Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Setup and Design
2.2. Mode of Operation, Monitoring, and Analytical Methods
2.3. Microbial Study
2.3.1. DNA Extraction, PCR Amplification, and High-Throughput Sequencing
2.3.2. Bioinformatics Analysis
2.3.3. Alpha Diversity and Cluster Analysis of Microbial Communities
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hydraulic and Organic Loading Rates
3.2. COD, LAS, pH, Redox Potential, and Temperature
3.3. Correlation between Variables
3.4. Alpha Diversity and Cluster Analysis of Microbial Communities
3.5. Microbial Community Involved in LAS Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misra, R.K.; Sivongxay, A. Reuse of laundry greywater as affected by its interaction with saturated soil. J. Hydrol. 2009, 366, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Ramprasad, C.; Philip, L. Contributions of various processes to the removal of surfactants and personal care products in constructed wetland. Chem. Eng. J. 2018, 334, 322–333. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Rosen, M.J.; Morral, S.W.; Tolls, J. Surface properties of linear alkyl benzene sulfonates in hard river water. J. Surfactants Deterg. 1998, 1, 187–193. [Google Scholar] [CrossRef]
- Babaei, F.; Ehrampoush, M.H.; Eslami, H.; Ghaneian, M.T.; Fallahzadeh, H.; Talebi, P.; Fard, R.F.; Ebrahimi, A.A. Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. J. Clean. Prod. 2019, 211, 922–931. [Google Scholar] [CrossRef]
- Venhuis, S.H.; Mehrvar, M. Health effects, environmental impacts and photochemical degradation of selected surfactants in water. Int. J. Photoenergy 2004, 6, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, I.N.; Ahammed, M.M. Quantity and quality characteristics of greywater: A review. J. Environ. Manag. 2020, 261, 110266. [Google Scholar] [CrossRef]
- Noutsopoulos, C.; Andreadakis, A.; Kouris, N.; Charchousi, D.; Mendrinou, P.; Galani, A.; Mantziaras, I.; Koumaki, E. Greywater characterization and loadings–Physicochemical treatment to promote onsite reuse. J. Environ. Manag. 2018, 216, 337–346. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Markakis, N.; Petousi, I.; Manios, T. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Sci. Total Environ. 2016, 551, 706–711. [Google Scholar] [CrossRef]
- Bani-Melhem, K.B.; Al-Qodah, Z.; Al-Shannag, M.; Qasaimeh, A.; Qtaishat, M.R.; Alkasrawi, M. On the performance of real grey water treatment using a submerged membrane bioreactor system. J. Membr. Sci. 2015, 476, 40–49. [Google Scholar] [CrossRef]
- Santasmasas, C.; Rovira, M.; Clarens, F.; Valderrama, C. Grey water reclamation by decentralized MBR prototype. Resour. Conserv. Recycl. 2013, 72, 102–107. [Google Scholar] [CrossRef]
- Leal, L.H.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Comparison of three systems for biological greywater treatment. Water 2010, 2, 155–169. [Google Scholar] [CrossRef]
- Huelgas, A.; Funamizu, N. Flat-plate submerged membrane bioreactor for the treatment of higher-load graywater. Desalination 2010, 250, 162–166. [Google Scholar] [CrossRef]
- Liu, R.; Huang, X.; Chen, L.; Wen, X.; Qian, Y. Operational performance of a submerged membrane bioreactor for reclamation of bath wastewater. Process Biochem. 2005, 40, 125–130. [Google Scholar] [CrossRef]
- Mungray, A.K.; Kumar, P. Occurrence of anionic surfactants in treated sewage: Risk assessment to aquatic environment. J. Hazard. Mater. 2008, 160, 362–370. [Google Scholar] [CrossRef] [PubMed]
- HERA–LAS. Human and Environmental Risk Assessment. Linear Alkylbenzene Sulphonate, LAS. CAS No. 68411-30-3. 2013. Available online: https://www.heraproject.com/files/HERA-LAS%20revised%20April%202013%20Final1.pdf (accessed on 23 December 2022).
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Mais, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef]
- Thomas, R.; Gough, R.; Freeman, C. Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product. Ecol. Eng. 2017, 106, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Ramprasad, C.; Smith, C.S.; Memon, F.A.; Philip, L. Removal of chemical and microbial contaminants form greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.; Shmueli, O.; Ronen, Z.; Raveh, E. Recycled vertical flow constructed wetland (RVFCW)—A novel method of recycling greywater for irrigation in small communities and households. Chemosphere 2007, 66, 916–923. [Google Scholar] [CrossRef]
- Masi, F.; Hamouri, B.E.; Shafi, H.A.; Baban, A.; Ghrabi, A.; Regelsberger, M. Treatment of segregated black/grey domestic wastewater using constructed wetlands in the Mediterranean basin: The zero-m experience. Water Sci. Technol. 2010, 61, 97–105. [Google Scholar] [CrossRef]
- Silva, J.B.; Oliveira, P.J.A.; Boncz, M.A.; Paulo, P.L. A modified constructed wetland system for greywater treatment. Desalin. Water Treat. 2017, 91, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Magalhães Filho, F.J.C.; Paulo, P.L. Multistage constructed wetland in the treatment of greywater under tropical conditions: Performance, operation, and maintenance. Recycling 2021, 6, 63. [Google Scholar] [CrossRef]
- Bernardes, F.S.; Pereira, M.A.S.; Hassan, I.A.I.; Castro, A.P.; Roche, K.F.; Paulo, P.L. Change in microbial profile and environmental conditions in a constructed wetland system treating greywater. Environ. Sci. Pollut. Res. 2021, 28, 34539–34552. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; p. 953. [Google Scholar]
- Von Sperling, M.; Verbyla, M.E.; Oliveira, S.M.A.C. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners; IWA Publishing: London, UK, 2020. [Google Scholar]
- Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 2005, 89, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Porat, I.; Vishnivetskaya, T.A.; Mosher, J.J.; Brandt, C.C.; Yang, Z.K.; Brooks, S.C.; Liang, L.; Drake, M.M.; Podar, M.; Brown, S.D.; et al. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb. Ecol. 2010, 60, 784–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Magalhães Filho, F.J.C. Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chem. Eng. J. 2019, 373, 458–467. [Google Scholar] [CrossRef]
- Mandal, D.; Labhasetwar, P.; Dhone, S.; Dubey, A.S.; Shinde, G.; Wate, S. Water conservation due to greywater treatment and reuse in urban setting with specific context to developing countries. Resour. Conserv. Recycl. 2011, 55, 356–361. [Google Scholar] [CrossRef]
- Magalhães Filho, F.J.C.; Sobrinho, T.A.; Steffen, J.L.; Arias, C.A.; Paulo, P.L. Hydraulic and hydrological aspects of an evapotranspiration–constructed wetland combined system for household greywater treatment. J. Environ. Sci. Health A 2018, 53, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Magalhães Filho, F.J.; Paulo, P. Phytoremediation as a modular approach for greywater treatment. In Modular Treatment Approach for Drinking Water and Wastewater, 1st ed.; Brar, S.K., Kumar, P., Cuprys, A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2022; Volume 1, pp. 107–128. [Google Scholar]
- Hoffmann, H.C.; Platzer, M.; Winker, E.; von Muench, E. Technology Review of Constructed Wetlands; Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2011. [Google Scholar]
- Ramprasad, C.; Philip, L. Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater. Chem. Eng. J. 2016, 15, 458–468. [Google Scholar] [CrossRef]
- Paulo, P.L.; Vieira, J.; Takahashi, K.M.; Magalhães Filho, F.J.C.; Silva, J.B.; Boncz, M.A. Technical Note 4-Reuse water: Grey water treated in constructed wetlands. Cad. Técnicos Eng. Sanit. Ambient. 2022, 2, 43–58. [Google Scholar] [CrossRef]
- Nivala, J.; Hoos, M.B.; Cross, C.; Wallace, S.; Parkin, G. Treatment of landfill leachate using an aerated, horizontal subsurface flow constructed wetland. Sci. Total Environ. 2007, 380, 19–27. [Google Scholar] [CrossRef]
- Zhang, C.X.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol. 2003, 7, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zhang, B.; Zhang, J.; Ngo, H.H.; Guo, W.; Liu, F.; Guo, Y.; Wu, H. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresour. Technol. 2013, 141, 117–122. [Google Scholar] [CrossRef]
- Friedler, E. Quality of individual domestic greywater streams and its implication for on–site treatment and reuse possibilities. Environ. Technol. 2004, 25, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Maimon, A.; Alfiya, Y.; Friedler, E. Greywater Reuse; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Shafran, A.W.; Gross, A.; Ronen, Z.; Weisbrod, N.; Adar, E. Effects of surfactants originating from reuse of greywater on capillary rise in the soil. Water Sci. Technol. 2005, 52, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Tamiazzo, J.; Breschigliaro, S.; Salvato, M.; Borin, M. Performance of a wall cascade constructed wetland treating surfactant-polluted water. Environ. Sci. Pollut. Res. 2015, 22, 12816–12828. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Terzakis, S.; Kalogerakis, N.; Manios, T. Removal of polycyclic aromatic hydrocarbons and linear alkylbenzene sulfonates from domestic wastewater in pilot constructed wetlands and a gravel filter. Ecol. Eng. 2009, 35, 1702–1709. [Google Scholar] [CrossRef]
- Pérez–López, M.E.; Arreola-Ortiz, A.E.; Zamora, P.M. Evaluation of detergent removal in artificial wetlands (biofilters). Ecol. Eng. 2018, 122, 135–142. [Google Scholar] [CrossRef]
- García, J.; Rousseau, D.P.L.; Morató, J.; Lesage, E.; Matamoros, V.; Bayona, J.M. Contaminant removal processes in subsurface-flow constructed wetlands: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 561–661. [Google Scholar] [CrossRef]
- Ghaitidak, D.M.; Yadav, K.D. Characteristics and treatment of greywater—A review. Environ. Sci. Pollut. Res. 2013, 20, 2795–2809. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Waste Water Engineering Treatment Disposal, and Reuse; McGraw-Hill: Irvine, CA, USA, 2010. [Google Scholar]
- Faulwetter, J.L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M.D.; Brisson, J.; Camper, A.K.; Stein, O.R. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35, 987–1004. [Google Scholar] [CrossRef]
- Lara–Martín, P.A.; Gómez–Parra, A.; Sanz, J.L.; González–Mazo, E. Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environ. Sci. Technol. 2010, 44, 1670–1676. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Torang, L.; Waul, C.M.; Schmidt, J.E. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS). Water Sci. Technol. 2004, 49, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Haggensen, F.; Mogensen, A.S.; Angelidaki, I.; Ahring, B.K. Anaerobic treatment of sludge: Focusing on reduction of LAS concentration in sludge. Water Sci. Technol. 2002, 46, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Delforno, T.P.; Moura, A.G.L.; Okada, D.Y.; Sakamoto, I.K.; Varesche, M.B.A. Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater. Bioresour. Technol. 2015, 192, 37–45. [Google Scholar] [CrossRef]
- Delforno, T.P.; Moura, A.G.L.; Okada, D.Y.; Varesche, M.B.A. Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresour. Technol. 2014, 154, 114–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, D.Y.; Delforno, T.P.; Esteves, A.S.; Sakamoto, I.K.; Duarte, I.C.S.; Varesche, M.B.A. Optimization of linear alkylbenzene sulfonate (LAS) degradation in UASB reactors by varying bioavailability of LAS, hydraulic retention time and specific organic load rate. Bioresour. Technol. 2013, 128, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Braga, J.K.; Varesche, M.B.A. Commercial Laundry Water Characterization for Anaerobic Treatment in Fluidized Bed Reactor; X Oficina e Seminário Latino Americano de Digestão Anaeróbia (DAAL): Ouro Preto, Brazil, 2011. [Google Scholar]
- Brenner, D.J.; Krieg, N.R.; Staley, J.T.; Garrity, G.M.; Boone, D.R.; Vos, P.; Goodfellow, M.; Rainey, F.A.; Schleifer, K.H. Bergey’s Manual® of Systematic Bacteriology, 1st ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Adessi, A.; Spini, G.; Presta, L.; Mengoni, A.; Viti, C.; Giovannetti, L.; Fani, R.; De Philippis, R. Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL. Stand. Genomic Sci. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, F.S.; Herrera, P.G.; Chiquito, G.M.; Morales, M.F.; Castro, A.P.; Paulo, P.L. Relationship between microbial community and environmental conditions in a constructed wetland system treating greywater. Ecol. Eng. 2019, 139, 105581. [Google Scholar] [CrossRef]
- Caputo, L.Z.S.; Siqueira, C.M.; Caputo, B.A.; Bacchi, C.G.V.; Magalhães Filho, F.J.C.; Paulo, P.L. Effects of graywater on the growth and survival of ornamental plants in nature–based systems. J. Environ. Sci. Health A 2019, 54, 1023–1034. [Google Scholar] [CrossRef]
- Bernardes, F.S.; Diniz, R.C.O.; Araújo, J.C.; Paulo, P.L. Studies of filter media for zero–discharge systems collecting light greywater. Environ. Technol. 2017, 38, 2173–2184. [Google Scholar] [CrossRef]
Hydraulic Loading Rate (L·m−2·d−1/mm·d−1) | Organic Loading Rate (gCOD·m−2·d−1) | ||||
---|---|---|---|---|---|
L·Person−1·d−1 | EvaTAC | CEvaT | EvaTAC | CEvaT | |
Maximum | 221 | 662 | 1324 | 230 | 115 |
Mean ± SD (50) | 58 ± 48 | 196 ± 136 | 392 ± 272 | 73 ± 59 | 36 ± 30 |
Minimum | 2.4 | 3.4 | 6.8 | 0.6 | 1.2 |
Parameter (mg·L−1) | P1 | P3 | P5 | Removal (%) | ||
---|---|---|---|---|---|---|
CEvaT | HSSF-CW | System (Global) | ||||
COD (50) | 374 ± 210 | 282 ± 100 | 167 ± 77 | 42 ± 22 | 38 ± 16 | 66 ± 23 |
LAS (50) | 32 ± 28 | 28 ± 10 | 20 ± 8 | 45 ± 29 | 35 ± 23 | 43 ± 23 |
OLR_CODre CEvaT | OLR_CODre CW | OLR_CODre EvaTAC | HLR | °C | |
---|---|---|---|---|---|
OLR_LASre CEvaT | 0.7 | 1.0 | 0.9 | 0.4 | 0.8 |
OLR_LASre CW | 0.7 | 0.5 | 0.7 | 0.7 | 0.3 |
OLR_LASe EvaTAC | 0.9 | 0.9 | 0.9 | 0.6 | 1.0 |
HLR | 0.5 | 0.8 | 0.6 | 1.0 | - |
°C | −0.05 | 0.1 | 0.5 | - | 1.0 |
CW−In | CW−Out | C−AnC | C−G2 | C−Slag | C−Soil | |
---|---|---|---|---|---|---|
Richness | 50 | 49 | 46 | 53 | 51 | 53 |
Shannon (Community Diversity) | 3.20 | 3.05 | 3.10 | 3.14 | 3.09 | 3.12 |
Chao-1 (Community Richness) | 50.25 (50.00–57.00) | 50.25 (50.00–57.00) | 50.25 (50.00–57.00) | 50.25 (50.00–57.00) | 50.25 (50.00–57.00) | 50.25 (50.00–57.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascoli Junior, R.; Passoni, C.M.; Santos, F.M.; Bernardes, F.S.; Magalhães Filho, F.J.C.; Paulo, P.L. Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland. Resources 2023, 12, 38. https://doi.org/10.3390/resources12030038
Mascoli Junior R, Passoni CM, Santos FM, Bernardes FS, Magalhães Filho FJC, Paulo PL. Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland. Resources. 2023; 12(3):38. https://doi.org/10.3390/resources12030038
Chicago/Turabian StyleMascoli Junior, Robelio, Caique Morelo Passoni, Filipe Martins Santos, Fernando Silva Bernardes, Fernando Jorge Correa. Magalhães Filho, and Paula Loureiro Paulo. 2023. "Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland" Resources 12, no. 3: 38. https://doi.org/10.3390/resources12030038
APA StyleMascoli Junior, R., Passoni, C. M., Santos, F. M., Bernardes, F. S., Magalhães Filho, F. J. C., & Paulo, P. L. (2023). Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland. Resources, 12(3), 38. https://doi.org/10.3390/resources12030038