisions (accessed on 26 November 2024).
- Prabawani, B.; Nugraha, H.S. Building a sustainable rural workforce in Indonesia. In Developing the Workforce in an Emerging Economy; Dayaram, K., Lambey, L., Burgess, J., Afrianty, T.W., Eds.; Routledge: London, UK, 2020; pp. 43–52. [Google Scholar]
- Yermolaev, O.; Usmanov, B.; Gafurov, A.; Poesen, J.; Vedeneeva, E.; Lisetskii, F.; Nicu, I.C. Assessment of Shoreline Transformation Rates and Landslide Monitoring on the Bank of Kuibyshev Reservoir (Russia) Using Multi-Source Data. Remote Sens. 2021, 13, 4214. [Google Scholar] [CrossRef]
- Adhitya, F.; Rusdiana, O.; Saleh, M.B. Penentuan Jenis Tumbuhan Lokasi dalam Upaya Mitigasi Longsor dan Teknik Budidayanya Pada Areal Rawan Longsor di KPH Lawu DS: Studi Kasus di RPH Cepoko. J. Silvikut. Trop. 2016, 8, 9–19. [Google Scholar] [CrossRef]
- Hairiah, K.; Widianto, W.; Suprayogo, D.; Van Noordwijk, M. Tree roots anchoring and binding soil: Reducing landslide risk in Indonesian agroforestry. Land 2020, 9, 256. [Google Scholar] [CrossRef]
- Phondani, P.C.; Maikhuri, R.K.; Rawat, L.S.; Negi, V.S. Assessing farmers’ perception on criteria and indicators for sustainable management of indigenous agroforestry systems in Uttarakhand, India. Environ. Sustain. Indic. 2020, 5, 100018. [Google Scholar] [CrossRef]
- Prabawani, B.; Hadi, S.; Fisher, M.R.; Warsono, H.; Dewi, R.S.; Ainuddin, I. Socioeconomic perspective of agroforestry development in Central Java. Environ. Sustain. Indic. 2024, 22, 100354. [Google Scholar] [CrossRef]
- Dzikrillaha, G.F.; Anwarb, S.; Sutjahjo, S.H. Sustainable of Rice Farming in Soreang District of Bandung Regency. J. Pengelolaan Sumberd. Alam Lingkung. 2017, 7, 107–113. [Google Scholar]
- Muliawan, I.; Zamroni, A.; Priyatna, F.N. Sustainbility Study of Milkfish Farming Management in Gresik. J. Kebijakan Sos. Ekon. Kelaut. Perikan. 2017, 6, 25–35. [Google Scholar]
- Bishaw, B.; Soolanayakanahally, R.; Karki, U.; Hagan, E. Agroforestry for Sustainable Production and Resilient Landscapes. Agrofor. Syst. 2022, 96, 447–451. [Google Scholar] [CrossRef]
- Uleh, A.M.; Usman, A.L. Agrisilviculture a refuge for above and below ground biodiversity. J. Res. For. Wildl. Environ. 2020, 12, 290–296. [Google Scholar]
- Jose, S. Environmental impacts and benefits of agroforestry. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human wellbeing in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Chuma, G.B.; Cirezi, N.C.; Mondo, J.M.; Mugumaarhahama, Y.; Ganza, D.M.; Katcho, K.; Schmitz, S. Suitability for agroforestry implementation around Itombwe Natural Reserve (RNI), eastern DR Congo: Application of the Analytical Hierarchy Process (AHP) approach in geographic information system tool. Trees For. People 2021, 6, 100125. [Google Scholar] [CrossRef]
- Utomo, B.; Prawoto, A.A.; Bonnet, S.; Bangviwat, A.; Gheewala, S.H. Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. J. Clean. Prod. 2016, 134, 583–591. [Google Scholar] [CrossRef]
- Sittadewi, E.H.; Tejakusuma, I.G.; Mulyono, A.; Handayani, T.; Tohari, A.; Zakaria, Z. Post-landslide restoration through agroforestry-based land management in the West Bogor area of Indonesia. Trees For. People 2024, 16, 100593. [Google Scholar] [CrossRef]
- FAO (Food Agricultural Organization). Agroforestry. 2022. Available online: https://www.fao.org/agroforestry/en/ (accessed on 14 November 2024).
- Desmiwati, D.; Veriasa, T.O.; Aminah, A.; Safitri, A.D.; Hendarto, K.A.; Wisudawati, T.A.; Royani, H.; Dewi, H.K.; Raharjo, S.N.I.; Sari, D.R. Contribution of Agroforestry Systems to Farmer Income in State Forest Areas: A case Sudy of Parungpanjang, Indonesia. For. Soc. 2021, 5, 109–119. [Google Scholar] [CrossRef]
- Elbakidze, M.; Surová, D.; Muñoz-Rojas, J.; Persson, J.-O.; Dawson, L.; Plieninger, T.; Pinto-Correia, T. Perceived benefits from agroforestry landscapes across North-Eastern Europe: What matters and for whom? Landsc. Urban Plann. 2021, 209, 104044. [Google Scholar] [CrossRef]
- Mavroulis, S.; Vassilakis, E.; Diakakis, M.; Konsolaki, A.; Kaviris, G.; Kotsi, E.; Kapetanidis, V.; Sakkas, V.; Alexopoulos, J.D.; Lekkas, E.; et al. The Use of Innovative Techniques for Management of High-Risk Coastal Areas, Mitigation of Earthquake-Triggered Landslide Risk and Responsible Coastal Development. Appl. Sci. 2022, 12, 2193. [Google Scholar] [CrossRef]
Dimension | Attributes |
---|---|
Environment |
|
Social |
|
Economy |
|
Technology |
|
Institutional |
|
No | Index Range (%) | Classification | Sustainability Status |
---|---|---|---|
1 | 0–25 | Poor | Unsustainable |
2 | 25.01–50 | Less | Less |
3 | 50.01–75 | Quite | Fairly |
4 | 75.01–100 | Good | Very |
No | Factor Value (%) | Category | Description |
---|---|---|---|
1 | <2.0 | Neutral | Not influential |
2 | 2–8 | Influential | Moderate-to-good impact |
3 | >8.0 | Significant | Dominant |
Dimension | Index Score (%) | Stress Value | SQR/R2 | Sustainability Status |
---|---|---|---|---|
Environmental | 60.99 | 0.15 | 0.98 | Fairly |
Social | 56.36 | 0.18 | 0.97 | Fairly |
Economical | 42.66 | 0.16 | 0.93 | Less |
Technological | 57.97 | 0.17 | 0.97 | Fairly |
Institutional | 62.82 | 0.15 | 0.98 | Fairly |
Average | 56.16 | Fairly |
Dimension | Ordination (%) | Monte Carlo (%) | Variation (%) |
---|---|---|---|
Environmental | 57.97 | 57.27 | 0.70 |
Social | 60.82 | 61.22 | 1.60 |
Economic | 57.97 | 57.26 | 0.73 |
Technology | 57.97 | 58.82 | 0.95 |
Institutional | 62.82 | 61.22 | 1.60 |
Dimension | Influential Attributes | Leverage Value (%) | Improvement Strategies |
---|---|---|---|
Environment | Land productivity level | 3.06 |
|
Utilization of organic fertilizers in cultivation activities | 3.06 |
| |
Social | Farmer group performance | 3.06 |
|
Community understanding of agroforestry conservation | 3.06 |
| |
Farmer participation in farmer group | 2.72 |
| |
Economy | Formal education level of community | 3.84 |
|
Community income outside the agricultural business | 3.52 |
| |
Technology | How to harvest | 3.84 |
|
How to maintain the crop | 3.52 |
| |
Institutional | Availability of consulting and mentoring assistance | 5.71 |
|
Knowledge and implementation of customary rules | 4.63 |
| |
Existence of financial institutions that help provide production capital | 4.56 |
| |
Decision-making in farmer group activities | 4.35 |
| |
The suitability of central and regional policies related to agroforestry management | 4.33 |
| |
Existence of supporting regulations for agroforestry processing businesses from the government | 4.10 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sittadewi, E.H.; Tejakusuma, I.G.; Handayani, T.; Santoso, A.D.; Tohari, A.; Mulyono, A.; Zakaria, Z.; Budiman, E.B.; Fatahillah, H.E.H.; Fitriani, R. Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas. Resources 2025, 14, 93. https://doi.org/10.3390/resources14060093
Sittadewi EH, Tejakusuma IG, Handayani T, Santoso AD, Tohari A, Mulyono A, Zakaria Z, Budiman EB, Fatahillah HEH, Fitriani R. Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas. Resources. 2025; 14(6):93. https://doi.org/10.3390/resources14060093
Chicago/Turabian StyleSittadewi, Euthalia Hanggari, Iwan Gunawan Tejakusuma, Titin Handayani, Arif Dwi Santoso, Adrin Tohari, Asep Mulyono, Zufialdi Zakaria, Evensius Bayu Budiman, Hilmi El Hafidz Fatahillah, and Riski Fitriani. 2025. "Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas" Resources 14, no. 6: 93. https://doi.org/10.3390/resources14060093
APA StyleSittadewi, E. H., Tejakusuma, I. G., Handayani, T., Santoso, A. D., Tohari, A., Mulyono, A., Zakaria, Z., Budiman, E. B., Fatahillah, H. E. H., & Fitriani, R. (2025). Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas. Resources, 14(6), 93. https://doi.org/10.3390/resources14060093