Improved Frequency Compensation Technique for Three-Stage Amplifiers
Abstract
:1. Introduction
2. Proposed Improved Frequency Compensation
3. Stability Analysis
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Riad, J.; Estrada-López, J.J.; Sánchez-Sinencio, E. Classification and Design Space Exploration of Low-Power Three-Stage Operational Transconductance Amplifier Architectures for Wide Load Ranges. Electronics 2019, 8, 1268. [Google Scholar] [CrossRef] [Green Version]
- Veerabathini, A.; Furth, P.M. A Low Output Voltage Ripple Fully-Integrated Switched-Capacitor DC-DC Converter. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 937–940. [Google Scholar]
- Veerabathini, A.; Furth, P.M. High-Efficiency Switched-Capacitor DC-DC Converter with Three Decades of Load Current Range Using Adaptively-Biased PFM. J. Low Power Electron. Appl. 2020, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Veerabathini, A.; Eshappa, N.B.; Furth, P.M. Low-power pulse width modulation (PWM) for high-frequency DC–DC converters. Electron. Lett. 2018, 54, 585–587. [Google Scholar] [CrossRef]
- Furth, P.M.; Veerabathini, A.; Saifullah, Z.M.; Rivera, D.T.; Elkanishy, A.; Badawy, A.A.; Michael, C.P. Supervisory Circuits for Low-Frequency Monitoring of a Communication SoC. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 17–20. [Google Scholar]
- Roman-Loera, A.; Veerabathini, A.; Flores-Oropeza, L.A.; Ramirez-Angulo, J. A High-Frequency Small-Signal Model for Four-Port Network MOSFETs. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020. [Google Scholar]
- Leung, K.N.; Mok, P.K.T.; Ki, W.H.; Sin, J.K.O. Three-stage large capacitive load amplifier with damping-factor-control frequency compensation. IEEE J. Solid State Circuits 2000, 35, 221–230. [Google Scholar] [CrossRef]
- Eschauzier, R.G.H.; Huijsing, J.H. Frequency Compensation Techniques for Low-Power Operational Amplifiers; Springer: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- Qu, W.; Singh, S.; Lee, Y.; Son, Y.; Cho, G. Design-Oriented Analysis for Miller Compensation and Its Application to Multistage Amplifier Design. IEEE J. Solid State Circuits 2017, 52, 517–527. [Google Scholar] [CrossRef]
- Eschauzier, R.G.H.; Kerklaan, L.P.T.; Huijsing, J.H. A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure. IEEE J. Solid State Circuits 1992, 27, 1709–1717. [Google Scholar] [CrossRef] [Green Version]
- Grasso, A.D.; Palumbo, G.; Pennisi, S. Analytical comparison of frequency compensation techniques in three-stage amplifiers. Int. J. Circuit Theory Appl. 2008, 36, 53–80. [Google Scholar] [CrossRef]
- Leung, K.N.; Mok, P.K.T. Analysis of multistage amplifier-frequency compensation. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2001, 48, 1041–1056. [Google Scholar] [CrossRef]
- Mita, R.; Palumbo, G.; Pennisi, S. Design guidelines for reversed nested Miller compensation in three-stage amplifiers. IEEE Trans. Circuits Syst. Ii Analog. Digit. Signal Process. 2003, 50, 227–233. [Google Scholar] [CrossRef]
- Grasso, A.D.; Marano, D.; Palumbo, G.; Pennisi, S. Analytical comparison of reversed nested Miller frequency compensation techniques. Int. J. Circuit Theory Appl. 2010, 38, 709–737. [Google Scholar] [CrossRef]
- Palumbo, G.; Pennisi, S. Design methodology and advances in nested-Miller compensation. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2002, 49, 893–903. [Google Scholar] [CrossRef]
- You, F.; Embabi, S.H.K.; Sanchez-Sinencio, E. A multistage amplifier topology with nested Gm-C compensation for low-voltage application. In Proceedings of the 1997 IEEE International Solids-State Circuits Conference, Digest of Technical Papers, San Francisco, CA, USA, 8 February 1997; pp. 348–349. [Google Scholar] [CrossRef]
- Grasso, A.D.; Marano, D.; Palumbo, G.; Pennisi, S. Improved Reversed Nested Miller Frequency Compensation Technique With Voltage Buffer and Resistor. IEEE Trans. Circuits Syst. II Express Briefs 2007, 54, 382–386. [Google Scholar] [CrossRef]
- Gaviño, R. Introducción a Los Sistemas de Control: Conceptos, Aplicaciones y Simulación con MATLAB; Pearson Education: London, UK, 2010. [Google Scholar]
- Ogata, K. Modern Control Engineering, 4th ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Grasso, A.D.; Palumbo, G.; Pennisi, S. Three-Stage CMOS OTA for Large Capacitive Loads With Efficient Frequency Compensation Scheme. IEEE Trans. Circuits Syst. Express Briefs 2006, 53, 1044–1048. [Google Scholar] [CrossRef]
- Leung, K.N.; Mok, P.K.T.; Ki, W.H. Optimum nested Miller compensation for low-voltage low-power CMOS amplifier design. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 30 May–2 June 1999; Volume 2, pp. 616–619. [Google Scholar] [CrossRef]
Devices | Value | Units | |
---|---|---|---|
x2, , , , x5, , | 1.8/0.72 | μm/μm | |
, , , x5, , | 7.2/0.72 | μm/μm | |
, , , , , | 160 | μV/A | |
800 | μV/A | ||
125 | μA | ||
1.8 | V |
[20] | [10] | [16] | [21] | [7] | |||||
---|---|---|---|---|---|---|---|---|---|
Type | Proposed | NMC | NMCNR | RNMC | DPZC | MNMC | NGCC | NMCFNR | DFCFC |
Process (μm) | 0.18 | 0.18 | 0.18 | 0.18 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
UGF (MHz) | 12.31 | 3.2 | 6.76 | 10.2 | 0.4 | 0.54 | 0.25 | 0.8 | 0.96 |
2 | 12 | 5.5 | 3.5 | 49.5 | 141 | 94 | 28.7 | 35 | |
(k) | 0 | 0 | 6 | 0 | - | - | - | - | - |
10 | 10 | 10 | 10 | 100 | 100 | 100 | 100 | 100 | |
SR () | 16 | 6.5 | 10 | 15 | 0.375 | 0.4 | 0.27 | 0.75 | 0.78 |
P (μW) | 495 | 450 | 450 | 675 | 345 | 431 | 365 | 345 | 372 |
249 | 71 | 150 | 151 | 116 | 125 | 68 | 232 | 256 | |
323 | 144 | 222 | 222 | 109 | 93 | 101 | 217 | 208 | |
447 | 128 | 270 | 272 | 232 | 250 | 136 | 472 | 512 | |
581 | 0.18 | 0.35 | 0.36 | 218 | 186 | 202 | 434 | 416 | |
0.625 | 0.18 | 0.35 | 0.36 | 0.24 | 0.21 | 0.13 | 0.39 | 0.56 |
Type | Proposed | NMC | NMCNR | RNMC |
---|---|---|---|---|
UGF (MHz) | 12.31 | 3.2 | 6.76 | 10.2 |
(dB) | 90.7 | 90.7 | 90.7 | 90.7 |
PM (deg) | 82.5 | 53 | 61 | 62 |
GM (dB) | 22 | 4.71 | 9.5 | 10.8 |
(ns) = 50 mV, = 50 ns | 77/93 | 286/289 | 78/126 | 67/63 |
(ns) = 0.5 V, = 50 ns | 297/297 | 338/374 | 307/310 | 300/300 |
(ns) = 0.5 V, = 300 ns | 65/72 | 213/414 | 78/235 | 65/125 |
Temperature C | |||||
Corner | TT | SS | FF | SF | FS |
UGF (MHz) | 15.48 | 14.77 | 16.48 | 14.93 | 16.23 |
Phase Margin (deg) | 83 | 83 | 82.7 | 83.45 | 82.35 |
Gain Margin (dB) | 23.72 | 23.77 | 23.6 | 24.25 | 23.11 |
Temperature C | |||||
Corner | TT | SS | FF | SF | FS |
UGF (MHz) | 12.3 | 11.6 | 13.1 | 11.76 | 12.86 |
Phase Margin (deg) | 82.5 | 86.53 | 83.1 | 83.87 | 82.74 |
Gain Margin (dB) | 22 | 24.37 | 24 | 24.63 | 23.57 |
Temperature C | |||||
Corner | TT | SS | FF | SF | FS |
UGF (MHz) | 9.29 | 8.75 | 10 | 8.96 | 9.83 |
Phase Margin (deg) | 84 | 84.26 | 83.7 | 84.5 | 83.4 |
Gain Margin (dB) | 25.12 | 25.32 | 24.75 | 25.66 | 24.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loera, A.R.; Veerabathini, A.; Oropeza, L.A.F.; Martínez, L.A.C.; Frias, D.M. Improved Frequency Compensation Technique for Three-Stage Amplifiers. J. Low Power Electron. Appl. 2021, 11, 11. https://doi.org/10.3390/jlpea11010011
Loera AR, Veerabathini A, Oropeza LAF, Martínez LAC, Frias DM. Improved Frequency Compensation Technique for Three-Stage Amplifiers. Journal of Low Power Electronics and Applications. 2021; 11(1):11. https://doi.org/10.3390/jlpea11010011
Chicago/Turabian StyleLoera, Alejandro Roman, Anurag Veerabathini, Luis Alejandro Flores Oropeza, Luis Antonio Carrillo Martínez, and David Moro Frias. 2021. "Improved Frequency Compensation Technique for Three-Stage Amplifiers" Journal of Low Power Electronics and Applications 11, no. 1: 11. https://doi.org/10.3390/jlpea11010011
APA StyleLoera, A. R., Veerabathini, A., Oropeza, L. A. F., Martínez, L. A. C., & Frias, D. M. (2021). Improved Frequency Compensation Technique for Three-Stage Amplifiers. Journal of Low Power Electronics and Applications, 11(1), 11. https://doi.org/10.3390/jlpea11010011