Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Quality and Characterization
2.1.1. Biomass Material
2.1.2. Quality Analysis on the Biomass Materials
2.2. Carbon Footprint Assessment
2.2.1. Description of the Company
2.2.2. Goal and Scope Definition
2.2.3. System Boundary
2.2.4. Functional Unit
2.2.5. Transportation to the Company
2.2.6. Load Factor
2.2.7. Emissions for Transport
2.2.8. Processing and Storage of Biomass
2.2.9. Energy Conversion
2.2.10. Emissions for Processing and Energy Conversion Phases
2.2.11. Ash Disposal
2.2.12. Data and Data Quality
2.2.13. Assumptions and Allocation Procedures
2.2.14. Comparison of Results
2.2.15. Greenhouse Gas Emissions Savings from Biofuel
3. Results
4. Discussion
4.1. Biomass Quality and Characterization
4.2. Carbon Footprint of Biomass Power Plant
4.3. GHG Emissions Savings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Full Report Chapter 3: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 18. [Google Scholar]
- Janik, A.; Ryszko, A.; Szafraniec, M. Greenhouse gases and circular economy issues in sustainability reports from the energy sector in the European union. Energies 2020, 13, 5993. [Google Scholar] [CrossRef]
- IEA. Global Energy Review 2021: Assessing the Effects of Economic Recoveries on Global Energy Demand and CO2 Emissions in 2021; IEA: Paris, France, 2021. [Google Scholar]
- Anderson, J.; Fergusson, M.; Valsecchi, C. An overview of global greenhouse gas emissions and emissions reduction scenarios for the future. Eur. Parliam. 2007, 2, 11. [Google Scholar]
- Enerdata. Global Energy Statistical Yearbook 2021; Enerdata: Grenoble, France, 2021. [Google Scholar]
- Delbeke, J.; Runge-Metzger, A.; Slingenberg, Y.; Werksman, J. The paris agreement. In Towards a Climate-Neutral Europe; Curbing Trend; Routledge: London, UK, 2019; pp. 24–45. [Google Scholar] [CrossRef]
- European Commission. A Clean Planet for All. A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; Com (2018) 773; European Commission: Brussels, Belgium, 2018; p. 114. [Google Scholar]
- Schöpe, M. Renewable energy directive. Eur. Wind Energy Conf. Exhib. 2008, 1, 32–38. [Google Scholar]
- Rotatori, M.; Di Franco, S.; Mosca, S.; Salvatori, R. Study on the Environmental Effects Related to the Use of Solid Biomass for the Production of Electricity; CNR-IIA; Institute on Air Pollution: Monterotondo, Italy, 2019; Available online: https://www.centralemercure.it/wp-content/uploads/2020/06/Studio-sugli-effetti-ambientali-uso-biomassa-EBS-2019.pdf (accessed on 28 October 2021).
- IEA. World Energy Outlook 2019 Executive Summary. In World Energy Outlook 2019; IEA: Paris, France, 2019. [Google Scholar]
- Kimming, M.; Sundberg, C.; Nordberg, Å.; Baky, A.; Bernesson, S.; Norén, O.; Hansson, P.A. Biomass from agriculture in small-scale combined heat and power plants—A comparative life cycle assessment. Biomass Bioenergy 2011, 35, 1572–1581. [Google Scholar] [CrossRef]
- Mann, M.K.; Spath, P.L. Life Cycle Assessment of a Biomass Gasification Combined-Cycle Power System; National Renewable Energy Lab.: Golden, CO, USA, 1997. [Google Scholar] [CrossRef] [Green Version]
- Beagle, E.; Belmont, E. Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy 2019, 128, 267–275. [Google Scholar] [CrossRef]
- Uusitalo, V.; Havukainen, J.; Manninen, K.; Höhn, J.; Lehtonen, E.; Rasi, S.; Soukka, R.; Horttanainen, M. Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use. Renew. Energy 2014, 66, 90–98. [Google Scholar] [CrossRef]
- Lam, H.L.; Varbanov, P.; Klemeš, J. Minimising carbon footprint of regional biomass supply chains. Resour. Conserv. Recycl. 2010, 54, 303–309. [Google Scholar] [CrossRef]
- IEA. Electricity Generated from Biofuels and Waste by Sources—Italy. 2021. Available online: www.iea.org/data-and-statistics/data-product/renewables-information (accessed on 2 September 2021).
- Anukam, A.; Mamphweli, S.; Reddy, P.; Meyer, E.; Okoh, O. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 775–801. [Google Scholar] [CrossRef] [Green Version]
- Toscano, G.; Leoni, E.; Feliciangeli, G.; Duca, D.; Mancini, M. Application of ISO standards on sampling and effects on the quality assessment of solid biofuel employed in a real power plant. Fuel 2020, 278, 118142. [Google Scholar] [CrossRef]
- Deboni, T.L.; Simioni, F.J.; Brand, M.A.; Lopes, G.P. Evolution of the quality of forest biomass for energy generation in a cogeneration plant. Renew. Energy 2019, 135, 1291–1302. [Google Scholar] [CrossRef]
- Fournel, S.; Palacios, J.H.; Morissette, R.; Villeneuve, J.; Godbout, S.; Heitz, M.; Savoie, P. Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops. Appl. Energy 2015, 141, 247–259. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Corinaldesi, F.; Mengarelli, C.; Duca, D. Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass Bioenergy 2013, 56, 317–322. [Google Scholar] [CrossRef]
- Fauzi, R.T.; Lavoie, P.; Sorelli, L.; Heidari, M.D.; Amor, B. Exploring the current challenges and opportunities of Life Cycle Sustainability Assessment. Sustainability 2019, 11, 636. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.; Noreen, U.; Azam, A.; Tahir, M.S. Does csr governance improve social sustainability and reduce the carbon footprint: International evidence from the energy sector. Sustainability 2021, 13, 3596. [Google Scholar] [CrossRef]
- Koornneef, J.; van Keulen, T.; Faaij, A.; Turkenburg, W. Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2. Int. J. Greenh. Gas Control 2008, 2, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Kucukvar, M.; Tatari, O. A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy. Energy 2011, 36, 6352–6357. [Google Scholar] [CrossRef]
- Han, X.; Chen, N.; Yan, J.; Liu, J.; Liu, M.; Karellas, S. Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater pre-heater under partial loads. J. Clean. Prod. 2019, 233, 1106–1122. [Google Scholar] [CrossRef]
- Rasheed, R.; Javed, H.; Rizwan, A.; Sharif, F.; Yasar, A.; Tabinda, A.B.; Ahmad, S.R.; Wang, Y.; Su, Y. Life cycle assessment of a cleaner supercritical coal-fired power plant. J. Clean. Prod. 2021, 279, 123869. [Google Scholar] [CrossRef]
- Piemonte, V.; de Falco, M.; Tarquini, P.; Giaconia, A. Life Cycle Assessment of a high temperature molten salt concentrated solar power plant. Sol. Energy 2011, 85, 1101–1108. [Google Scholar] [CrossRef]
- Whitaker, M.B.; Heath, G.A.; Burkhardt, J.J.; Turchi, C.S. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives. Environ. Sci. Technol. 2013, 47, 5896–5903. [Google Scholar] [CrossRef]
- Hanafi, J.; Riman, A. Life cycle assessment of a mini hydro power plant in Indonesia: A case study in Karai River. Procedia CIRP 2015, 29, 444–449. [Google Scholar] [CrossRef]
- Scherer, L.; Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 2016, 11, e0161947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfister, S.; Nauser, I. Greenhouse Gas Emissions of Selected Hydropower Reservoirs; ETH Zurich: Zurich, Switzerland, 2020. [Google Scholar]
- Tomasini-Montenegro, C.; Santoyo-Castelazo, E.; Gujba, H.; Romero, R.J.; Santoyo, E. Life cycle assessment of geothermal power generation technologies: An updated review. Appl. Therm. Eng. 2017, 114, 1119–1136. [Google Scholar] [CrossRef]
- Frick, S.; Kaltschmitt, M.; Schröder, G. Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 2010, 35, 2281–2294. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, E.; Vanoli, L.; Carotenuto, A.; Ulgiati, S. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 2015, 86, 476–487. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Heinonen, J.; Palsson, H.; Palsson, O.P. Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization. Geothermics 2020, 84, 101727. [Google Scholar] [CrossRef]
- Singh, B.; Strømman, A.H.; Hertwich, E. Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. Int. J. Greenh. Gas Control 2011, 5, 457–466. [Google Scholar] [CrossRef]
- Medeiros, D.L.; Sales, E.A.; Kiperstok, A. Energy production from microalgae biomass: Carbon footprint and energy balance. J. Clean. Prod. 2015, 96, 493–500. [Google Scholar] [CrossRef] [Green Version]
- ISO 14780:2017; Solid Biofuels—Sample Preparation. ISO: Geneva, Switzerland, 2017.
- ISO 18134-1:2015; Solid Biofuels—Determination of Moisture Content—Oven Dry Method. ISO: Geneva, Switzerland, 2015.
- BS EN ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. BSI Standards Publication: London, UK, 2017.
- ISO 18122:2015; Solid Biofuels—Determination of Ash Content. ISO: Geneva, Switzerland, 2015.
- ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. BSI Standards Publication: London, UK, 2015.
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. ISO: Geneva, Switzerland, 2016.
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’. Science 2007, 1, 1–11. [Google Scholar]
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. ISO: Geneva, Switzerland, 2018.
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Frischknecht, R.; Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods Data v1.1 (2004). In Ecoinvent Report No. 3; Ecoinvent Centre: Dübendorf, Switzerland, 2004; p. 116. [Google Scholar]
- Ivanova, N.; Gugleva, V.; Dobreva, M.; Pehlivanov, I.; Stefanov, S.; Andonova, V. Combustion of Biomass Fuel and Residues: Emissions Production Perspective. In Developments in Combustion Technology; Kyprianidis, K., Skvaril, J., Eds.; IntechOpen: London, UK, 2016; p. 31. [Google Scholar]
- European Parliament Directive (EU). 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, 2018, 82–209. [Google Scholar]
- Commissione Europea. Comunicazione Della Commissione. Un Pianeta Pulito per Tutti; Commissione Europea: Bruxelles, Belgium, 2018. [Google Scholar]
- Redcert GMBH. Scheme Principles for GHG Calculation; Version EU 05; Redcert GMBH: Bonn, Germany, 2021; pp. 5–7. [Google Scholar]
- European Council. National overall targets for the share of energy from renewable sources in gross final consumption of energy in 2020. Share of energy from renewable sources in gross final consumption of energy, 2005 (S 2005). Target for share of energy from renewable sources. In Annex. 1 to 12. Proposal for a Directive of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources; European Council: Brussels, Belgium, 2017; pp. 19–64. [Google Scholar]
- Giuntoli, J.; Agostini, A.; Edwards, R.; Marelli, L. Solid and gaseous bioenergy pathways, Input values and GHG emissions: Calculated according to methodology set in COM (2010) 11 and SWD(2014) 259. In JRC Science and Policy Reports; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Anukam, A.; Berghel, J. Biomass Pretreatment and Characterization: A Review. In Biotechnological Applications of Biomass; Basso, T., Basso, L.C., Eds.; IntechOpen: London, UK, 2020; Volume I, pp. 1–17. ISBN 978-1-83881-182-2. [Google Scholar]
- Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.C.; Li, W.Y.; Feng, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Vakkilainen, E.K. Solid Biofuels and Combustion; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128043899. [Google Scholar]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Pergola, M.; Rita, A.; Tortora, A.; Castellaneta, M.; Borghetti, M.; De Franchi, A.S.; Lapolla, A.; Moretti, N.; Pecora, G.; Pierangeli, D.; et al. Identification of suitable areas for biomass power plant construction through environmental impact assessment of forest harvesting residues transportation. Energies 2020, 13, 2699. [Google Scholar] [CrossRef]
- Butnar, I.; Rodrigo, J.; Gasol, C.M.; Castells, F. Life-cycle assessment of electricity from biomass: Case studies of two biocrops in Spain. Biomass Bioenergy 2010, 34, 1780–1788. [Google Scholar] [CrossRef]
- Chary, K.; Aubin, J.; Guindé, L.; Sierra, J.; Blazy, J.M. Cultivating biomass locally or importing it? LCA of biomass provision scenarios for cleaner electricity production in a small tropical island. Biomass Bioenergy 2018, 110, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lindholm, E.L.; Berg, S.; Hansson, P.A. Energy efficiency and the environmental impact of harvesting stumps and logging residues. Eur. J. For. Res. 2010, 129, 1223–1235. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energy 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Ganesh, A.; Banerjee, R. Biomass pyrolysis for power generation—A potential technology. Renew. Energy 2001, 22, 9–14. [Google Scholar] [CrossRef]
- Bain, R.L.; Overend, R.P.; Craig, K.R. Biomass-fired power generation. Fuel Process. Technol. 1998, 54, 1–16. [Google Scholar] [CrossRef]
- Evans, A.; Strezov, V.; Evans, T.J. Sustainability considerations for electricity generation from biomass. Renew. Sustain. Energy Rev. 2010, 14, 1419–1427. [Google Scholar] [CrossRef]
- Loução, P.O.; Ribau, J.P.; Ferreira, A.F. Life cycle and decision analysis of electricity production from biomass—Portugal case study. Renew. Sustain. Energy Rev. 2019, 108, 452–480. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Copa, J.; Tarelho, L.A.C.; Gonçalves, C.; Pacheco da Costa, T.; Dias, A.C. Environmental and energy performance of residual forest biomass for electricity generation: Gasification vs. combustion. J. Clean. Prod. 2021, 289, 125680. [Google Scholar] [CrossRef]
- Rafaschieri, A.; Rapaccini, M.; Manfrida, G. Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels. Energy Convers. Manag. 1999, 40, 1477–1493. [Google Scholar] [CrossRef]
- Carpentieri, M.; Corti, A.; Lombardi, L. Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Convers. Manag. 2005, 46, 1790–1808. [Google Scholar] [CrossRef] [Green Version]
- Puy, N.; Rieradevall, J. Environmental assessment of post-consumer wood and forest residues gasification: The case study of Barcelona metropolitan area. Biomass Bioenergy 2010, 34, 1457–1465. [Google Scholar] [CrossRef]
- Siegl, S.; Laaber, M.; Holubar, P. Green electricity from biomass, Part I: Environmental impacts of direct life cycle emissions. Waste Biomass Valoriz. 2011, 2, 267–284. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Yang, S.; Pang, M. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China. Energies 2012, 5, 2708–2723. [Google Scholar] [CrossRef]
- Röder, M.; Whittaker, C.; Thornley, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenergy 2015, 79, 50–63. [Google Scholar] [CrossRef]
- Paengjuntuek, W.; Boonmak, J.; Mungkalasiri, J. Environmental Assessment of Integrated Biomass Gasification Fuel Cell for Power Generation System. Int. J. Environ. Sci. Dev. 2015, 6, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Nian, V. The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation. Appl. Energy 2016, 179, 1069–1080. [Google Scholar] [CrossRef]
- da Costa, T.P.; Quinteiro, P.; Tarelho, L.A.; Arroja, L.; Dias, A.C. Environmental impacts of forest biomass-to-energy conversion technologies: Grate furnace vs. fluidised bed furnace. J. Clean. Prod. 2018, 171, 153–162. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, H.; Zhang, X.; Nielsen, C.P.; Li, J.; Lu, X.; Yanga, H.; Chen, H. Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China. J. Clean. Prod. 2018, 205, 661–671. [Google Scholar] [CrossRef]
- Siregar, K.; Luthfi Machsun, A.; Sholihati, S.; Alamsyah, R.; Ichwana, I.; Christian Siregar, N.; Syafriandi, S.; Sofiah, I.; Miharza, T.; Muhammad Nur, S.; et al. Life Cycle Impact Assessment on Electricity Production from Biomass Power Plant System through Life Cycle Assessment (LCA) Method using Biomass from Palm Oil Mill in Indonesia. E3S Web Conf. 2020, 188, 00018. [Google Scholar] [CrossRef]
- Zang, G.; Zhang, J.; Jia, J.; Lora, E.S.; Ratner, A. Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles. Renew. Energy 2020, 149, 336–346. [Google Scholar] [CrossRef]
Classification | Biomass Typology | Description |
---|---|---|
Particle size | Bulk | Non-chipped wood |
Wood chips | Chipped wood | |
Roots | Non-chipped tree roots | |
Pre-ground | Semi-ground material | |
Mixed ground | Ground and related material | |
Origin (Vegetable) | Orchard | Residues from orchards (apple, pear, etc.) |
Vine | Residues from the vineyard (pruning and vineyard explant) | |
Mixed orchard and vine | Residues from orchard and vineyard | |
Origin (Forest) | Conifer | Softwood tree residues from forest management |
Poplar | Woodchips from poplar cultivation and management | |
Hardwood | Broad-leaved tree residues from forest management | |
Precious wood chips | Woodchips of high quality |
Analysis | Instrument | Reference Method | Brief Description |
---|---|---|---|
Sample preparation | Cutting mill RETSCH SM 2000 Moisture | ISO 14780 [40] | The sample is stabilized in an oven at 40 °C for about 24 h, then milled to obtain a particle size distribution < 1 mm. |
Moisture content | Ventilated stove “MPM Instruments” type M 250-VF, Electronic scale | ISO 18134 [41] | A sample of about 300 g is weighed and set in an oven (105 °C for 24 h) until it reaches a constant weight. The percentage of evaporated water is the result. |
Higher Heating value (HHV) | Isoperibolic calorimeter (mod.C2000 basic, IKA) | ISO 18125 [42] | Under specified conditions, a sample of mass (1.0 ± 0.2) g was burned in high-pressure oxygen in a bomb calorimeter |
Ash content | Ash analyzer TGA 701 LECO | ISO 18122 [43] | About 1 g of milled material is weighed and brought to incineration through three steps—105, 250, and 550 °C—in an oxidizing atmosphere until it reaches a constant weight. The inorganic fraction of the starting material is the remaining mass after the process. |
Carbon content | Perkin Elmer mod. 2400 Series II CHNS/O system | ISO 16948 [44] | 4 mg of the sample are oxidized at about 900 °C. The combustion gases are then reduced to analyzable compounds, which are adsorbed in a gas chromatography column. The measurement takes place using a thermal conductivity detector (TCD). |
Hydrogen content | Perkin Elmer mod. 2400 Series II CHNS/O system | ISO 16948 [44] | See Carbon content analysis. |
Nitrogen content | N analyzer FP-528 LECO | ISO 16948 [44] | By-products of combustion of about 0.10 g of milled material pass through a furnace filter and a thermoelectric cooler for subsequent collection in a ballast apparatus and then measured by the thermal conductivity cell for nitrogen. |
Oxygen content | Perkin Elmer mod. 2400 Series II CHNS/O system | ISO 16948 [44] | The weight fraction of oxygen is determined by difference using the equation: O = 100 − (C + H + N + S) as indicated in the standard. |
Chlorine content | Liquid ion chromatographer (mod. 761 COMPACT IC, Metrohm). | ISO 16994 [45] | Samples were decomposed in a calorimetric bomb with excess oxygen and absorption of acid combustion gases in water (1 cm3). Chloride was detected by liquid ion chromatography. |
Sulfur content | Liquid ion chromatographer (mod. 761 COMPACT IC, Metrohm). | ISO 16994 [45] | Decomposition in calorimetric bomb with excess oxygen and absorption of acid combustion gases in water (1 cm3). Sulfate was detected by liquid ion chromatography |
Region | Average Distance to the Power Plant (km) | Average Biomass Transported per Trip (t) | Total Biomass Transported (t) |
---|---|---|---|
Emilia-Romagna | 73 | 19.41 | 141,267 |
Fruili-Venezia Giulia | 240 | 23.20 | 2644 |
Lombardia | 172 | 22.91 | 29,736 |
Marche | 228 | 27.62 | 3617 |
Toscana | 212 | 26.86 | 83,145 |
Trentino-Alto Adige | 250 | 29.57 | 2129 |
Umbria | 283 | 27.61 | 4887 |
Veneto | 116 | 23.13 | 13,462 |
Biomass | Max. Load (t) | Lower Limits of Load Factor | ||
---|---|---|---|---|
81–100% | 51–80% | <50% | ||
Wood Chips | 31 | 83.4 | 100.8 | 153 |
Ground | 31 | 83.4 | 100.8 | 153 |
MPS (Mixed ground) | 31 | 83.4 | 100.8 | 153 |
MPS (Mixed pre-ground) | 20 | 83.4 | 100.8 | 153 |
Pre-ground | 31 | 83.4 | 100.8 | 153 |
Roots | 31 | 83.4 | 100.8 | 153 |
Bulk | 20 | 83.4 | 100.8 | 153 |
Stocked | 31 | 83.4 | 100.8 | 153 |
Input | Use | Value | Unit |
---|---|---|---|
Urea | Removes dust and ammonia from waste gas during scrubbing | 9.80 × 10−4 | kg/MJ EE |
Sodium bicarbonate | Flue gas treatment | 2.35 × 10−5 | kg/MJ EE |
Hydrated lime | Acid gas treatment during wood combustion | 1.59 × 10−4 | kg/MJ EE |
Ferric chloride | Wastewater treatment | 1.09 × 10−4 | kg/MJ EE |
Sodium hypochlorite | Auxiliary product | 1.77 × 10−4 | kg/MJ EE |
Sodium metabisulphite | Auxiliary product | 8.71 × 10−6 | kg/MJ EE |
Caustic soda | Flue gas treatment | 2.06 × 10−6 | kg/MJ EE |
Sulfuric acid | Auxiliary product | 2.09 × 10−4 | kg/MJ EE |
Biomass | Input fuel | 4.26 × 10−1 | kg/MJ EE |
Energy import HV. | Processing | 9.63 × 10−4 | MJ/MJ EE |
Energy import MV | Internal transportation of biomass | 1.01 × 10−2 | MJ/MJ EE |
Energy import LV | Office use | 3.42 × 10−5 | MJ/MJ EE |
Natural gas MP | Auxiliary fuel | 7.81 × 10−3 | MJ/MJ EE |
Natural gas LP. | Auxiliary fuel | 9.75 × 10−4 | MJ/MJ EE |
Diesel fuel | Internal biomass handling | 1.36 × 10−2 | MJ/MJ EE |
Bottom ashes | Transport to disposal | 1.49 × 10−3 | tkm/MJ EE |
Fly ashes | Transport to disposal | 8.40 × 10−4 | tkm/MJ EE |
Bottom ashes | Landfill treatment | 9.91 × 10−6 | t/MJ EE |
Fly ashes | Landfill treatment | 5.25 × 10−6 | t/MJ EE |
Parameter | Conifer | Orchard | Hardwood | Mixed Orchard and Vine | Precious Woodchip | Vine |
---|---|---|---|---|---|---|
Moisture content (% as received) | 39.22 ± 8.85 | 31.42 ± 8.84 | 39.16 ± 8.85 | 31.41 ± 8.85 | 33.22 ± 8.85 | 34.21 ± 7.34 |
LHV (MJ kg−1 d.m.) | 18.86 ± 0.48 | 17.95 ± 0.81 | 17.98 ± 0.45 | 16.65 ± 1.36 | 18.40 ± 0.44 | 15.35 ± 1.91 |
LHV (MJ kg−1 as received) | 11.47 ± 2.00 | 12.30 ± 2.22 | 10.97 ± 1.87 | 11.20 ± 2.75 | 12.89 ± 1.35 | 10.10 ± 2.52 |
Ash content (% d.m.) | 2.83 ± 2.28 | 3.70 ± 3.42 | 4.54 ± 1.91 | 11.15 ± 7.16 | 3.09 ± 1.79 | 18.62 ± 10.90 |
Carbon content (% d.m.) | 50.41 ± 1.10 | 48.00 ± 2.74 | 48.20 ± 1.48 | 43.54 ± 4.03 | 48.91 ± 1.29 | 39.08 ± 5.31 |
Hydrogen content (% d.m.) | 5.81 ± 0.20 | 5.53 ± 0.34 | 5.67 ± 0.20 | 4.91 ± 0.51 | 5.61 ± 0.20 | 4.28 ± 0.67 |
Nitrogen content (% d.m.) | 0.27 ± 0.11 | 0.36 ± 0.15 | 0.52 ± 0.23 | 0.59 ± 0.15 | 0.34 ± 0.16 | 0.82 ± 0.15 |
Oxygen content (% d.m.) | 40.61 ± 1.69 | 42.41 ± 1.62 | 41.04 ± 0.98 | 39.76 ± 4.32 | 42.01 ± 0.67 | 37.11 ± 7.01 |
Chlorine content (% d.m.) | 0.01 ± 0.1 | 0.01 ± 0.1 | 0.01 ± 0.01 | 0.02 ± 0.04 | 0.01 ± 0.01 | 0.02 ± 0.07 |
Sulfur content (% d.m.) | 0.02 ± 0.02 | 0.01 ± 0.02 | 0.02 ± 0.03 | 0.01 ± 0.02 | 0.02 ± 0.01 | 0.01 ± 0.02 |
Phase | Impact |
---|---|
Biomass chipping | 4.299 |
Transport of Biomass | 5.960 |
Plant Materials Input | |
Urea | 2.613 |
Sodium bicarbonate | 0.063 |
Hydrated lime | 0.133 |
Ferric chloride | 0.119 |
Sodium hypochlorite | 0.180 |
Sodium metabisulphite | 0.015 |
Caustic soda | 0.003 |
Sulfuric acid | 0.026 |
Plant Energy Input | |
Energy import AT | 0.131 |
Energy import MT | 1.422 |
Energy import BT | 0.005 |
Natural gas MP | 0.515 |
Natural gas BP | 0.064 |
Diesel fuel | 1.293 |
Ash Disposal | |
Bottom ash transport | 0.124 |
Transport of light ashes | 0.070 |
Ash dump | 0.409 |
Total Average Impact | 17.445 |
Author (s) | Year | Location | Biomass Type | Conversion Technology | GHG Emission g CO2 eq./kWhe |
---|---|---|---|---|---|
Rafaschieri et al. [74] | 1999 | Italy | Poplar | Pressurized fluid bed gasifier | 110 |
Carpentieri et al. [75] | 2005 | Italy | Poplar | Integrated gasification combined cycle | 178 * |
Puy et al. [76] | 2010 | Spain | Wood waste Forest residue | Gasification for electricity and thermal production | 568 871 |
Butnar et al. [64] | 2010 | Spain | Poplar Ethiopian Mustard | Direct combustion | 100–150 180–300 |
Siegl et al. [77] | 2011 | Austria | Wood chips | Direct combustion Gasification | 80 90 |
Wang et al. [78] | 2012 | China | Woody material | Gasification | 144 |
Roder et al. [79] | 2015 | UK | Forest residues Sawmill residues | Direct combustion | 132 140 |
Paengjuntuek et al. [80] | 2015 | Thailand | Rice straw | Integrated biomass gasification fuel cell | 864 |
Nian [81] | 2016 | Singapore | Pine Poplar Willow | Direct combustion | 380 ** 270 250 |
Chary et al. [65] | 2018 | France | Energy cane Wood pellet | Cogeneration plant—multifueled boiler | 234 237 |
da Costa et al. [82] | 2018 | Portugal | Forest residues | Biomass gasification fuel cell system | 98.30–163.1 |
Yang et al. [83] | 2018 | China | Rice husks and straw | Biomass gasification combined cycle | 493 |
Beagle and Belmont [14] | 2019 | EU. | Chips Pellets | Combustion with a steam turbine | 430 400 |
Loucao et al. [72] | 2019 | Portugal | Forest residue | Integrated gasification combined cycle Rankine cycle | 2757 3315 |
Siregar et al. [84] | 2020 | Indonesia | Oil palm residue | Gasifier | 152 |
Zang et al. [85] | 2020 | Not specified | Pinewood | Integrated gasification combined cycles | 203–239 |
Briones-Hidrovo et al. [73] | 2021 | Portugal | Forest residues | Integrated gasification combined cycles Combustion Rankine Cycle | 78 109 |
Present study | 2021 | Italy | Forest residues Agricultural residues | Direct combustion—Boilers | 63 |
Author (s) | Biomass Production | Chipping | Pelletize | Transport | Plant Construction | Electricity Conversion | Ash Disposal |
---|---|---|---|---|---|---|---|
Rafaschieri et al. [74] | x | - | - | x | - | x | - |
Carpentieri et al. [75] | x | - | - | x | x | x | - |
Puy et al. [76] | - | x | - | x | - | x | - |
Butnar et al. [64] | x | x | - | x | - | x | x |
Siegl et al. [77] | x | x | - | x | x | x | x |
Wang et al. [78] | x | - | - | x | x | x | - |
Roder et al. [79] | x | x | x | x | - | x | - |
Paengjuntuek et al. [80] | - | - | - | - | x | x | - |
Nian [81] | x | - | x | x | - | x | x |
Chary et al. [65] | x | - | x | x | - | x | - |
da Costa et al. [82] | x | x | - | x | - | x | - |
Yang et al. [83] | x | - | - | x | x | x | x |
Beagle and Belmont [14] | - | x | x | x | - | x | - |
Loucao et al. [72] | x | x | - | x | - | x | - |
Siregar et al. [84] | x | - | - | x | - | x | x |
Zang et al. [85] | x | - | - | x | x | x | - |
Briones-Hidrovo et al. [73] | x | x | - | - | x | x | x |
Present study | - | x | - | x | - | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilari, A.; Duca, D.; Boakye-Yiadom, K.A.; Gasperini, T.; Toscano, G. Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues. Resources 2022, 11, 7. https://doi.org/10.3390/resources11020007
Ilari A, Duca D, Boakye-Yiadom KA, Gasperini T, Toscano G. Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues. Resources. 2022; 11(2):7. https://doi.org/10.3390/resources11020007
Chicago/Turabian StyleIlari, Alessio, Daniele Duca, Kofi Armah Boakye-Yiadom, Thomas Gasperini, and Giuseppe Toscano. 2022. "Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues" Resources 11, no. 2: 7. https://doi.org/10.3390/resources11020007
APA StyleIlari, A., Duca, D., Boakye-Yiadom, K. A., Gasperini, T., & Toscano, G. (2022). Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues. Resources, 11(2), 7. https://doi.org/10.3390/resources11020007