A Low-Voltage, Low-Power 2.5 GHz Ring Oscillator with Process and Temperature Compensation
Abstract
1. Introduction
2. The VCO Architecture
2.1. The Delay Cell
2.2. The Temperature Compensation Technique and Circuit
2.3. The Process Compensation Technique and Topology
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VCO | Voltage-Controlled Oscillator |
PTAT | Proportional-To-Absolute Temperature |
CTAT | Complementary-To-Absolute Temperature |
PLL | Phase-Locked Loop |
PVT | Process, Voltage, and Temperature |
LDO | Low-Dropout Regulator |
IoT | Internet of Things |
References
- Bertsias, P.; Tsimpos, A.; Souliotis, G. A Linear Multi-Band Voltage-Controlled Oscillator with Process Compensation for SerDes Applications. Electronics 2024, 13, 581. [Google Scholar] [CrossRef]
- Ciarpi, G.; Monda, D.; Mestice, M.; Rossi, D.; Saponara, S. Asymmetric 5.5 GHz Three-Stage Voltage-Controlled Ring-Oscillator in 65 nm CMOS Technology. Electronics 2023, 13, 778. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Castañeda-Aviña, P.R.; Guerra, R.T.; Gómez, V.H.C. Design of a Wide-Band Voltage-Controlled Ring Oscillator Implemented in 180 nm CMOS Technology. Electronics 2019, 8, 1156. [Google Scholar] [CrossRef]
- Souliotis, G.; Keramida, E.; Plessas, F.; Malatesta, R.; Vlassis, S. Temperature compensated ring oscillator based VCO. AEU—Int. J. Electron. Commun. 2022, 131, 80–87. [Google Scholar] [CrossRef]
- Li, Y.; Xun, B.; Shi, Y.; Xu, X.; Li, M.; Zhu, H.; Sun, Q. A Compact, Low-Power, and Low-Jitter Fractional-N Phase-Locked Loop with a Single-Ended Ring Voltage-Controlled Oscillator in a 12 nm CMOS FinFET. Electronics 2024, 13, 2617. [Google Scholar] [CrossRef]
- Sun, L.; Luo, Y.; Deng, Z.; Wang, J.; Liu, B. Novel Power-Efficient Fast-Locking Phase-Locked Loop Based on Adaptive Time-to-Digital Converter-Aided Acceleration Compensation Technology. Electronics 2024, 13, 3586. [Google Scholar] [CrossRef]
- Rajalingam, P.R.; Jayakumar, S.J. Design and analysis of radiation-tolerant high frequency voltage controlled oscillator for PLL applications. AEU—Int. J. Electron. Commun. 2021, 126, 57–63. [Google Scholar] [CrossRef]
- Jangra, V.; Kumar, M. New low power differential VCO circuit designs with active load and IMOS varactor. AEU—Int. J. Electron. Commun. 2020, 110, 147–155. [Google Scholar] [CrossRef]
- Salem, S.; Tajabadi, M.; Saneei, M. The design and analysis of dual control voltages delay cell for low power and wide tuning range ring oscillators in 65 nm CMOS technology for CDR applications. AEU—Int. J. Electron. Commun. 2017, 70, 433–439. [Google Scholar] [CrossRef]
- Sharma, G.K.; Kumar, T.B.; Johar, A.K. A wide tuning range, low noise oscillator with FoM of -188 dBc/Hz in 45 nm CMOS. AEU—Int. J. Electron. Commun. 2020, 116, 153390. [Google Scholar] [CrossRef]
- Jalil, J.; Reaz, M.B.I.; Ali, M.A.M. CMOS Differential Ring Oscillators: Review of the Performance of CMOS ROs in Communication Systems. IEEE Microw. Mag. 2013, 14, 97–109. [Google Scholar] [CrossRef]
- Hu, J.; Zou, R.; Yao, Y.; He, J.; Wang, D. A 2.4-GHz ring-VCO-based time-to-voltage conversion PLL achieving low-jitter and low-spur performance. Microelectron. J. 2024, 72, 29–36. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Wang, X.; Xiang, R.; Wang, J.; Zhang, L. Power-efficient wideband programmable pseudo differential ring oscillator CP-PLL. Microelectron. J. 2024, 71, 48–55. [Google Scholar] [CrossRef]
- Saraswat, M.K.; Mahadev, R.; Yerragudi, S.B.; Le, K.M.; Abbas, Z. A Process and Temperature Compensation Technique for Ring-VCO in Charge-Pump PLL. In Proceedings of the 2024 IEEE 67th International Midwest Symposium on Circuits and Systems, Springfield, MA, USA, 11–14 August 2024. [Google Scholar] [CrossRef]
- Chong, K.F.; Siek, L.; Lau, B. A PLL with a VCO of improved PVT tolerance. In Proceedings of the 2011 International Symposium on Integrated Circuits, Singapore, 12–14 December 2011. [Google Scholar] [CrossRef]
- Zhang, X.; Apsel, A.B. A process compensated 3-GHz ring oscillator. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009. [Google Scholar] [CrossRef]
- Lakshmikumar, K.R.; Mukundagiri, V.; Gierkink, S.L.J. A Process and Temperature Compensated Two-Stage Ring Oscillator. In Proceedings of the 2007 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 16–19 September 2007. [Google Scholar] [CrossRef]
- Wu, J.; Chang, L.; Li, W.; Zheng, L.; Sun, W. Temperature compensated and gated CMOS ring oscillator for time-to-digital converter application. Analog. Integr. Circuits Signal Process. 2017, 91, 695–702. [Google Scholar] [CrossRef]
- Li, C.; Lin, J. A 1–9 GHz Linear-Wide-Tuning-Range Quadrature Ring Oscillator in 130 nm CMOS for Non-Contact Vital Sign Radar Application. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 34–36. [Google Scholar] [CrossRef]
- Lee, K.; Jung, J.; Kim, G.; Kim, J.; Kim, S.; Oh, S.; Park, S.M.; Lee, J. A Wide Frequency Range, Small Area and Low Supply Memory Interface PLL Using a Process and Temperature Variation Aware Current Reference in 3 nm Gate-All Around CMOS. In Proceedings of the 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), Haikou, China, 5–8 November 2023. [Google Scholar] [CrossRef]
- Vázquez-Valdés, S.E.; Argüelles-Lucho, P.; Woo-García, R.M.; Osorio-de-la-Rosa, E.; López-Huerta, F.; Herrera-May, A.L. A CMOS-Based Power Management Circuit with a Reconfigurable Rectifier and an LDO Regulator for Piezoelectric Energy Harvesting in IoT Applications. Nanoenergy Adv. 2025, 5, 7. [Google Scholar] [CrossRef]
- Wu, T.; Redouté, J.M.; Yuce, M.R. A Wireless Implantable Sensor Design With Subcutaneous Energy Harvesting for Long-Term IoT Healthcare Applications. IEEE Access 2018, 6, 35801–35808. [Google Scholar] [CrossRef]
- Filanovsky, I.M.; Allam, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 876–884. [Google Scholar] [CrossRef]
- Liu, S.; Baker, R.J. Process and temperature performance of a CMOS beta-multiplier voltage reference. In Proceedings of the 1998 Midwest Symposium on Circuits and Systems, Notre Dame, IN, USA, 9–12 August 1998. [Google Scholar] [CrossRef]
- Anusha, G.; Kumar, A.; Kavindra, K. A Fully On-Chip Low-Dropout Regulator for SoC applications. Procedia Comput. Sci. 2020, 171, 1009–1017. [Google Scholar] [CrossRef]
- Sun, X.; Boora, A.; Zhang, W.; Pamula, V.R.; Sathe, V. A 0.6-to-1.1V Computationally Regulated Digital LDO with 2.79-Cycle Mean Settling Time and Autonomous Runtime Gain Tracking in 65nm CMOS. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019. [Google Scholar] [CrossRef]
- Ahmed, F.U.; Sandhie, Z.T.; Ali, L.; Chowdhury, M.H. A Brief Overview of On-Chip Voltage Regulation in High-Performance and High-Density Integrated Circuits. IEEE Access 2021, 9, 813–826. [Google Scholar] [CrossRef]
- Chyan, T.Y.; Ramiah, H.; Wan Muhamad Hatta, S.F.; Lai, N.S.; Lim, C.C.; Chen, Y.; Mak, P.I.; Martins, R.P. Evaluation and Perspective of Analog Low-Dropout Voltage Regulators: A Review. IEEE Access 2022, 10, 114469–114489. [Google Scholar] [CrossRef]
- Milliken, R.J.; Silva-Martinez, J.; Sanchez-Sinencio, E. Full On-Chip CMOS Low-Dropout Voltage Regulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 1879–1890. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Ni, S.; Wang, Q.; Li, X.; Chen, H.; Song, Z.A. Fully Integrated Low-Dropout Regulator with Improved Load Regulation and Transient Responses. Micromachines 2022, 13, 1668. [Google Scholar] [CrossRef] [PubMed]
Corner | Vctrl (mV) | Compensation | fo (GHz) | fmin (GHz) | fmax (GHz) | Variation (%) |
---|---|---|---|---|---|---|
tt | 400 | No | 2.553 | 2.216 | 2.825 | 23.9 |
tt | 400 | Yes | 2.553 | 2.428 | 2.565 | 5.4 |
tt, ss, ff | 400 | No | 2.553 | 1.968 | 3.175 | 47.3 |
tt, ss, ff, sf, fs | 200 | Yes | 2.441 | 2.215 | 2.518 | 12.4 |
tt, ss, ff, sf, fs | 300 | Yes | 2.499 | 2.311 | 2.542 | 9.2 |
tt, ss, ff, sf, fs | 400 | Yes | 2.553 | 2.391 | 2.576 | 7.2 |
tt, ss, ff, sf, fs | 500 | Yes | 2.601 | 2.432 | 2.613 | 7 |
tt, ss, ff, sf, fs | 600 | Yes | 2.652 | 2.442 | 2.680 | 9 |
tt, ss, ff, sf, fs, VDD −2% | 400 | Yes | 2.491 | 2.347 | 2.526 | 7.2 |
tt, ss, ff, sf, fs, VDD +2% | 400 | Yes | 2.612 | 2.419 | 2.623 | 7.8 |
[4] | [14] | [15] | [16] | [17] | [20] | This Work | |
---|---|---|---|---|---|---|---|
Technology (nm) | 180 | 28 | 180 | 90 | 130 | 3 nm | 22 |
Supply voltage (V) | 3.3 | 1 | 1.8 | - | 3.3 | 0.8 | 0.8 |
Temp (°C) | −40 to 120 | −40 to 125 | −25 to 125 | −50 to 100 | −40 to 125 | −55 to 125 | −40 to 125 |
Central f (GHz) | 0.480 | 4 | 2.3 | 3 | 1.25 | 10.6 | 2.5 |
Variation @ fo (%) | 1.9 | - | 3.0 | 17 | 10 | 10 | 7.2 |
Calibration | T | PVT | PVT | PT | PT | PT | PT |
In PLL | Yes | Yes | Yes | PLL_like | No | Yes | No |
Power consumption (mW) | NA | 2.27 | - | 2.55 | 3.4 | 5.6 | 0.38 |
Phase noise (dBc/Hz) @ 1 MHz | −107 | - | - | - | −88 | −69.1 | −80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrinos, D.; Souliotis, G. A Low-Voltage, Low-Power 2.5 GHz Ring Oscillator with Process and Temperature Compensation. J. Low Power Electron. Appl. 2025, 15, 52. https://doi.org/10.3390/jlpea15030052
Patrinos D, Souliotis G. A Low-Voltage, Low-Power 2.5 GHz Ring Oscillator with Process and Temperature Compensation. Journal of Low Power Electronics and Applications. 2025; 15(3):52. https://doi.org/10.3390/jlpea15030052
Chicago/Turabian StylePatrinos, Dimitris, and George Souliotis. 2025. "A Low-Voltage, Low-Power 2.5 GHz Ring Oscillator with Process and Temperature Compensation" Journal of Low Power Electronics and Applications 15, no. 3: 52. https://doi.org/10.3390/jlpea15030052
APA StylePatrinos, D., & Souliotis, G. (2025). A Low-Voltage, Low-Power 2.5 GHz Ring Oscillator with Process and Temperature Compensation. Journal of Low Power Electronics and Applications, 15(3), 52. https://doi.org/10.3390/jlpea15030052