Conditional Entropy-Based Sequential Decision-Making for AI Adoption in Manufacturing: A Reinforcement Learning Approach
Abstract
1. Introduction
2. Literature Review
2.1. Sequential Decision-Making
2.2. Decision-Making Based on Information Theory
2.3. Sequential Decision-Making Elements and Attributes for AI Adoption in Manufacturing
2.4. Reinforcement Learning and Q-Learning for Sequential Decision-Making
3. Proposed Sequential Decision-Making Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
CE | Conditional entropy |
kNN | k-nearest neighbor |
MI | Mutual information |
NN | Neural networks |
RL | Reinforcement learning |
SDM | Sequential decision-making |
SMEs | Small- and medium-sized enterprises |
SMMs | Small- and medium-sized manufacturers |
SVM | Support vector machines |
TC | Total correlation |
TPM | Transition probability matrix |
Appendix A
No. | Reference No. | Reference | Purpose | Task | Sensor | Data Type | Data Collection Interval | Data Collection Period | Data Dimension | AI Technique |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | [44] | Quality | Diagnosis | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | SVM |
2 | 2 | [45] | Quality | Diagnosis | Force | Numeric | <0.01 s | Unknown | <10 (1D) | SVM |
3 | Quality | Diagnosis | Force | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
4 | Quality | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | SVM | ||
5 | Quality | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
6 | Energy | Diagnosis | Force | Numeric | <0.01 s | Unknown | <10 (1D) | SVM | ||
7 | Energy | Diagnosis | Force | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
8 | Energy | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | SVM | ||
9 | Energy | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
10 | 3 | [46] | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
11 | Quality | Prediction | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
12 | Quality | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
13 | Fault | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
14 | Fault | Monitoring | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
15 | Fault | Monitoring | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
16 | Quality | Prediction | Camera | Image | Unknown | Unknown | Unknown | NN | ||
17 | Fault | Monitoring | Camera | Image | Unknown | Unknown | Unknown | NN | ||
18 | 4 | [47] | Cost | Control/Optimization | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | SVM |
19 | Cost | Control/Optimization | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | NN | ||
20 | Quality | Diagnosis | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | SVM | ||
21 | Quality | Diagnosis | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | NN | ||
22 | Quality | Control/Optimization | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | SVM | ||
23 | Quality | Control/Optimization | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | NN | ||
24 | Energy | Diagnosis | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | SVM | ||
25 | Energy | Diagnosis | Others | Numeric | <0.01 s | Unknown | 10~100 (1D) | NN | ||
26 | 5 | [48] | Cost | Diagnosis | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
27 | Cost | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
28 | 6 | [49] | Cost | Prediction | Camera | Image | 0.01~1 s | 1~7days | >100 × 100 (2D) | NN |
29 | Cost | Control/Optimization | Camera | Image | 0.01~1 s | 1~7days | >100 × 100 (2D) | NN | ||
30 | Quality | Prediction | Camera | Image | 0.01~1 s | 1~7days | >100 × 100 (2D) | NN | ||
31 | Quality | Control/Optimization | Camera | Image | 0.01~1 s | 1~7days | >100 × 100 (2D) | NN | ||
32 | 7 | [50] | Cost | Control/Optimization | Force | Numeric | Unknown | Unknown | 10~100 (1D) | SVM |
33 | Cost | Control/Optimization | Force | Numeric | Unknown | Unknown | 10~100 (1D) | Others | ||
34 | Energy | Prediction | Force | Numeric | Unknown | Unknown | 10~100 (1D) | SVM | ||
35 | Energy | Prediction | Force | Numeric | Unknown | Unknown | 10~100 (1D) | Others | ||
36 | Energy | Control/Optimization | Force | Numeric | Unknown | Unknown | 10~100 (1D) | SVM | ||
37 | Energy | Control/Optimization | Force | Numeric | Unknown | Unknown | 10~100 (1D) | Others | ||
38 | 8 | [51] | Cost | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
39 | Cost | Prediction | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
40 | Cost | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
41 | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
42 | Quality | Prediction | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
43 | Quality | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
44 | Energy | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
45 | Energy | Prediction | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
46 | Energy | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
47 | 9 | [52] | Cost | Monitoring | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
48 | Cost | Diagnosis | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
49 | Quality | Monitoring | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
50 | Quality | Diagnosis | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
51 | 10 | [53] | Cost | Diagnosis | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN |
52 | Cost | Diagnosis | Sound | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
53 | Time | Diagnosis | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
54 | Time | Diagnosis | Sound | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
55 | 11 | [54] | Quality | Diagnosis | Force | Numeric | Unknown | Unknown | 10~100 (1D) | NN |
56 | Quality | Diagnosis | Vibration | Numeric | Unknown | Unknown | 10~100 (1D) | NN | ||
57 | Energy | Diagnosis | Force | Numeric | Unknown | Unknown | 10~100 (1D) | NN | ||
58 | Energy | Diagnosis | Vibration | Numeric | Unknown | Unknown | 10~100 (1D) | NN | ||
59 | 12 | [55] | Cost | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
60 | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
61 | 13 | [56] | Cost | Monitoring | Force | Numeric | Unknown | Unknown | <10 (1D) | NN |
62 | Time | Monitoring | Force | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
63 | 14 | [57] | Quality | Monitoring | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | NN |
64 | Quality | Prediction | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | NN | ||
65 | 15 | [58] | Quality | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | SVM |
66 | Quality | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
67 | 16 | [59] | Time | Prediction | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
68 | Time | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
69 | Quality | Prediction | Sound | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
70 | Quality | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
71 | 17 | [60] | Quality | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
72 | Quality | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
73 | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
74 | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
75 | 18 | [61] | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN |
76 | Time | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
77 | 19 | [62] | Quality | Prediction | Force | Numeric | Unknown | Unknown | <10 (1D) | NN |
78 | Quality | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
79 | Energy | Prediction | Force | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
80 | Energy | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
81 | 20 | [63] | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM |
82 | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
83 | Cost | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
84 | Cost | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
85 | Time | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
86 | Time | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
87 | Time | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
88 | Time | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
89 | 21 | [64] | Quality | Prediction | Force | Numeric | <0.01 s | <1 day | <10 (1D) | Tree |
90 | Quality | Prediction | Force | Numeric | <0.01 s | <1 day | <10 (1D) | Others | ||
91 | 22 | [65] | Time | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM |
92 | Time | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
93 | Energy | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
94 | Energy | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
95 | Time | Prediction | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | SVM | ||
96 | Time | Control/Optimization | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | SVM | ||
97 | Energy | Prediction | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | SVM | ||
98 | Energy | Control/Optimization | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | SVM | ||
99 | 23 | [66] | Quality | Monitoring | Velocity/Acceleration | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
100 | Quality | Monitoring | Velocity/Acceleration | Numeric | <0.01 s | Unknown | <10 (1D) | Others | ||
101 | 24 | [67] | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | 10~100 (1D) | NN |
102 | Quality | Prediction | Vibration | Numeric | 0.01~1 s | Unknown | 10~100 (1D) | NN | ||
103 | Quality | Control/Optimization | Force | Numeric | <0.01 s | Unknown | 10~100 (1D) | NN | ||
104 | Quality | Control/Optimization | Vibration | Numeric | 0.01~1 s | Unknown | 10~100 (1D) | NN | ||
105 | 25 | [68] | Quality | Diagnosis | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | NN |
106 | Quality | Control/Optimization | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | NN | ||
107 | 26 | [69] | Cost | Prediction | Sound | Numeric | <0.01 s | <1 day | 10~100 (1D) | NN |
108 | Cost | Prediction | Sound | Numeric | <0.01 s | <1 day | 10~100 (1D) | Others | ||
109 | Time | Prediction | Sound | Numeric | <0.01 s | <1 day | 10~100 (1D) | NN | ||
110 | Time | Prediction | Sound | Numeric | <0.01 s | <1 day | 10~100 (1D) | Others | ||
111 | 27 | [70] | Time | Prediction | Energy | Numeric | <0.01 s | <1 day | <10 (1D) | NN |
112 | Cost | Prediction | Energy | Numeric | <0.01 s | <1 day | <10 (1D) | NN | ||
113 | 28 | [71] | Quality | Prediction | Force | Numeric | 0.01~1 s | Unknown | <10 (1D) | NN |
114 | 29 | [72] | Quality | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
115 | Energy | Diagnosis | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
116 | 30 | [73] | Cost | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
117 | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
118 | 31 | [74] | Cost | Monitoring | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
119 | Quality | Monitoring | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
120 | Energy | Monitoring | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
121 | 32 | [75] | Quality | Monitoring | Others | String | Unknown | Unknown | <10 (1D) | NN |
122 | Quality | Prediction | Others | String | Unknown | Unknown | <10 (1D) | NN | ||
123 | Quality | Monitoring | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
124 | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
125 | 33 | [76] | Cost | Monitoring | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN |
126 | Cost | Prediction | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
127 | Quality | Monitoring | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
128 | Quality | Prediction | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
129 | 34 | [77] | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | Tree |
130 | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | kNN | ||
131 | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
132 | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | Others | ||
133 | Energy | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | Tree | ||
134 | Energy | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | kNN | ||
135 | Energy | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
136 | Energy | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | Others | ||
137 | 35 | [78] | Quality | Diagnosis | Energy | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
138 | 36 | [79] | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN |
139 | Quality | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
140 | 37 | [80] | Quality | Prediction | Velocity/Acceleration | Numeric | Unknown | Unknown | <10 (1D) | NN |
141 | 38 | [81] | Cost | Diagnosis | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | NN |
142 | 39 | [82] | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN |
143 | Cost | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | Others | ||
144 | Time | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
145 | Time | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | Others | ||
146 | 40 | [83] | Cost | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
147 | Cost | Monitoring | Velocity/Acceleration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
148 | Quality | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
149 | Quality | Monitoring | Velocity/Acceleration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
150 | Energy | Monitoring | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
151 | Energy | Monitoring | Velocity/Acceleration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
152 | 41 | [84] | Quality | Diagnosis | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | NN |
153 | Fault | Diagnosis | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | NN | ||
154 | 42 | [85] | Cost | Control/Optimization | Energy | Numeric | Unknown | Unknown | <10 (1D) | SVM |
155 | Cost | Control/Optimization | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
156 | Cost | Control/Optimization | Force | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
157 | Cost | Control/Optimization | Force | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
158 | Cost | Control/Optimization | Sound | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
159 | Cost | Control/Optimization | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
160 | Cost | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
161 | Cost | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
162 | Time | Control/Optimization | Energy | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
163 | Time | Control/Optimization | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
164 | Time | Control/Optimization | Force | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
165 | Time | Control/Optimization | Force | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
166 | Time | Control/Optimization | Sound | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
167 | Time | Control/Optimization | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
168 | Time | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
169 | Time | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
170 | Fault | Prediction | Energy | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
171 | Fault | Prediction | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
172 | Fault | Prediction | Force | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
173 | Fault | Prediction | Force | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
174 | Fault | Prediction | Sound | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
175 | Fault | Prediction | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
176 | Fault | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
177 | Fault | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
178 | Fault | Control/Optimization | Energy | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
179 | Fault | Control/Optimization | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
180 | Fault | Control/Optimization | Force | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
181 | Fault | Control/Optimization | Force | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
182 | Fault | Control/Optimization | Sound | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
183 | Fault | Control/Optimization | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
184 | Fault | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
185 | Fault | Control/Optimization | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
186 | 43 | [86] | Quality | Monitoring | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | Tree |
187 | 44 | [87] | Fault | Prediction | Force | Numeric | <0.01 s | <1 day | <10 (1D) | Tree |
188 | 45 | [88] | Quality | Monitoring | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN |
189 | Quality | Monitoring | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
190 | Quality | Monitoring | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
191 | Fault | Monitoring | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
192 | Fault | Monitoring | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
193 | Fault | Monitoring | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
194 | Fault | Prediction | Energy | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
195 | Fault | Prediction | Sound | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
196 | Fault | Prediction | Vibration | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
197 | 46 | [89] | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM |
198 | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
199 | Quality | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
200 | Quality | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
201 | 47 | [90] | Quality | Monitoring | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
202 | Quality | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
203 | 48 | [91] | Quality | Prediction | Camera | Image | Unknown | Unknown | >100 × 100 (2D) | NN |
204 | 49 | [92] | Fault | Diagnosis | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
205 | 50 | [93] | Quality | Prediction | Force | Numeric | <0.01 s | Unknown | <10 (1D) | NN |
206 | Quality | Prediction | Vibration | Numeric | <0.01 s | Unknown | <10 (1D) | NN | ||
207 | 51 | [94] | Energy | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM |
208 | Energy | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | SVM | ||
209 | 52 | [95] | Quality | Prediction | Others | String | Unknown | Unknown | <10 (1D) | NN |
210 | Quality | Control/Optimization | Others | String | Unknown | Unknown | <10 (1D) | NN | ||
211 | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
212 | Quality | Control/Optimization | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
213 | 53 | [96] | Quality | Monitoring | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | NN |
214 | Quality | Prediction | Vibration | Numeric | <0.01 s | <1 day | <10 (1D) | NN | ||
215 | 54 | [97] | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN |
216 | Fault | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN | ||
217 | 55 | [98] | Quality | Prediction | Others | Numeric | Unknown | Unknown | <10 (1D) | NN |
References
- Peretz-Andersson, E.; Tabares, S.; Mikalef, P.; Parida, V. Artificial Intelligence Implementation in Manufacturing SMEs: A Resource Orchestration Approach. Int. J. Inf. Manag. 2024, 77, 102781. [Google Scholar] [CrossRef]
- Jing, H.; Zhang, S. The Impact of Artificial Intelligence on ESG Performance of Manufacturing Firms: The Mediating Role of Ambidextrous Green Innovation. Systems 2024, 12, 499. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Wu, W. How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China. Systems 2025, 13, 480. [Google Scholar] [CrossRef]
- Heimberger, H.; Horvat, D.; Schultmann, F. Exploring the Factors Driving AI Adoption in Production: A Systematic Literature Review and Future Research Agenda. Inf. Technol. Manag. 2024. [Google Scholar] [CrossRef]
- Di Bella, L.; Katsinis, A.; Lagüera González, J.; European Commission. Annual Report on European SMEs 2022/2023; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-9469-591-8.
- US Census Bureau 2021 SUSB Annual Data Tables by Establishment Industry. Available online: https://www.census.gov/data/tables/2021/econ/susb/2021-susb-annual.html (accessed on 2 March 2025).
- Sturm, T.; Pumplun, L.; Gerlach, J.P.; Kowalczyk, M.; Buxmann, P. Machine Learning Advice in Managerial Decision-Making: The Overlooked Role of Decision Makers’ Advice Utilization. J. Strateg. Inf. Syst. 2023, 32, 101790. [Google Scholar] [CrossRef]
- Gao, R.X.; Krüger, J.; Merklein, M.; Möhring, H.-C.; Váncza, J. Artificial Intelligence in Manufacturing: State of the Art, Perspectives, and Future Directions. CIRP Ann. 2024, 73, 723–749. [Google Scholar] [CrossRef]
- Zhang, D.; Gu, R. Behavioral Preference in Sequential Decision-Making and Its Association with Anxiety. Hum. Brain Mapp. 2018, 39, 2482–2499. [Google Scholar] [CrossRef]
- Malyshev, V.V.; Piyavsky, B.S.; Piyavsky, S.A. A Decision Making Method under Conditions of Diversity of Means of Reducing Uncertainty. J. Comput. Syst. Sci. Int. 2010, 49, 44–58. [Google Scholar] [CrossRef]
- Wen, M.; Lin, R.; Wang, H.; Yang, Y.; Wen, Y.; Mai, L.; Wang, J.; Zhang, H.; Zhang, W. Large Sequence Models for Sequential Decision-Making: A Survey. Front. Comput. Sci. 2023, 17, 176349. [Google Scholar] [CrossRef]
- Carlsson, C.; Fullér, R. Multiple Criteria Decision Making: The Case for Interdependence. Comput. Oper. Res. 1995, 22, 251–260. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-521-64298-9. [Google Scholar]
- Sutton, R.S.; Barto, A.G. The Reinforcement Learning Problem; MIT Press: Cambridge, MA, USA, 1998; ISBN 978-0-262-25705-3. [Google Scholar]
- Huang, S.; Lin, F. The Design and Evaluation of an Intelligent Sales Agent for Online Persuasion and Negotiation. Electron. Commer. Res. Appl. 2007, 6, 285–296. [Google Scholar] [CrossRef]
- Li, P.; Ren, S.; Zhang, Q.; Wang, X.; Liu, Y. Think4SCND: Reinforcement Learning with Thinking Model for Dynamic Supply Chain Network Design. IEEE Access 2024, 12, 195974–195985. [Google Scholar] [CrossRef]
- Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; Mordatch, I. Decision Transformer: Reinforcement Learning via Sequence Modeling. In Proceedings of the 35th Conference on Neural Information Processing Systems, Online, 6–14 December 2021; pp. 15084–15097. [Google Scholar]
- Lee, K.-H.; Nachum, O.; Yang, M.S.; Lee, L.; Freeman, D.; Guadarrama, S.; Fischer, I.; Xu, W.; Jang, E.; Michalewski, H. Multi-Game Decision Transformers. In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, LA, USA, 28 November–9 December 2022; pp. 27921–27936. [Google Scholar]
- Janner, M.; Li, Q.; Levine, S. Offline Reinforcement Learning as One Big Sequence Modeling Problem. In Proceedings of the 35th Conference on Neural Information Processing Systems, Online, 6–14 December 2021; pp. 1273–1286. [Google Scholar]
- Shu, H.; Liu, T.; Mu, X.; Cao, D. Driving Tasks Transfer Using Deep Reinforcement Learning for Decision-Making of Autonomous Vehicles in Unsignalized Intersection. IEEE Trans. Veh. Technol. 2022, 71, 41–52. [Google Scholar] [CrossRef]
- Zhang, N.; Yan, J.; Hu, C.; Sun, Q.; Yang, L.; Gao, D.W.; Guerrero, J.M.; Li, Y. Price-Matching-Based Regional Energy Market with Hierarchical Reinforcement Learning Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 11103–11114. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, H.; Li, T.; Gouda, M.A.; Zhou, B. Real-Time Tracker of Chicken for Poultry Based on Attention Mechanism-Enhanced YOLO-Chicken Algorithm. Comput. Electron. Agric. 2025, 237, 110640. [Google Scholar] [CrossRef]
- Zhang, R.; Torabi, F.; Warnell, G.; Stone, P. Recent Advances in Leveraging Human Guidance for Sequential Decision-Making Tasks. Auton. Agents Multi-Agent Syst. 2021, 35, 31. [Google Scholar] [CrossRef]
- Vergara, J.R.; Estévez, P.A. A Review of Feature Selection Methods Based on Mutual Information. Neural Comput. Appl. 2014, 24, 175–186. [Google Scholar] [CrossRef]
- Qian, W.; Shu, W. Mutual Information Criterion for Feature Selection from Incomplete Data. Neurocomputing 2015, 168, 210–220. [Google Scholar] [CrossRef]
- Todorov, D.; Setchi, R. Time-Efficient Estimation of Conditional Mutual Information for Variable Selection in Classification. Comput. Stat. Data Anal. 2014, 72, 105–127. [Google Scholar] [CrossRef]
- Qiu, P.; Niu, Z. TCIC_FS: Total Correlation Information Coefficient-Based Feature Selection Method for High-Dimensional Data. Knowl.-Based Syst. 2021, 231, 107418. [Google Scholar] [CrossRef]
- Li, Q.; Steeg, G.V.; Malo, J. Functional Connectivity via Total Correlation: Analytical Results in Visual Areas. Neurocomputing 2024, 571, 127143. [Google Scholar] [CrossRef]
- Dai, J.; Xu, Q.; Wang, W.; Tian, H. Conditional Entropy for Incomplete Decision Systems and Its Application in Data Mining. Int. J. Gen. Syst. 2012, 41, 713–728. [Google Scholar] [CrossRef]
- Yang, B.; Qi, G.; Xie, B. The Pseudo-Information Entropy of Z-Number and Its Applications in Multi-Attribute Decision-Making. Inf. Sci. 2024, 655, 119886. [Google Scholar] [CrossRef]
- Feng, Z.; Ding, X.; Zhang, H.; Liu, Y.; Yan, W.; Jiang, X. An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards. Energies 2023, 16, 7064. [Google Scholar] [CrossRef]
- Bertsimas, D.; Öztürk, B. Global Optimization via Optimal Decision Trees. J. Glob. Optim. 2023. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine Learning Techniques for Analysis of Hyperspectral Images to Determine Quality of Food Products: A Review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Chang, H.S.; Fu, M.C.; Hu, J.; Marcus, S.I. A Survey of Some Simulation-Based Algorithms for Markov Decision Processes. Commun. Inf. Syst. 2007, 7, 59–92. [Google Scholar] [CrossRef]
- Sun, Z.; Li, L. Potential Capability Estimation for Real Time Electricity Demand Response of Sustainable Manufacturing Systems Using Markov Decision Process. J. Clean. Prod. 2014, 65, 184–193. [Google Scholar] [CrossRef]
- Filippi, S.; Cappé, O.; Garivier, A. Optimism in Reinforcement Learning and Kullback-Leibler Divergence. In Proceedings of the 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–1 October 2010; pp. 115–122. [Google Scholar]
- Li, Y.; Shan, S.; Liu, Q.; Oliva, J.B. Towards Robust Active Feature Acquisition. arXiv 2021, arXiv:2107.04163. [Google Scholar] [CrossRef]
- Maliah, S.; Shani, G. MDP-Based Cost Sensitive Classification Using Decision Trees. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar] [CrossRef]
- Gosavi, A. Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning. In Operations Research/Computer Science Interfaces Series; Springer: Boston, MA, USA, 2015; Volume 55, ISBN 978-1-4899-7490-7. [Google Scholar]
- Khriji, L.; Touati, F.; Benhmed, K.; Al-Yahmedi, A. Mobile Robot Navigation Based on Q-Learning Technique. Int. J. Adv. Robot. Syst. 2011, 8, 4. [Google Scholar] [CrossRef]
- Chakole, J.B.; Kolhe, M.S.; Mahapurush, G.D.; Yadav, A.; Kurhekar, M.P. A Q-Learning Agent for Automated Trading in Equity Stock Markets. Expert Syst. Appl. 2021, 163, 113761. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Li, T.-H.S.; Lin, C.-J. Backward Q-Learning: The Combination of Sarsa Algorithm and Q-Learning. Eng. Appl. Artif. Intell. 2013, 26, 2184–2193. [Google Scholar] [CrossRef]
- Doltsinis, S.; Ferreira, P.; Lohse, N. An MDP Model-Based Reinforcement Learning Approach for Production Station Ramp-Up Optimization: Q-Learning Analysis. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 1125–1138. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Souflas, T.; Papaioannou, C.; Bikas, H.; Mourtzis, D. An Adaptive, Artificial Intelligence-Based Chatter Detection Method for Milling Operations. Int. J. Adv. Manuf. Technol. 2023, 124, 2037–2058. [Google Scholar] [CrossRef]
- Huang, Z.; Shao, J.; Guo, W.; Li, W.; Zhu, J.; Fang, D. Hybrid Machine Learning-Enabled Multi-Information Fusion for Indirect Measurement of Tool Flank Wear in Milling. Measurement 2023, 206, 112255. [Google Scholar] [CrossRef]
- Wong, S.Y.; Chuah, J.H.; Yap, H.J.; Tan, C.F. Dissociation Artificial Neural Network for Tool Wear Estimation in CNC Milling. Int. J. Adv. Manuf. Technol. 2023, 125, 887–901. [Google Scholar] [CrossRef]
- Zheng, X.; Arrazola, P.; Perez, R.; Echebarria, D.; Kiritsis, D.; Aristimuño, P.; Sáez-de-Buruaga, M. Exploring the Effectiveness of Using Internal CNC System Signals for Chatter Detection in Milling Process. Mech. Syst. Signal Process. 2023, 185, 109812. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Liu, M.-K.; Elsisi, M. Effective Multi-Sensor Data Fusion for Chatter Detection in Milling Process. ISA Trans. 2022, 125, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, B.; Park, G. Development of a Real-Time Security Management System for Restricted Access Areas Using Computer Vision and Deep Learning. J. Transp. Saf. Secur. 2022, 14, 655–670. [Google Scholar] [CrossRef]
- Checa, D.; Urbikain, G.; Beranoagirre, A.; Bustillo, A.; López de Lacalle, L.N. Using Machine-Learning Techniques and Virtual Reality to Design Cutting Tools for Energy Optimization in Milling Operations. Int. J. Comput. Integr. Manuf. 2022, 35, 951–971. [Google Scholar] [CrossRef]
- He, Z.; Shi, T.; Xuan, J. Milling Tool Wear Prediction Using Multi-Sensor Feature Fusion Based on Stacked Sparse Autoencoders. Measurement 2022, 190, 110719. [Google Scholar] [CrossRef]
- Gauder, D.; Biehler, M.; Gölz, J.; Schulze, V.; Lanza, G. In-Process Acoustic Pore Detection in Milling Using Deep Learning. CIRP J. Manuf. Sci. Technol. 2022, 37, 125–133. [Google Scholar] [CrossRef]
- Sestito, G.S.; Venter, G.S.; Ribeiro, K.S.B.; Rodrigues, A.R.; da Silva, M.M. In-Process Chatter Detection in Micro-Milling Using Acoustic Emission via Machine Learning Classifiers. Int. J. Adv. Manuf. Technol. 2022, 120, 7293–7303. [Google Scholar] [CrossRef]
- Han, Z.; Zhuo, Y.; Yan, Y.; Jin, H.; Fu, H. Chatter Detection in Milling of Thin-Walled Parts Using Multi-Channel Feature Fusion and Temporal Attention-Based Network. Mech. Syst. Signal Process. 2022, 179, 109367. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, J.; Li, E.; Zhang, H.; Wang, M.; Li, Z. Milling Cutter Wear Prediction Method under Variable Working Conditions Based on LRCN. Int. J. Adv. Manuf. Technol. 2022, 121, 2647–2661. [Google Scholar] [CrossRef]
- Vaishnav, S.; Desai, K.A. Long Short-Term Memory-Based Cutting Depth Monitoring System for End Milling Operation. J. Comput. Inf. Sci. Eng. 2022, 22, 051001. [Google Scholar] [CrossRef]
- Ma, K.; Wang, G.; Yang, K.; Hu, M.; Li, J. Tool Wear Monitoring for Cavity Milling Based on Vibration Singularity Analysis and Stacked LSTM. Int. J. Adv. Manuf. Technol. 2022, 120, 4023–4039. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, J.; Zhang, X.; Zhao, W.; Zhang, H.; Lu, B. Milling Force Coefficients-Based Tool Wear Monitoring for Variable Parameter Milling. Int. J. Adv. Manuf. Technol. 2022, 120, 4565–4580. [Google Scholar] [CrossRef]
- Shah, M.; Vakharia, V.; Chaudhari, R.; Vora, J.; Pimenov, D.Y.; Giasin, K. Tool Wear Prediction in Face Milling of Stainless Steel Using Singular Generative Adversarial Network and LSTM Deep Learning Models. Int. J. Adv. Manuf. Technol. 2022, 121, 723–736. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, T.; Youn, B.D.; Ahn, S.-H. Machining Quality Monitoring (MQM) in Laser-Assisted Micro-Milling of Glass Using Cutting Force Signals: An Image-Based Deep Transfer Learning. J. Intell. Manuf. 2022, 33, 1813–1828. [Google Scholar] [CrossRef]
- Qazani, M.R.C.; Pourmostaghimi, V.; Moayyedian, M.; Pedrammehr, S. Estimation of Tool–Chip Contact Length Using Optimized Machine Learning in Orthogonal Cutting. Eng. Appl. Artif. Intell. 2022, 114, 105118. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T.; Xu, P.; Zhao, J. In-Process Stochastic Tool Wear Identification and Its Application to the Improved Cutting Force Modeling of Micro Milling. Mech. Syst. Signal Process. 2022, 164, 108233. [Google Scholar] [CrossRef]
- Nguyen, A.-T.; Nguyen, V.-H.; Le, T.-T.; Nguyen, N.-T. Multiobjective Optimization of Surface Roughness and Tool Wear in High-Speed Milling of AA6061 by Machine Learning and NSGA-II. Adv. Mater. Sci. Eng. 2022, 2022, 5406570. [Google Scholar] [CrossRef]
- Mahmood, J.; Mustafa, G.; Ali, M. Accurate Estimation of Tool Wear Levels during Milling, Drilling and Turning Operations by Designing Novel Hyperparameter Tuned Models Based on LightGBM and Stacking. Measurement 2022, 190, 110722. [Google Scholar] [CrossRef]
- Sarat Babu, M.; Babu Rao, T. Multi-Sensor Heterogeneous Data-Based Online Tool Health Monitoring in Milling of IN718 Superalloy Using OGM (1, N) Model and SVM. Measurement 2022, 199, 111501. [Google Scholar] [CrossRef]
- Peng, Y.; Song, Q.; Wang, R.; Liu, Z.; Liu, Z. Intelligent Recognition of Tool Wear in Milling Based on a Single Sensor Signal. Int. J. Adv. Manuf. Technol. 2023, 124, 1077–1093. [Google Scholar] [CrossRef]
- Li, E.; Zhou, J.; Yang, C.; Wang, M.; Li, Z.; Zhang, H.; Jiang, T. CNN-GRU Network-Based Force Prediction Approach for Variable Working Condition Milling Clamping Points of Deformable Parts. Int. J. Adv. Manuf. Technol. 2022, 119, 7843–7863. [Google Scholar] [CrossRef]
- Carbone, N.; Bernini, L.; Albertelli, P.; Monno, M. Assessment of Milling Condition by Image Processing of the Produced Surfaces. Int. J. Adv. Manuf. Technol. 2023, 124, 1681–1697. [Google Scholar] [CrossRef]
- Li, Y.; Bao, J.; Chen, T.; Yu, A.; Yang, R. Prediction of Ball Milling Performance by a Convolutional Neural Network Model and Transfer Learning. Powder Technol. 2022, 403, 117409. [Google Scholar] [CrossRef]
- Peng, D.; Li, H.; Dai, Y.; Wang, Z.; Ou, J. Prediction of Milling Force Based on Spindle Current Signal by Neural Networks. Measurement 2022, 205, 112153. [Google Scholar] [CrossRef]
- Bai, L.; Xu, F.; Chen, X.; Su, X.; Lai, F.; Xu, J. A Hybrid Deep Learning Model for Robust Prediction of the Dimensional Accuracy in Precision Milling of Thin-Walled Structural Components. Front. Mech. Eng. 2022, 17, 32. [Google Scholar] [CrossRef]
- Sener, B.; Gudelek, M.U.; Ozbayoglu, A.M.; Unver, H.O. A Novel Chatter Detection Method for Milling Using Deep Convolution Neural Networks. Measurement 2021, 182, 109689. [Google Scholar] [CrossRef]
- Ma, J.; Luo, D.; Liao, X.; Zhang, Z.; Huang, Y.; Lu, J. Tool Wear Mechanism and Prediction in Milling TC18 Titanium Alloy Using Deep Learning. Measurement 2021, 173, 108554. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Lei, J.; Li, X.; Tian, F. Tool Wear Monitoring with Vibration Signals Based on Short-Time Fourier Transform and Deep Convolutional Neural Network in Milling. Math. Probl. Eng. 2021, 2021, 9976939. [Google Scholar] [CrossRef]
- Guo, S.; Zheng, H.; Liu, X.; Gu, L. Comparison on Milling Force Model Prediction of New Cold Saw Blade Milling Cutter Based on Deep Neural Network and Regression Analysis. Manuf. Technol. 2021, 21, 456–463. [Google Scholar] [CrossRef]
- Marani, M.; Zeinali, M.; Songmene, V.; Mechefske, C.K. Tool Wear Prediction in High-Speed Turning of a Steel Alloy Using Long Short-Term Memory Modelling. Measurement 2021, 177, 109329. [Google Scholar] [CrossRef]
- Charalampous, P. Prediction of Cutting Forces in Milling Using Machine Learning Algorithms and Finite Element Analysis. J. Mater. Eng. Perform. 2021, 30, 2002–2013. [Google Scholar] [CrossRef]
- Vashisht, R.K.; Peng, Q. Online Chatter Detection for Milling Operations Using LSTM Neural Networks Assisted by Motor Current Signals of Ball Screw Drives. J. Manuf. Sci. Eng. 2020, 143, 011008. [Google Scholar] [CrossRef]
- Eser, A.; Aşkar Ayyıldız, E.; Ayyıldız, M.; Kara, F. Artificial Intelligence-Based Surface Roughness Estimation Modelling for Milling of AA6061 Alloy. Adv. Mater. Sci. Eng. 2021, 2021, 5576600. [Google Scholar] [CrossRef]
- Möhring, H.-C.; Eschelbacher, S.; Georgi, P. Machine Learning Approaches for Real-Time Monitoring and Evaluation of Surface Roughness Using a Sensory Milling Tool. Procedia CIRP 2021, 102, 264–269. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, H.; Liao, C.; Huang, P.; Chen, Q. Visual Measurement of Milling Surface Roughness Based on Xception Model with Convolutional Neural Network. Measurement 2021, 186, 110217. [Google Scholar] [CrossRef]
- Wang, J.; Zou, B.; Liu, M.; Li, Y.; Ding, H.; Xue, K. Milling Force Prediction Model Based on Transfer Learning and Neural Network. J. Intell. Manuf. 2021, 32, 947–956. [Google Scholar] [CrossRef]
- Yan, B.; Zhu, L.; Dun, Y. Tool Wear Monitoring of TC4 Titanium Alloy Milling Process Based on Multi-Channel Signal and Time-Dependent Properties by Using Deep Learning. J. Manuf. Syst. 2021, 61, 495–508. [Google Scholar] [CrossRef]
- Rahimi, M.H.; Huynh, H.N.; Altintas, Y. On-Line Chatter Detection in Milling with Hybrid Machine Learning and Physics-Based Model. CIRP J. Manuf. Sci. Technol. 2021, 35, 25–40. [Google Scholar] [CrossRef]
- Sayyad, S.; Kumar, S.; Bongale, A.; Kamat, P.; Patil, S.; Kotecha, K. Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions. IEEE Access 2021, 9, 110255–110286. [Google Scholar] [CrossRef]
- Riego, V.; Castejón-Limas, M.; Sánchez-González, L.; Fernández-Robles, L.; Perez, H.; Diez-Gonzalez, J.; Guerrero-Higueras, Á.-M. Strong Classification System for Wear Identification on Milling Processes Using Computer Vision and Ensemble Learning. Neurocomputing 2021, 456, 678–684. [Google Scholar] [CrossRef]
- Varghese, A.; Kulkarni, V.; Joshi, S.S. Tool Life Stage Prediction in Micro-Milling From Force Signal Analysis Using Machine Learning Methods. J. Manuf. Sci. Eng. 2020, 143, 054501. [Google Scholar] [CrossRef]
- Traini, E.; Bruno, G.; Lombardi, F. Tool Condition Monitoring Framework for Predictive Maintenance: A Case Study on Milling Process. Int. J. Prod. Res. 2021, 59, 7179–7193. [Google Scholar] [CrossRef]
- Karthik, R.M.C.; Malghan, R.L.; Kara, F.; Shettigar, A.; Rao, S.S.; Herbert, M.A. Influence of Support Vector Regression (SVR) on Cryogenic Face Milling. Adv. Mater. Sci. Eng. 2021, 2021, 9984369. [Google Scholar] [CrossRef]
- Zheng, G.; Sun, W.; Zhang, H.; Zhou, Y.; Gao, C. Tool Wear Condition Monitoring in Milling Process Based on Data Fusion Enhanced Long Short-Term Memory Network under Different Cutting Conditions. Maint. Reliab. Eksploat. Niezawodn. 2021, 23, 612–618. [Google Scholar] [CrossRef]
- Rifai, A.P.; Aoyama, H.; Tho, N.H.; Dawal, S.Z.M.; Masruroh, N.A. Evaluation of Turned and Milled Surfaces Roughness Using Convolutional Neural Network. Measurement 2020, 161, 107860. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Liu, M.-K.; Tran, Q.-V. Milling Chatter Detection Using Scalogram and Deep Convolutional Neural Network. Int. J. Adv. Manuf. Technol. 2020, 107, 1505–1516. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Lei, J.; Li, X.; Tian, F. Tool Wear Predicting Based on Multi-Domain Feature Fusion by Deep Convolutional Neural Network in Milling Operations. J. Intell. Manuf. 2020, 31, 953–966. [Google Scholar] [CrossRef]
- Hossein Rabiee, A.; Tahmasbi, V.; Qasemi, M. Experimental Evaluation, Modeling and Sensitivity Analysis of Temperature and Cutting Force in Bone Micro-Milling Using Support Vector Regression and EFAST Methods. Eng. Appl. Artif. Intell. 2023, 120, 105874. [Google Scholar] [CrossRef]
- Xie, J.; Hu, P.; Chen, J.; Han, W.; Wang, R. Deep Learning-Based Instantaneous Cutting Force Modeling of Three-Axis CNC Milling. Int. J. Mech. Sci. 2023, 246, 108153. [Google Scholar] [CrossRef]
- Li, B.; Liu, T.; Liao, J.; Feng, C.; Yao, L.; Zhang, J. Non-Invasive Milling Force Monitoring through Spindle Vibration with LSTM and DNN in CNC Machine Tools. Measurement 2023, 210, 112554. [Google Scholar] [CrossRef]
- Khoshaim, A.B.; Elsheikh, A.H.; Moustafa, E.B.; Basha, M.; Mosleh, A.O. Prediction of Residual Stresses in Turning of Pure Iron Using Artificial Intelligence-Based Methods. J. Mater. Res. Technol. 2021, 11, 2181–2194. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Muthuramalingam, T.; Shanmugan, S.; Mahmoud Ibrahim, A.M.; Ramesh, B.; Khoshaim, A.B.; Moustafa, E.B.; Bedairi, B.; Panchal, H.; Sathyamurthy, R. Fine-Tuned Artificial Intelligence Model Using Pigeon Optimizer for Prediction of Residual Stresses during Turning of Inconel 718. J. Mater. Res. Technol. 2021, 15, 3622–3634. [Google Scholar] [CrossRef]
Reference | Used Metric | Purpose | Problem Type |
---|---|---|---|
[25] | MI | Variable selection | Classification accuracy improvement |
[26] | MI | Variable selection | Classification accuracy improvement |
[27] | TC | Variable selection | Classification accuracy improvement |
[28] | MI and TC | Dependency analysis | Functional connectivity analysis |
[29] | CE | Attribute selection | Classification accuracy improvement |
[30] | CE | Uncertainty quantification | Fuzzy decision modeling |
This study | CE | Uncertainty reduction | Sequential decision-making |
Metric | Applicable Number of Variables | Measured Information | Dependency Type |
---|---|---|---|
MI | 2 | Shared information | Mutual |
TC | ≥2 | Redundant information | Joint |
CE | ≥2 | Uncertainty | Conditional |
Elements | Attributes |
---|---|
Purpose | Cost, Energy, Fault, Time, Quality |
Task | Control/Optimization, Diagnosis, Monitoring, Prediction |
Sensor | Camera, Energy, Force, Position, Pressure, Rotation, Sound, Velocity/Acceleration, Vibration, Others |
Data type | Image, Numeric, String |
Data collection interval | <0.01 s, 0.01~1 s, >1 s |
Data collection period | <1 day, 1 day~7 days, 7 days~1 month, >1 month |
Data dimension | <10 (1D), 10~100 (1D), >100 (1D), <100 × 100 (2D), >100 × 100 (2D) |
AI technique | Clustering, kNN, Linear, NN, SVM, Tree, Others |
No. | Purpose | Task | Sensor | Data Type | Data Collection Interval | Data Collection Period | Data Dimension | AI Technique |
---|---|---|---|---|---|---|---|---|
1 | 5 | 2 | 9 | 2 | 1 | 1 | 1 | 5 |
2 | 5 | 2 | 3 | 2 | 1 | 0 | 1 | 5 |
3 | 5 | 2 | 3 | 2 | 1 | 0 | 1 | 7 |
4 | 5 | 2 | 9 | 2 | 1 | 0 | 1 | 5 |
5 | 5 | 2 | 9 | 2 | 1 | 0 | 1 | 7 |
Symbol | Description |
---|---|
Full set of decision-making elements | |
Single decision-making element in the set | |
Set of elements already selected | |
Current state (i.e., ) | |
Element selected as an action | |
Action (i.e., selecting decision element) | |
Reward for selecting element | |
Proportion of unknown attributes in element | |
Entropy of element | |
Conditional entropy of ee given selection set |
State | |
Action | |
Reward |
Learning Rate () | 0.5 |
Discount Factor () | 0.9 |
Exploration | -greedy (initial value: 1.0, decay rate: 0.9, minimum value: 0.5) |
Sensor | Data Type | Data Collection Interval | Data Collection Period | Data Dimension | AI Technique | |
---|---|---|---|---|---|---|
Stage 1 | 4.770 | 4.442 | 3.254 | 1.297 | 3.873 | 3.283 |
Stage 2 | 0.383 | 0.525 | 0.222 | 0.274 | 0.438 | |
Stage 3 | 0.115 | 0.096 | 0.128 | 0.127 | ||
Stage 4 | 0.031 | 0.032 | 0.032 | |||
Stage 5 | 0.000 | 0.000 | ||||
Stage 6 | 0.000 |
No. | If (Trigger Condition) | Then (Constraint) |
---|---|---|
1 | Sensor = Camera | Data type = Image |
2 | Sensor = Camera | Data dimension {<100 × 100 (2D), >100 × 100 (2D)} |
3 | Sensor = Sound | Data dimension {<10 (1D), 10~100 (1D)} |
4 | Sensor = Sound | Data collection interval = <0.01 s |
5 | Sensor {Energy, Force, Position, Pressure, Rotation, Sound, Velocity/Acceleration, Vibration} | Data type = Numeric |
6 | Data type = Image | Data dimension {<100 × 100 (2D), >100 × 100 (2D)} |
7 | Data type = Image | Sensor {Camera, Others} |
8 | AI technique ≠ NN | Data dimension {<10 (1D), 10~100 (1D)} |
9 | Data dimension {<100 × 100 (2D), >100 × 100 (2D)} | AI technique = NN |
Stage | Case (a) | Case (b) | Case (c) | Case (d) |
---|---|---|---|---|
0 (Start) | 5.550 | 5.550 | 5.550 | 5.550 |
1 | 1.591 | 2.927 | 3.492 | 3.429 |
2 | 0.973 | 1.801 | 2.263 | 2.122 |
3 | 0.827 | 1.051 | 1.385 | 1.311 |
4 | 0.128 | 0.550 | 0.801 | 0.754 |
5 | 0.074 | 0.187 | 0.356 | 0.351 |
6 | 0.000 | 0.000 | 0.000 | 0.000 |
AUC | 6.367 | 9.291 | 11.072 | 10.741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-h.; Song, B.; Jeon, H.-w. Conditional Entropy-Based Sequential Decision-Making for AI Adoption in Manufacturing: A Reinforcement Learning Approach. Systems 2025, 13, 830. https://doi.org/10.3390/systems13090830
Lee G-h, Song B, Jeon H-w. Conditional Entropy-Based Sequential Decision-Making for AI Adoption in Manufacturing: A Reinforcement Learning Approach. Systems. 2025; 13(9):830. https://doi.org/10.3390/systems13090830
Chicago/Turabian StyleLee, Ga-hyun, Byunghun Song, and Hyun-woo Jeon. 2025. "Conditional Entropy-Based Sequential Decision-Making for AI Adoption in Manufacturing: A Reinforcement Learning Approach" Systems 13, no. 9: 830. https://doi.org/10.3390/systems13090830
APA StyleLee, G.-h., Song, B., & Jeon, H.-w. (2025). Conditional Entropy-Based Sequential Decision-Making for AI Adoption in Manufacturing: A Reinforcement Learning Approach. Systems, 13(9), 830. https://doi.org/10.3390/systems13090830