Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = linear alkyl benzene sulfonate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9120 KiB  
Article
Collapsible Gypseous Soil Stabilization by Calcium Carbide Residue and Sulfonic Acid
by Rasha F. Abaas, Mohammed Y. Fattah, Maha H. Naif and Mohamed Hafez
Sustainability 2024, 16(22), 9974; https://doi.org/10.3390/su16229974 - 15 Nov 2024
Cited by 3 | Viewed by 1179
Abstract
Gypseous soil is a collapsing soil that has not yet been approved as a construction material since its behavior under water, temperature, and pressure is unreliable and unpredictable. Researchers and scientists are always searching for new and creative ways to optimize the benefits [...] Read more.
Gypseous soil is a collapsing soil that has not yet been approved as a construction material since its behavior under water, temperature, and pressure is unreliable and unpredictable. Researchers and scientists are always searching for new and creative ways to optimize the benefits of calcium carbide residue (CCR) recycling, which is a byproduct of the acetylene industry and includes a substantial quantity of Ca(OH)2. Therefore, it is a suitable choice for utilization as a chemical stabilizer to improve the engineering features of problematic soils. However, this study explores the potential for enhancing the engineering characteristics of gypseous soil by utilizing (CCR) combined with linear alkyl benzene sulfonic acid (LABSA) to form a geopolymer. The soils utilized in this work are gypseous collapsible soils. Standard tests were conducted on these soils to identify the physical and mechanical characteristics. The geopolymer preparation was accomplished by merging a dilution of LABSA with a geopolymer (solid to liquid), blending the proportions. Three different types of disturbed natural granular-gypseous collapsible soils with different properties and various gypsum contents with percentages of 20%, 35%, and 50% were used. Mixtures of soils containing (2.5%, 5%, and 7.5%) of the geopolymer mix content were made. The single oedometer test (SOT) and the double oedometer test (DOT) were carried out to ascertain the lowest collapse potential value correlated with the ideal geopolymer mixing ratio. The adequate geopolymer percentage was found to be 5% since it resulted in the maximum reduction in collapse potential compared to the natural soil. The direct shear test is employed to ascertain the soil samples’ cohesiveness and friction angle. The results show a slight reduction in the angle of internal friction and increased cohesion (c). For stabilizing gypseous soil in engineering projects, a combination of LABSA and CCR can be utilized as a workable, sustainable, and environmentally friendly substitute. Full article
Show Figures

Figure 1

14 pages, 1925 KiB  
Article
Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland
by Robelio Mascoli Junior, Caique Morelo Passoni, Filipe Martins Santos, Fernando Silva Bernardes, Fernando Jorge Correa. Magalhães Filho and Paula Loureiro Paulo
Resources 2023, 12(3), 38; https://doi.org/10.3390/resources12030038 - 19 Mar 2023
Cited by 8 | Viewed by 3454
Abstract
Surfactants are among the main chemical contaminants in greywater (GW) and can cause severe health issues in humans and aquatic organisms. We assessed the performance of a multistage constructed wetland system (EvaTAC) for GW treatment and capacity of the microbial community in linear [...] Read more.
Surfactants are among the main chemical contaminants in greywater (GW) and can cause severe health issues in humans and aquatic organisms. We assessed the performance of a multistage constructed wetland system (EvaTAC) for GW treatment and capacity of the microbial community in linear alkyl benzene sulfonate (LAS) biodegradation. Physicochemical analyses were performed over 497 d, and biomass samples were collected for high-throughput DNA sequencing. The system was predominated by anaerobic conditions and received an average chemical oxygen demand (COD) and LAS of 374 and 32 mg·L−1, with removal rates of 66% and 43%, respectively. A positive correlation between COD and LAS suggested COD as a design parameter for LAS removal. We identified microbial genera participating in hydrolysis, fermentation, syntrophy, acetogenesis, methanogenesis, surfactant degradation, and sulphate reduction. Among the 15 surfactant-degrading genera, Pseudomonas was predominant. Community richness and diversity indices were comparable between subsystems, with a slight decrease in diversity observed towards the outlet. Among the LAS degraders, Rhodopseudomonas palustris had the highest relative abundance of operational taxonomic unit (OTU)s in all samples and the highest richness in the anaerobic chamber. The patterns in microbial community composition and environmental conditions suggest that LAS biodegradation occurred throughout the EvaTAC system. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Water Resources)
Show Figures

Figure 1

Back to TopTop