Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Bacteriocin Assays and Cell Density Measurements
2.3. Influence of Medium Compositions on Bacteriocin Lac-B23 Production and Bacterial Growth
2.4. Plackett-Burman (PB) Design
2.5. Steepest Ascent Experiment
2.6. Central Composite Design (CCD)
3. Results
3.1. Effects of the Composition of MRS Broth on Bacteriocin Lac-B23 Production and Bacterial Growth
3.2. Screening of Significant Variables Using Plackett-Burman Design
3.3. Steepest Ascent Experiment
3.4. Central Composite Design Experiment
3.5. Comparison of MRS Broth and Modified MRS in Terms of Cost and Bacteriocin Lac-B23 Production Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.; Zhang, L.W.; Yi, H.X.; Gao, W.; Chi, C. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese. World J. Microb. Biotechnol. 2016, 32, 21. [Google Scholar] [CrossRef] [PubMed]
- Varish, A.; Mohd, S.K.; Qazi, M.S.J.; Mohammed, A.A.; Mohammad, A.A.K.; Mughees, U.U. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int. J. Antimicrob. Agents 2017, 49, 1–11. [Google Scholar]
- Veeresh, J.; Wu, C. Microbial production of bacteriocins: Latest research development and applications. Biotechnol. Adv. 2018, 36, 2187–2200. [Google Scholar]
- Cao, S.; Du, R.P.; Zhao, K.; Xiao, H.Z.; Han, Y.; Zhou, Z.J. The mode of action of bacteriocin CHQS, a high antibacterial activity bacteriocin produced by Enterococcus faecalis TG2. Food Control 2019, 96, 470–478. [Google Scholar] [CrossRef]
- Chen, H.; Hoover, D. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar]
- Beshkova, D.; Frengova, G. Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Eng. Life Sci. 2012, 12, 419–432. [Google Scholar] [CrossRef]
- O’Shea, E.F.; Cotter, P.D.; Ross, R.P.; Hill, C. Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr. Opin. Biotechnol. 2013, 24, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.S.; Todorov, S.D.; Jurkiewicz, C.H.; Franco, B.D.G.M. Bacteriocin production by Lactobacillus Curvatus mbsa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control 2015, 47, 147–153. [Google Scholar] [CrossRef]
- Zhang, J.M.; Yi, H.Y.; Gong, P.M.; Lin, K.; Chen, S.W.; Han, X.; Zhang, L.W. Adsorption of plantaricin Q7 on montmorillonite and application in feedback regulation of plantaricin Q7 synthesis by Lactobacillus plantarum Q7. Eng. Life Sci. 2018, 19, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Bogovi-Matijai, B.; Rogelj, I. Bacteriocin complex of Lactobacillus acidophilus LF221-production studies in MRS media at different pH values and effect against Lactobacillus helveticus ATCC 15009. Process. Biochem. 1988, 33, 345–352. [Google Scholar] [CrossRef]
- Kim, M.H.; Kong, Y.J.; Baek, H.; Hyun, H.H. Optimization of culture conditions and medium composition for the production of Micrococcin go5 by Micrococcus sp. go5. J. Biotechnol. 2006, 121, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Valmorri, S.; Suzzi, G.; Corsetti, A. The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (blis) production by Enterococcus mundtii strains. Food Microbiol. 2008, 25, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Trinetta, V.; Rollini, M.; Manzoni, M. Development of a low cost culture medium for sakacin a production by L. sakei. Process. Biochem. 2008, 43, 1275–1280. [Google Scholar] [CrossRef]
- Gao, J.; Atiyeh, H.K.; Phillips, J.R.; Wilkins, R.M.; Huhnke, L.R. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour. Technol. 2013, 147, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.M.; Yang, Y.Y.; Yang, H.; Bu, Y.; Yi, H.X.; Zhang, L.W.; Han, X.; Ai, L.Z. Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Front. Microbiol. 2018, 9, 2165. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, J.; Dang, Y.; Shu, G. Optimization for immobilization of β-galactosidase using plackett-burman design and steepest ascent method. J. Chem. Pharm. Res. 2014, 6, 612–616. [Google Scholar]
- Song, X.; Zhang, X.; Kuang, C.; Zhu, L.; Guo, N. Optimization of fermentation parameters for the biomass and dha production of schizochytrium limacinum ouc88 using response surface methodology. Process. Biochem. 2007, 42, 1391–1397. [Google Scholar] [CrossRef]
- Hwanhlem, N.; Chobert, J.M.; HKittikun, A. Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control 2014, 41, 202–211. [Google Scholar] [CrossRef]
- Schirru, S.; Favaro, L.; Nicoletta, P.M. Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann. Microbiol. 2014, 64, 321–331. [Google Scholar] [CrossRef]
- Zhang, J.M.; Han, X.; Zhang, L.W.; Yi, H.X.; Chen, S.W.; Gong, P.M. Effects of fructose and overexpression of shock-related gene grol on plantaricin Q7 production. Probiotics Antimicrob. 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Nikiforova, O.A.; Klykov, S.; Volski, A.; Dicks, L.M.T.; Chikindas, M.L. Subtilosin a production by Bacillus subtiliskatmira1933 and colony morphology are influenced by the growth medium. Ann. Microbiol. 2016, 66, 661–671. [Google Scholar] [CrossRef]
Compositions | Concentration g/L | OD600 ± SD a | Bacteriocin Activity AU/mL a |
---|---|---|---|
control (without carbon source) | 0 | 0.314 ± 0.051 | 0 |
arabinose | 20 | 0.260 ± 0.039 | 0 |
xylose | 20 | 0.327 ± 0.022 | 0 |
sucrose | 20 | 0.635 ± 0.047 | 20 |
fructose | 20 | 1.994 ± 0.066 | 80 |
galactose | 20 | 2.052 ± 0.066 | 160 |
lactose | 20 | 2.042 ± 0.049 | 160 |
glucose | 5 | 1.716 ± 0.076 | 80 |
glucose | 10 | 2.023 ± 0.106 | 80 |
glucose | 15 | 2.193 ± 0.042 | 240 |
glucose | 20 | 2.312 ± 0.061 | 280 |
glucose | 25 | 2.211 ± 0.069 | 280 |
glucose | 30 | 2.260 ± 0.105 | 280 |
glucose | 35 | 2.240 ± 0.900 | 280 |
glucose | 40 | 2.213 ± 0.109 | 160 |
maltose | 5 | 1.820 ± 0.073 | 160 |
maltose | 10 | 2.128 ± 0.080 | 160 |
maltose | 15 | 2.257 ± 0.065 | 160 |
maltose | 20 | 2.294 ± 0.136 | 240 |
maltose | 25 | 2.283 ± 0.061 | 240 |
maltose | 30 | 2.302 ± 0.047 | 280 |
maltose | 35 | 2.275 ± 0.044 | 280 |
maltose | 40 | 2.313 ± 0.026 | 240 |
control (without nitrogen source) | 0 | 0.214 ± 0.062 | 0 |
beef extract powder | 7.5 | 1.918 ± 0.046 | 40 |
peptone | 10 | 1.839 ± 0.060 | 80 |
yeast extract | 1 | 1.460 ± 0.084 | 40 |
yeast extract | 2.5 | 1.989 ± 0.071 | 160 |
yeast extract | 5 | 2.223 ± 0.087 | 280 |
yeast extract | 7.5 | 2.302 ± 0.034 | 280 |
yeast extract | 10 | 2.318 ± 0.051 | 560 |
yeast extract | 15 | 2.348 ± 0.093 | 280 |
yeast extract | 20 | 2.341 ± 0.029 | 240 |
beef extract powder + Yeast extract | 7.5 + 5 | 2.248 ± 0.050 | 240 |
Peptone + beef extract powder | 10 + 7.5 | 2.097 ± 0.059 | 280 |
Peptone + beef extract | 10 + 7.5 + 5 | 2.263 ± 2.263 | 280 |
Peptone + yeast extract | 10 + 5 | 2.236 ± 0.078 | 320 |
Peptone + yeast extract | 2.5 + 10 | 2.353 ± 0.052 | 400 |
Peptone + yeast extract | 5 + 10 | 2.334 ± 0.078 | 240 |
Peptone + yeast extract | 7.5 + 10 | 2.374 ± 0.053 | 240 |
Peptone + yeast extract | 10 + 10 | 2.359 ± 0.103 | 320 |
Peptone + yeast extract | 12.5 + 10 | 2.337 ± 0.018 | 400 |
Peptone + yeast extract | 15 + 10 | 2.343 ± 0.056 | 480 |
Peptone + yeast extract | 17.5 + 10 | 2.354 ± 0.055 | 480 |
Peptone + yeast extract | 20 + 10 | 2.367 ± 0.085 | 400 |
Variable | Real Variables/(Unit) | Low Level (−1) | High Level (+1) |
---|---|---|---|
X1 | glucose/(g/L) | 15 | 25 |
X2 | yeast extract/(g/L) | 7 | 13 |
X3 | dipotassium phosphate/(g/L) | 3 | 6 |
X4 | manganese sulfate/(g/L) | 0.08 | 0.16 |
X5 | Tween 80/(mL/L) | 2 | 4 |
X6 | sodium acetate/(g/L) | 5 | 10 |
Variable | Real Variables/(Unit) | Level | ||||
---|---|---|---|---|---|---|
−1.414 | −1 | 0 | +1 | +1.414 | ||
X5 | Tween 80/(mL/L) | 1.28 | 1.5 | 2 | 2.5 | 2.71 |
X6 | sodium acetate/(g/L) | 8.38 | 9 | 10.5 | 12 | 12.62 |
Run | X1 | X2 | X3 | X4 | X5 | X6 | Bacteriocin Activity (AU/mL) a |
---|---|---|---|---|---|---|---|
1 | +1 | −1 | −1 | −1 | +1 | −1 | 640 |
2 | −1 | +1 | +1 | −1 | +1 | +1 | 960 |
3 | +1 | +1 | −1 | +1 | +1 | +1 | 1280 |
4 | +1 | −1 | +1 | +1 | +1 | −1 | 640 |
5 | −1 | −1 | +1 | −1 | +1 | +1 | 1280 |
6 | +1 | +1 | +1 | −1 | −1 | −1 | 1280 |
7 | +1 | −1 | +1 | +1 | −1 | +1 | 1280 |
8 | −1 | −1 | −1 | −1 | −1 | −1 | 960 |
9 | −1 | −1 | −1 | +1 | −1 | +1 | 1920 |
10 | −1 | +1 | +1 | +1 | −1 | −1 | 960 |
11 | +1 | +1 | −1 | −1 | −1 | +1 | 2560 |
12 | −1 | +1 | −1 | +1 | +1 | −1 | 960 |
Factors | Coefficient Estimates | p-Values | % Contributions |
---|---|---|---|
Intercept | 1226.67 | 0.0465 * | |
X1 | 53.33 | 0.2929 | 1.05 |
X2 | 106.67 | 0.1056 | 4.21 |
X3 | −160.00 | 0.0513 | 9.47 |
X4 | −53.33 | 0.2929 | 1.05 |
X5 | −266.67 | 0.0194 * | 26.32 |
X6 | 320.00 | 0.0136 * | 37.69 |
Experiment | Tween 80 (mL/L) | Sodium Acetate (g/L) | Bacteriocin Activity (AU/mL) a |
---|---|---|---|
1 | 4 | 4.5 | 640 |
2 | 3.5 | 6.0 | 1280 |
3 | 3 | 7.5 | 1920 |
4 | 2.5 | 9.0 | 1920 |
5 | 2 | 10.5 | 2560 |
6 | 1.5 | 12.0 | 1920 |
7 | 1 | 13.5 | 640 |
Run | X5 | X6 | Bacteriocin Activity (AU/mL) a | |
---|---|---|---|---|
Expected | Observed | |||
1 | 0 | −1.414 | 2000 | 1920 |
2 | +1.414 | 0 | 2000 | 1920 |
3 | 0 | +1.414 | 1360 | 1280 |
4 | −1 | −1 | 2480 | 2560 |
5 | −1 | +1 | 1840 | 1920 |
6 | +1 | −1 | 1200 | 1280 |
7 | 0 | 0 | 2560 | 2560 |
8 | −1.414 | 0 | 2000 | 1920 |
9 | 0 | 0 | 2560 | 2560 |
10 | 0 | 0 | 2560 | 2560 |
11 | +1 | +1 | 1840 | 1920 |
Source | Sum of Squares | Degrees of Freedom | f-Value | Prob (p) > f |
---|---|---|---|---|
model | 2.257 × 106 | 7 | 18.90 | 0.0174 * |
X5 | 0.000 | 1 | 0.00 | 1.0000 |
X6 | 2.048 × 105 | 1 | 12.00 | 0.0405 * |
X5 * X6 | 4.096 × 105 | 1 | 24.00 | 0.0163 * |
X52 | 4.427 × 105 | 1 | 25.94 | 0.0146 * |
X62 | 1.093 × 106 | 1 | 64.06 | 0.0041 ** |
X52 * X6 | 1.024 × 105 | 1 | 6.00 | 0.0917 |
X5 * X62 | 2.048 × 105 | 1 | 12.00 | 0.0405 * |
R-Squared | 0.9778 |
Components a | Price (RMB/g or mL) b | MRS Broth | Modified MRS (mMRS) | ||
---|---|---|---|---|---|
Concentration (g or mL/L) | Price of MRS Broth (RMB/L) | Concentration (g or mL/L) | Price of mMRS (RMB/L) | ||
glucose | 59/500 | 20 | 2.36 | 20 | 2.36 |
peptone | 139/500 | 10 | 2.78 | 0 | 0 |
beef extract powder | 299/500 | 7.5 | 4.49 | 0 | 0 |
yeast extract | 199/500 | 5 | 1.99 | 10 | 3.98 |
dipotassium phosphate | 79/500 | 2 | 0.32 | 5 | 0.79 |
Magnesium sulfate heptahydrate | 49/500 | 0.58 | 0.06 | 0 | 0 |
manganese sulfate monohydrate | 49/500 | 0.25 | 0.02 | 0.1 | 0.01 |
Tween 80 | 119/500 | 1 | 0.24 | 1.88 | 0.45 |
Sodium acetate anhydrous | 49/500 | 5 | 0.49 | 9.9 | 0.97 |
diammonium hydrogen citrate | 89/500 | 2 | 0.36 | 0 | 0 |
Total medium cost | 13.11 RMB/L | 8.56 RMB/L | |||
bacteriocin Lac-B23 production | 280 AU/mL | 2560 AU/mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Bu, Y.; Zhang, C.; Yi, H.; Liu, D.; Jiao, J. Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. Biology 2020, 9, 171. https://doi.org/10.3390/biology9070171
Zhang J, Bu Y, Zhang C, Yi H, Liu D, Jiao J. Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. Biology. 2020; 9(7):171. https://doi.org/10.3390/biology9070171
Chicago/Turabian StyleZhang, Jianming, Yushan Bu, Chengcheng Zhang, Huaxi Yi, Daqun Liu, and Jingkai Jiao. 2020. "Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23" Biology 9, no. 7: 171. https://doi.org/10.3390/biology9070171
APA StyleZhang, J., Bu, Y., Zhang, C., Yi, H., Liu, D., & Jiao, J. (2020). Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. Biology, 9(7), 171. https://doi.org/10.3390/biology9070171