Identification of Customer Churn Considering Difficult Case Mining
Abstract
:1. Introduction
2. Focal Loss_LightGBM
2.1. Cross-Entropy Loss Function for Focal Loss Optimization
2.1.1. Cross-Entropy Loss Function
- (1)
- Information entropy:
- (2)
- Kullback–Leibler divergence:
- (3)
- Cross-entropy:
2.1.2. Focal Loss Function
2.2. LightGBM Design
2.2.1. Algorithm for One-Sided Gradient Sampling
2.2.2. Reciprocal Feature Bundling Algorithm
2.2.3. Grow-by-Leaf Strategy with Depth
3. Empirical Analysis
3.1. Data Preparation and Problem Description
3.2. Model Comparison Analysis and Evaluation
3.2.1. Introduction of Evaluation Metrics
- (1)
- True Positive Churn Identification Rate (TPR):
- (2)
- AUC:
- (3)
- f1-score:
- (4)
- G-mean
3.2.2. Comparative Analysis of User Retention Model Precision
3.2.3. User Churn Analysis of Model Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spanoudes, P.; Nguyen, T. Deep learning in customer churn prediction: Unsupervised feature learning on abstract company independent feature vectors. arXiv 2017, arXiv:1703.03869. [Google Scholar]
- Ganesh, J.; Arnold, M.J.; Reynolds, K.E. Understanding the customer base of service providers: An examination of the differences between switchers and stayers. J. Mark. 2000, 64, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.; Song, Y. Big data: A new perspective on data-driven process quality control and improvement. Comput. Integr. Manuf. Syst. 2019, 25, 2731–2742. [Google Scholar]
- Shirazi, F.; Mohammadi, M. A big data analytics model for customer churn prediction in the retiree segment. Int. J. Inf. Manag. 2019, 48, 238–253. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B. A study on customer churn of commercial banks based on learning from label proportions. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; IEEE: Piscataway Township, NJ, USA; pp. 1241–1247. [Google Scholar]
- De Caigny, A.; Coussement, K.; De Bock, K.W. A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. Eur. J. Oper. Res. 2018, 269, 760–772. [Google Scholar] [CrossRef]
- Mundada, M.R. Enhanced deep feed forward neural network model for the customer attrition analysis in banking sector. Int. J. Intell. Syst. Appl. 2019, 11, 10. [Google Scholar]
- Gregory, B. Predicting customer churn: Extreme gradient boosting with temporal data. arXiv 2018, arXiv:1802.03396. [Google Scholar]
- Wang, Q.F.; Xu, M.; Hussain, A. Large-scale Ensemble Model for Customer Churn Prediction in Search Ads. Cognit. Comput. 2019, 11, 262–270. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.; Liu, T. Customer churn prediction model for mobile communication enterprises based on CART and adaptive Boosting algorithm. China Manag. Sci. 2014, 22, 90–96. [Google Scholar]
- Ahmad, A.K.; Jafar, A.; Aljoumaa, K. Customer churn prediction in telecom using machine learning in big data platform. J. Big Data 2019, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Li, S.; He, X.; Teng, G.; Jia, P.; Xie, L. Research on a semi-supervised integrated model for cost-sensitive customer churn prediction. Syst. Eng. Theory Pract. 2021, 41, 188–199. [Google Scholar]
- He, B.L. Research on the application of support vector machine model in bank customer churn prediction. Financ. Forum 2014, 19, 70–74. [Google Scholar]
- Chen, S.; Zhu, J.; You, T. A study on handling customer churn imbalance based on Smoterf algorithm. Math. Pract. Underst. 2019, 49, 204–210. [Google Scholar]
- Bahnsen, A.C.; Aouada, D.; Ottersten, B. A novel cost-sensitive framework for customer churn predictive modeling. Decis. Anal. 2015, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Shao, P.; Luo, J.; Liu, D.; Xia, G. A study of customer churn based on ant colony algorithm with cost-sensitive linear integrated multi-classifier. China Manag. Sci. 2010, 18, 58–67. [Google Scholar]
- Özmen, M.; Aydoğan, E.K.; Delice, Y.; Toksarı, M. Churn prediction in Turkey’s telecommunications sector: A proposed multiobjective–cost-sensitive ant colony optimization. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1338. [Google Scholar] [CrossRef]
- Wong, M.L.; Seng, K.; Wong, P.K. Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain. Expert Syst. Appl. 2020, 141, 112918. [Google Scholar] [CrossRef]
- Al-Madi, N.; Faris, H.; Abukhurma, R. Cost-sensitive genetic programming for churn prediction and identification of the influencing factors in telecommunication market. Int. J. Adv. Sci. Technol. 2018, 120, 13–28. [Google Scholar]
- Dai, L. An Empirical Study on the Cost-Sensitive Imbalance Classification Problem; Huazhong Normal University: Wuhan, China, 2019. [Google Scholar]
- Zhou, Z.; Wang, B.; Zhai, Y.; Tong, X. A spam filtering model based on the ALBERT dynamic word vector. Inf. Netw. Secur. 2020, 20, 107–111. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Bian, L.; Zhang, L.; Zhao, K. A LightGBM-based method for detecting malicious accounts in Ether. Inf. Netw. Secur. 2020, 20, 73–80. [Google Scholar]
- Song, L.; Wang, S.; Yang, C. Improved XGBoost for unbalanced data processing. Comput. Sci. 2020, 47, 98–103. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
Credit Card Color | Number of Users |
---|---|
Blue | 9436 |
Silver | 555 |
Gold | 116 |
Platinum | 20 |
Customer Bank Transaction Status Variable | Minimum Value | Maximum Value | Mean Value | Standard Deviation |
---|---|---|---|---|
Time to establish relationship with bank | 13 | 56 | 35.9284 | 7.9864 |
Total number of products owned by customers | 1 | 6 | 3.8126 | 1.5544 |
Inactive months in the last 12 months | 0 | 6 | 2.3412 | 1.0106 |
Number of contacts in the last 12 months | 0 | 6 | 2.4553 | 1.1062 |
Credit card line of credit | 1438.3 | 34,516 | 8631.9537 | 9088.7767 |
Total credit card revolving balance | 0 | 2517 | 1162.8141 | 814.9873 |
Open purchase credit line (past average of 12 months) | 3 | 34,516 | 7469.1396 | 9090.6853 |
Change in transaction amount (4th quarter over 1st quarter) | 0 | 3.397 | 0.7599 | 0.2192 |
Total transaction amount (last 12 months) | 510 | 18,484 | 4404.0863 | 3397.1293 |
Total number of transactions (last 12 months) | 10 | 139 | 64.8587 | 23.4726 |
Change in transaction count (4th quarter) over 1st quarter) | 0 | 3.714 | 0.7122 | 0.2381 |
Average card utilization | 0 | 0.999 | 0.2749 | 0.2757 |
Customer Type | Number | Percentage |
---|---|---|
Churned customers | 1627 | 16.07 |
Retained customers | 8500 | 83.93 |
Identification Model | Parameter | Parameter Meaning | Optimal Setting Value |
---|---|---|---|
SVM | C | Penalty factor | 10,000 |
kernel | Kernel function type | “rbf” | |
Gamma | Kernel function coefficient | 0.001 | |
Random forest | n_estimators | Number of decision trees | 31 |
max_depth | Maximum depth of the tree | 11 | |
min_samples_split | Minimum number of samples needed to split internal nodes | 50 | |
XGBoost | n_estimators | Number of decision trees | 300 |
max_depth | Maximum depth of the tree | 4 | |
learning_rate | Learning rate | 0.2 | |
booster | Weak learner type | “gbtree” |
Main Parameters of the LightGBM Model and the FocalLoss_LightGBM Model | Parameter Meaning | LightGBM | FocalLoss_ LightGBM |
---|---|---|---|
num_boost_round | Maximum number of iterations | 162 | 293 |
learningrate | Learning rate | 0.1 | 0.1 |
max_depth | Maximum depth of the tree | 7 | 5 |
num_leaves | Number of leaves | 65 | 10 |
feature_fraction | Feature random sampling ratio | 0.8 | 0.9 |
bagging_fraction | Sample random sampling ratio | 0.6 | 0.9 |
α | Category weight | 0.95 | |
γ | Focusing parameter | 0.1 |
Churn Model | Average Value of AUC | TPR Mean Value | Mean Value of f1-Score | G-Mean |
---|---|---|---|---|
SVM | 0.8461 | 0.7266 | 0.7616 | 0.8376 |
RF | 0.8449 | 0.7038 | 0.7915 | 0.8329 |
XGBoost | 0.9344 | 0.8793 | 0.9088 | 0.9327 |
LightGBM | 0.9910 | 0.8691 | 0.8954 | 0.9258 |
FocalLoss_LightGBM | 0.9937 | 0.9418 | 0.9045 | 0.9573 |
Model | AUC | TPR | f1-Score | G-Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Std | Max | Min | Std | Max | Min | Std | Max | Min | Std | |
SVM | 0.8679 | 0.8272 | 0.0091 | 0.7728 | 0.6908 | 0.0185 | 0.7846 | 0.7385 | 0.0131 | 0.8627 | 0.8159 | 0.0105 |
RF | 0.8758 | 0.8232 | 0.0138 | 0.7639 | 0.6618 | 0.0274 | 0.8337 | 0.7564 | 0.0191 | 0.8686 | 0.8079 | 0.0162 |
XGBoost | 0.9461 | 0.9206 | 0.0067 | 0.9059 | 0.8515 | 0.0138 | 0.9220 | 0.8949 | 0.0081 | 0.9452 | 0.9180 | 0.0071 |
LightGBM | 0.9944 | 0.9864 | 0.0020 | 0.9039 | 0.8396 | 0.0140 | 0.9146 | 0.8812 | 0.0081 | 0.9373 | 0.9137 | 0.0073 |
FocalLoss_LightGBM | 0.9956 | 0.9914 | 0.0011 | 0.9683 | 0.9159 | 0.0119 | 0.9183 | 0.8920 | 0.0077 | 0.9675 | 0.9469 | 0.0046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Bai, X.; Xu, Q.; Yang, D. Identification of Customer Churn Considering Difficult Case Mining. Systems 2023, 11, 325. https://doi.org/10.3390/systems11070325
Li J, Bai X, Xu Q, Yang D. Identification of Customer Churn Considering Difficult Case Mining. Systems. 2023; 11(7):325. https://doi.org/10.3390/systems11070325
Chicago/Turabian StyleLi, Jianfeng, Xue Bai, Qian Xu, and Dexiang Yang. 2023. "Identification of Customer Churn Considering Difficult Case Mining" Systems 11, no. 7: 325. https://doi.org/10.3390/systems11070325
APA StyleLi, J., Bai, X., Xu, Q., & Yang, D. (2023). Identification of Customer Churn Considering Difficult Case Mining. Systems, 11(7), 325. https://doi.org/10.3390/systems11070325