Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca—The Blue Mussel (Mytilus edulis), Soft Shell Clam (Mya arenaria), Eastern Oyster (Crassostrea virginica) and Atlantic Jacknife Clam (Ensis leei)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Hemolymph Sampling from Mollusca
2.2. Isolation of Extracellular Vesicles and Nanoparticle Tracking Analysis (NTA)
2.3. Transmission Electron Microscopy (TEM)
2.4. Isolation of Deiminated Proteins in Mollusca Hemolymph–F95 Enrichment
2.5. Western Blotting Analysis
2.6. Silver Staining
2.7. LC–MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) Analysis of F95 Enriched Proteins
2.8. Protein–Protein Interaction Network Analysis
2.9. Statistical Analysis
3. Results
3.1. Characterization of Mollusca Hemolymph–EVs
3.2. PAD Protein Homologue and Deiminated Proteins in Mollusca Hemolymph
3.3. LC–MS/MS Analysis of Deiminated Proteins in Mollusca Hemolymph
3.4. Protein–Protein Interaction Network Identification of Deiminated Proteins in Mollusca Hemolymph
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture Sustainability in Action; Food and Agriculture Organization: Rome, Italy, 2014. [Google Scholar] [CrossRef]
- Allam, B.; Raftos, D. Immune responses to infectious diseases in bivalves. J. Invertebr. Pathol. 2015, 131, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Harney, E.; Artigaud, S.; Le Souchu, P.; Miner, P.; Corporeau, C.; Essid, H.; Pichereau, V.; Nunes, F.L.D. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea Gigas. J. Proteomics 2016, 135, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 2003, 101, 79–90. [Google Scholar] [CrossRef]
- Jordan, S.J.; Coakley, J.M. Long-term projections of eastern oyster populations under various management scenarios. J. Shellfish Res. 2004, 23, 63–72. [Google Scholar]
- Mallet, A.L.; Carver, C.E. Comparative growth and survival patterns of Mytilus trossulus and Mytilus edulis in Atlantic Canada. Can. J. Fish. Aquat. Sci. 1995, 52, 1873–1880. [Google Scholar] [CrossRef]
- van de Koppel, J.; Gascoigne, J.C.; Theraulaz, G.; Rietkerk, M.; Mooij, W.M.; Herman, P.M. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 2008, 322, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.S.; Meszaros, J.; Byers, J.E. Poor phenotypic integration of blue mussel inducible defenses in environments with multiple predators. Oikos 2009, 118, 758–766. [Google Scholar] [CrossRef]
- Powers, S.; Bishop, M.A.; Grabowski, J.; Peterson, C. Distribution of the invasive bivalve Mya arenaria L. on intertidal flats of southcentral Alaska. J. Sea Res. 2006, 55, 207–216. [Google Scholar] [CrossRef]
- Hill, J.M. Ensis ensis A razor shell. In Marine Life Information Network: Biology and Sensitivity Key Information Reviews; Tyler-Walters, H., Hiscock, K., Eds.; Marine Biological Association of the United Kingdom: Plymouth, UK, 2006. [Google Scholar] [CrossRef]
- Schwemmer, P.; Adler, S.; Enners, L.; Volmer, H.; Kottsieper, J.; Ricklefs, K.; Stage, M.; Schwarzer, K.; Wittbrodt, K.; Reimers, H.-C.; et al. Modelling and predicting habitats for the neobiotic American razor clam Ensis leei in the Wadden Sea. Estuar. Coast. Shelf Sci. 2019, 231, 106440. [Google Scholar] [CrossRef]
- Leavitt, D.F. Biology of the Atlantic Jacknife (Razor) Clam (Ensis directus Conrad, 1843) Aquaculture Centre; NRAC Publication No. 217-2010; University of Maryland: College Park, MD, USA, 2010. [Google Scholar]
- Fraser, S.; Shelmerdine, R.L.; Mouat, B. Razor Clam Biology, Ecology, Stock Assessment, and Exploitation: A Review of Ensis spp. in Wales; NAFC Marine Centre Report for the Welsh Government; Contract Number C243/2012/2013; NAFC. 2018, p. 52. Available online: https://www.nafc.uhi.ac.uk/t4-media/one-web/nafc/research/document/Fraser-et-al-2018-Razor-clams-in-Wales-report.pdf (accessed on 10 October 2020).
- Burt, W.; Leavitt, D.; Rivara, G.; Flimlin, G. An Industry Directed Feasibility Study of the Razor Clam (Ensis directus) as A Candidate for Intertidal and Shallow Subtidal Culture in the Northeastern U.S. Available online: https://seagrant.umaine.edu/wp-content/uploads/sites/467/2019/03/2010-razor-clam-feasibility-study-final-report.pdf (accessed on 10 October 2020).
- Preziosi, B.M.; Bowden, T.J. Morphological characterization via light and electron microscopy of Atlantic jackknife clam (Ensis directus) hemocytes. Micron 2016, 84, 96–106. [Google Scholar] [CrossRef] [Green Version]
- McDermott, J. Predation of the Razor Clam Ensis directus by the Nemertean Worm Cerebratulus lacteus. Chesap. Sci. 1976, 17, 299–301. [Google Scholar] [CrossRef]
- Robinson, R.F.; Richardson, C.A. The direct and indirect effects of suction dredging on a razor clam (Ensis arcuatus) population. ICES J. Marine Sci. 1998, 55, 970–977. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, L.; Zhou, Z.; Song, L. Research progress on the mollusc immunity in China. Dev. Comp. Immunol. 2013, 39, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Vossenaar, E.R.; Zendman, A.J.; van Venrooij, W.J.; Pruijn, G.J. PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. Bioessays 2003, 25, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Rebl, A.; Köllner, B.; Anders, E.; Wimmers, K.; Goldammer, T. Peptidylarginine deiminase gene is differentially expressed in freshwater and brackish water rainbow trout. Mol. Biol. Rep. 2010, 37, 2333–2339. [Google Scholar] [CrossRef] [PubMed]
- Magnadottir, B.; Hayes, P.; Hristova, M.; Bragason, B.T.; Nicholas, A.P.; Dodds, A.W.; Guđmundsdóttir, S.; Lange, S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny—Novel roles in tissue remodelling and mucosal immune defences? Dev. Comp. Immunol. 2018, 87, 157–170. [Google Scholar] [CrossRef]
- Magnadottir, B.; Bragason, B.T.; Bricknell, I.R.; Bowden, T.; Nicholas, A.P.; Hristova, M.; Guđmundsdóttir, S.; Dodds, A.W.; Lange, S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny—Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). Dev. Comp. Immunol. 2019, 92, 1–19. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Deiminated proteins in extracellular vesicles and plasma of nurse shark (Ginglymostoma cirratum)—Novel insights into shark immunity. Fish Shellfish Immunol. 2019, 92, 249–255. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol. Immunol. 2020, 117, 37–53. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Petersen, L.H.; Lange, S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle- specific Signatures Relating to Immunity, Metabolic Function and Gene Regulation. Front. Immunol. 2020, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Post-translational protein deimination signatures in serum and serum-extracellular vesicles of Bos taurus reveal immune, anti-pathogenic, anti-viral, metabolic and cancer-related pathways for deimination. Int. J. Mol. Sci. 2020, 21, 2861. [Google Scholar] [CrossRef] [PubMed]
- Novák, L.; Zubáčová, Z.; Karnkowska, A.; Kolisko, M.; Hroudová, M.; Stairs, C.W.; Simpson, A.G.; Keeling, P.J.; Roger, A.J.; Čepička, I.; et al. Arginine deiminase pathway enzymes: Evolutionary history in metamonads and other eukaryotes. BMC Evol. Biol. 2016, 16, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavinho, B.; Sabatke, B.; Feijoli, V.; Rossi, I.V.; da Silva, J.M.; Evans-Osses, I.; Palmisano, G.; Lange, S.; Ramirez, M.I. Peptidylarginine deiminase inhibition abolishes the production of large extracellular vesicles from Giardia intestinalis, affecting host-pathogen interactions by hindering adhesion to host cells. Front. Cell Infect. Microbiol. 2020, 10, 417. [Google Scholar] [CrossRef]
- Bielecka, E.; Scavenius, C.; Kantyka, T.; Jusko, M.; Mizgalska, D.; Szmigielski, B.; Potempa, B.; Enghild, J.J.; Prossnitz, E.R.; Blom, A.M.; et al. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. J. Biol. Chem. 2014, 289, 32481–32487. [Google Scholar] [CrossRef] [Green Version]
- Kosgodage, U.S.; Matewele, P.; Mastroianni, G.; Kraev, I.; Brotherton, D.; Awamaria, B.; Nicholas, A.P.; Lange, S.; Inal, J.M. Peptidylarginine deiminase inhibitors reduce bacterial membrane vesicle release and sensitize bacteria to antibiotic treatment. Front. Cell. Infect. Microbiol. 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.A.; Shindia, A.A.; AbouZaid, A.A.; Yassin, A.M.; Ali, G.S.; Sitohy, M.Z. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb. Technol. 2019, 124, 41–53. [Google Scholar] [CrossRef]
- György, B.; Toth, E.; Tarcsa, E.; Falus, A.; Buzas, E.I. Citrullination: A posttranslational modification in health and disease. Int. J. Biochem. Cell. Biol. 2006, 38, 1662–1677. [Google Scholar] [CrossRef]
- Alghamdi, M.; Alasmari, D.; Assiri, A.; Mattar, E.; Aljaddawi, A.A.; Alattas, S.G.; Redwan, E.M. An overview of the intrinsic role of citrullination in autoimmune disorders. J. Immunol. Res. 2019, 2019, 7592851. [Google Scholar] [CrossRef] [Green Version]
- Bicker, K.L.; Thompson, P.R. The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers 2013, 99, 155–163. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta 2013, 1829, 1126–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witalison, E.E.; Thompson, P.R.; Hofseth, L.J. Protein arginine deiminases and associated citrullination: Physiological functions and diseases associated with dysregulation. Curr. Drug Targets 2015, 16, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Gallagher, M.; Kholia, S.; Kosgodage, U.S.; Hristova, M.; Hardy, J.; Inal, J.M. Peptidylarginine deiminases-roles in cancer and neurodegeneration and possible avenues for therapeutic intervention via modulation of exosome and microvesicle (EMV) release? Int. J. Mol. Sci. 2017, 18, 1196. [Google Scholar] [CrossRef]
- Mondal, S.; Thompson, P.R. Protein arginine deiminases (PADs): Biochemistry and chemical biology of protein citrullination. Acc. Chem. Res. 2019, 52, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Palić, D.; Ostojić, J.; Andreasen, C.B.; Roth, J.A. Fish cast NETs: Neutrophil extracellular traps are released from fish neutrophils. Dev. Comp. Immunol. 2007, 31, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Claushuis, T.A.M.; van der Donk, L.E.H.; Luitse, A.L.; van Veen, H.A.; van der Wel, N.N.; van Vught, L.A.; Roelofs, J.J.T.H.; de Boer, O.J.; Lankelma, J.M.; Boon, L.; et al. Role of peptidylarginine deiminase 4 in neutrophil extracellular trap formation and host defense during Klebsiella pneumoniae-induced pneumonia-derived sepsis. J. Immunol. 2018, 201, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.; Martin, A.C. Protein moonlighting: A new factor in biology and medicine. Biochem. Soc. Trans. 2014, 42, 1671–1678. [Google Scholar] [CrossRef]
- Jeffrey, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160523. [Google Scholar] [CrossRef]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Svansson, V.; Hayes, P.; Lange, S. Deiminated proteins and extracellular vesicles—Novel serum biomarkers in whales and orca. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100676. [Google Scholar] [CrossRef]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Svansson, V.; Skírnisson, K.; Lange, S. Deiminated proteins and extracellular vesicles as novel biomarkers in pinnipeds: Grey seal (Halichoerus gryptus) and harbour seal (Phoca vitulina). Biochimie 2020, 171–172, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.A.; Kraev, I.; Lange, S. Protein deimination and extracellular vesicle profiles in Antarctic seabirds. Biology 2020, 9, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamenter, M.E.; Uysal-Onganer, P.; Huynh, K.W.; Kraev, I.; Lange, S. Post-translational deimination of immunological and metabolic protein markers in plasma and extracellular vesicles of naked mole-rat (Heterocephalus glaber). Int. J. Mol. Sci. 2019, 20, 5378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, T.J.; Kraev, I.; Lange, S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). Fish Shellfish Immunol. 2020, 106, 79–102. [Google Scholar] [CrossRef]
- Bowden, T.J.; Kraev, I.; Lange, S. Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). Dev. Comp. Immunol. 2020, 110, 103714. [Google Scholar] [CrossRef]
- Lange, S.; Kraev, I.; Magnadóttir, B.; Dodds, A.W. Complement component C4-like protein in Atlantic cod (Gadus morhua L.)—Detection in ontogeny and identification of post-translational deimination in serum and extracellular vesicles. Dev. Comp. Immunol. 2019, 101, 103437. [Google Scholar] [CrossRef]
- Magnadottir, B.; Hayes, P.; Gísladóttir, B.; Bragason, B.Þ.; Hristova, M.; Nicholas, A.P.; Guđmundsdóttir, S.; Lange, S. Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. Dev. Comp. Immunol. 2018, 87, 1–11. [Google Scholar] [CrossRef]
- Magnadottir, B.; Kraev, I.; Guđmundsdóttir, S.; Dodds, A.W.; Lange, S. Extracellular vesicles from cod (Gadus morhua L.) mucus contain innate immune factors and deiminated protein cargo. Dev. Comp. Immunol. 2019, 99, 103397. [Google Scholar] [CrossRef]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Dodds, A.W.; Gudmundsdottir, S.; Lange, S. Extracellular vesicles, deiminated protein cargo and microRNAs are novel serum biomarkers for environmental rearing temperature in Atlantic cod (Gadus morhua L.). Aquac. Rep. 2020, 16, 100245. [Google Scholar] [CrossRef]
- Muraro, S.P.; De Souza, G.F.; Gallo, S.W.; Da Silva, B.K.; De Oliveira, S.D.; Vinolo, M.A.R.; Saraiva, E.M.; Porto, B.N. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci. Rep. 2018, 8, 14166. [Google Scholar] [CrossRef]
- Casanova, V.; Sousa, F.H.; Shakamuri, P.; Svoboda, P.; Buch, C.; D’Acremont, M.; Christophorou, M.A.; Pohl, J.; Stevens, C.; Barlow, P.G. Citrullination alters the antiviral and immunomodulatory activities of the human cathelicidin LL-37 during rhinovirus infection. Front. Immunol. 2020, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Kholia, S.; Jorfi, S.; Thompson, P.R.; Causey, C.P.; Nicholas, A.P.; Inal, J.M.; Lange, S. A novel role for peptidylarginine deiminases (PADs) in microvesicle release: A therapeutic potential for PAD inhibitors to sensitize prostate cancer cells to chemotherapy. J. Extracell. Vesicles 2015, 4, 26192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosgodage, U.S.; Trindade, R.P.; Thompson, P.T.; Inal, J.M.; Lange, S. Chloramidine/Bisindolylmaleimide-I-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int. J. Mol. Sci. 2017, 18, 1007. [Google Scholar] [CrossRef] [PubMed]
- Kosgodage, U.S.; Uysal-Onganer, P.; Maclatchy, A.; Nicholas, A.P.; Inal, J.M.; Lange, S. Peptidylarginine deiminases post-translationally deiminate prohibitin and modulate extracellular vesicle release and miRNAs 21 and 126 in glioblastoma multiforme. Int. J. Mol. Sci. 2018, 20, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uysal-Onganer, P.; MacLatchy, A.; Mahmoud, R.; Kraev, I.; Thompson, P.R.; Inal, J.; Lange, S. Peptidylarginine deiminase isozyme-specific PAD2, PAD3 and PAD4 inhibitors differentially modulate extracellular vesicle signatures and cell invasion in two glioblastoma multiforme cell lines. Int. J. Mol. Sci. 2020, 21, 1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inal, J.M.; Ansa-Addo, E.A.; Lange, S. Interplay of host-pathogen microvesicles and their role in infectious disease. Biochem. Soc. Trans. 2013, 41, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef]
- Turchinovich, A.; Drapkina, O.; Tonevitsky, A. Transcriptome of extracellular vesicles: State-of-the-art. Front. Immunol. 2019, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Vagner, T.; Chin, A.; Mariscal, J.; Bannykh, S.; Engman, D.M.; di Vizio, D. Protein composition reflects extracellular vesicle heterogeneity. Proteomics 2019, 19, e1800167. [Google Scholar] [CrossRef]
- Antwi-Baffour, S.; Malibha-Pinchbeck, M.; Stratton, D.; Jorfi, S.; Lange, S.; Inal, J. Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets. J. Extracell. Vesicles 2019, 9, 1697124. [Google Scholar] [CrossRef]
- Iliev, D.; Strandskog, G.; Nepal, A.; Aspar, A.; Olsen, R.; Jørgensen, J.; Wolfson, D.; Ahluwalia, B.S.; Handzhiyski, J.; Mironova, R. Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. FEBS J. 2018, 285, 3114–3133. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, X.; Ji, J.; Yuan, C.; Gao, X.; Zhang, Y.; Lu, C.; Li, F.; Zhang, X. Changes of microRNAs expression profiles from red swamp crayfish (Procambarus clarkia) hemolymph exosomes in response to WSSV infection. Fish Shellfish Immunol. 2019, 84, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, A.S.; Duperthuy, M.; Charrière, G.M.; Le Roux, F.; Goudenège, D.; Gourbal, B.; Kieffer-Jaquinod, S.; Couté, Y.; Wai, S.N.; Destoumieux-Garzón, D. Outer membrane vesicles are vehicles for the delivery of Vibrio tasmaniensis virulence factors to oyster immune cells. Environ. Microbiol. 2015, 17, 1152–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschtgen, M.S.; Wetzel, K.; Goldman, W.; McFall-Ngai, M.; Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell Microbiol. 2016, 18, 488–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Liu, M.; Wang, B.; Jiang, K.; Jia, Z.; Wang, L.; Wang, L. Transcriptomic analysis of exosomal shuttle mRNA in Pacific oyster Crassostrea gigas during bacterial stimulation. Fish Shellfish Immunol. 2018, 74, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.B.; Schwartzman, J.A.; Bennett, B.D.; McAnulty, S.J.; Knop, M.; Nyholm, S.V.; Ruby, E.G. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis. J. Bacteriol. 2019, 201, e00319-19. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bai, Z.; Li, J. The mantle exosome and MicroRNAs of Hyriopsis cumingii involved in nacre color formation. Mar. Biotechnol. 2019, 21, 634–642. [Google Scholar] [CrossRef]
- Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, S.H.; Andrews, A.M.; Paul, D.; Pachter, J.S. Extracellular vesicles: Mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018, 15, 19. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, A.P.; Whitaker, J.N. Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia 2002, 37, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Gögel, S.; Leung, K.Y.; Vernay, B.; Nicholas, A.P.; Causey, C.P.; Thompson, P.R.; Greene, N.D.; Ferretti, P. Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Dev. Biol. 2011, 355, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, S.; Rocha-Ferreira, E.; Thei, L.; Mawjee, P.; Bennett, K.; Thompson, P.R.; Subramanian, V.; Nicholas, A.P.; Peebles, D.; Hristova, M.; et al. Peptidylarginine deiminases: Novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J. Neurochem. 2014, 130, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, J.; Thompson, P.R. Protein arginine methylation and citrullination in epigenetic regulation. ACS Chem. Biol. 2016, 11, 654–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beato, M.; Sharma, P. Peptidyl Arginine Deiminase 2 (PADI2)-mediated arginine citrullination modulates transcription in cancer. Int. J. Mol. Sci. 2020, 21, 1351. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.J.; Dyrynda, E.A. Antimicrobial proteins: From old proteins, new tricks. Mol. Immunol. 2015, 68, 383–398. [Google Scholar] [CrossRef] [Green Version]
- Sruthy, K.S.; Nair, A.; Antony, S.P.; Puthumana, J.; Singh, I.S.B.; Philip, R. A histone H2A derived antimicrobial peptide, Fi-Histin from the Indian White shrimp, Fenneropenaeus indicus: Molecular and functional characterization. Fish Shellfish Immunol. 2019, 92, 667–679. [Google Scholar] [CrossRef]
- Cho, J.H.; Sung, B.H.; Kim, S.C. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta 2009, 1788, 1564–1569. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.M.; Kemp, G.D.; Molle, M.G.; Smith, V.J. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem. J. 2002, 368, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, H.N.; Lai, E.T.; Havugimana, P.C.; White, C.; Emili, A.; Sakac, D.; Binnington, B.; Neschadim, A.; McCarthy, S.D.; Branch, D.R. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection. AIDS 2016, 30, 2043–2052. [Google Scholar] [CrossRef]
- Villagra-Blanco, R.; Silva, L.M.R.; Conejeros, I.; Taubert, A.; Hermosilla, C. Pinniped- and cetacean-derived ETosis contributes to combating emerging apicomplexan parasites (Toxoplasma gondii, Neospora caninum) circulating in marine environments. Biology 2019, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Huang, C.M.; Nakatsuji, T.; Thiboutot, D.; Kang, S.A.; Monestier, M.; Gallo, R.L. Histone H4 is a major component of the antimicrobial action of human sebocytes. J. Investig. Dermatol. 2009, 129, 2489–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoni, L.; Nuding, S.; Weller, D.; Gersemann, M.; Ott, G.; Wehkamp, J.; Stange, E.F. Human colonic mucus is a reservoir for antimicrobial peptides. J. Crohns Colitis 2013, 7, e652-64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Zoysa, M.; Nikapitiya, C.; Whang, I.; Lee, J.S.; Lee, J. Abhisin: A potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol. 2009, 27, 639–646. [Google Scholar] [CrossRef]
- Li, C.; Song, L.; Zhao, J.; Zhu, L.; Zou, H.; Zhang, H.; Wang, H.; Cai, Z. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys Farreri. Fish Shellfish Immunol. 2007, 22, 663–672. [Google Scholar] [CrossRef]
- Seo, J.K.; Stephenson, J.; Noga, E.J. Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 223–229. [Google Scholar] [CrossRef]
- Dorrington, T.; Villamil, L.; Gómez-chiarri, M. Upregulation in response to infection and antibacterial activity of oyster histone H4. Fish Shellfish Immunol. 2011, 30, 94–101. [Google Scholar] [CrossRef]
- Bachère, E.; Rosa, R.D.; Schmitt, P.; Poirier, A.C.; Merou, N.; Charrière, G.M.; Destoumieux-Garzón, D. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view. Fish Shellfish Immunol. 2015, 46, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Poirier, A.C.; Schmitt, P.; Rosa, R.D.; Vanhove, A.S.; Kieffer-Jaquinod, S.; Rubio, T.P.; Charrière, G.M.; Destoumieux-Garzón, D. Antimicrobial histones and DNA traps in invertebrate immunity: Evidences in Crassostrea gigas. J. Biol. Chem. 2014, 289, 24821–24831. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lv, C.; Zhang, S.; Zhao, G.; Ma, C. Zn(2+) rather than Ca(2+) or Mg(2+) used as a cofactor in non-muscular actin from the oyster to control protein polymerization. Biochim. Biophys. Acta 2013, 1830, 4179–4188. [Google Scholar] [CrossRef]
- de Lorgeril, J.; Zenagui, R.; Rosa, R.D.; Piquemal, D.; Bachère, E. Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis. PLoS ONE 2011, 6, e23142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Ke, C.; Guo, X.; Shi, B.; Huang, M. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Fish Shellfish Immunol. 2014, 38, 318–329. [Google Scholar] [CrossRef] [PubMed]
- DePina, A.S.; Langford, G.M. Vesicle transport: The role of actin filaments and myosin motors. Microsc. Res. Tech. 1999, 47, 93–106. [Google Scholar] [CrossRef]
- Martin, W.F.; Cerff, R. Physiology, phylogeny, early evolution, and GAPDH. Protoplasma 2017, 254, 1823–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baibai, T.; Oukhattar, L.; Mountassif, D.; Assobhei, O.; Serrano, A.; Soukri, A. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris. Acta Biochim. Biophys. Sin. 2010, 42, 863–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 2012, 39, 674–679. [Google Scholar] [CrossRef]
- Talbot, V.; Magee, R.J. Naturally-occurring heavy metal binding protein in invertebrates. Arch. Environ. Contam. Toxicol. 1978, 7, 73–81. [Google Scholar] [CrossRef]
- Fraser, M.; Fortier, M.; Foucher, D.; Roumier, P.H.; Brousseau, P.; Fournier, M.; Surette, C.; Vaillancourt, C. Exposure to low environmental concentrations of manganese, lead, and cadmium alters the serotonin system of blue mussels. Environ. Toxicol. Chem. 2018, 37, 192–200. [Google Scholar] [CrossRef]
- Shi, W.; Zhao, X.; Han, Y.; Che, Z.; Chai, X.; Liu, G. Ocean acidification increases cadmium accumulation in marine bivalves: A potential threat to seafood safety. Sci. Rep. 2016, 6, 20197. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Huang, J.; Paine, M.L.; Reinhold, V.N.; Chasteen, N.D. Structural characterization of the major extrapallial fluid protein of the mollusc Mytilus edulis: Implications for function. Biochemistry 2005, 44, 10720–10731. [Google Scholar] [CrossRef]
- Yang, C.; Wang, L.; Siva, V.S.; Shi, X.; Jiang, Q.; Wang, J.; Zhang, H.; Song, L. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity. PLoS ONE 2012, 7, e32012. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Zheng, H.P.; Zhang, B.; Liu, H.L.; Deng, H.J.; Deng, L.H. Cloning and respond of a cold shock domain protein (CnCSDP) gene to cold stress in noble scallop Chlamys nobilis (Bivalve: Pectinidae). Mol. Biol. Rep. 2014, 41, 7985–7994. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Nie, H.; Ye, J.; Li, D.; Huo, Z.; Yan, X. Physiological and gene expression analysis of the Manila clam Ruditapes philippinarum in response to cold acclimation. Sci. Total Environ. 2020, 742, 140427. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, J.; Yang, D.; Yang, F.; Nie, H.; Huo, Z.; Yan, X. Molecular characteristics of a novel HSP60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress. Cell Stress Chaperones 2018, 23, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.Y.; Wang, Z.X.; Lei, Q.N.; Huang, R.L.; Deng, Y.W.; Wang, Q.H.; Jiao, Y.; Du, X.D. Molecular cloning and expression analysis of a pearl oyster (Pinctada martensii) heat shock protein 90 (HSP90). Genet. Mol. Res. 2015, 14, 18778–18791. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Xu, M.; He, J. A novel biomarker for marine environmental pollution of HSP90 from Mytilus coruscus. Mar. Pollut. Bull. 2016, 111, 428–434. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Phan, T.; Sokolova, I.M. Long-term acclimation to different thermal regimes affects molecular responses to heat stress in a freshwater clam Corbicula Fluminea. Sci. Rep. 2016, 6, 39476. [Google Scholar] [CrossRef] [Green Version]
- Giannetto, A.; Maisano, M.; Cappello, T.; Oliva, S.; Parrino, V.; Natalotto, A.; de Marco, G.; Fasulo, S. Effects of oxygen availability on oxidative stress biomarkers in the mediterranean mussel Mytilus galloprovincialis. Mar. Biotechnol. 2017, 19, 614–626. [Google Scholar] [CrossRef]
- Travers, T.S.; Harlow, L.; Rosas, I.O.; Gochuico, B.R.; Mikuls, T.R.; Bhattacharya, S.K.; Camacho, C.J.; Ascherman, D.P. Extensive citrullination promotes immunogenicity of HSP90 through protein unfolding and exposure of cryptic epitopes. J. Immunol. 2016, 197, 1926–1936. [Google Scholar] [CrossRef] [Green Version]
- Hanington, P.C.; Zhang, S.M. The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J. Innate Immun. 2011, 3, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Adema, C.M. Fibrinogen-Related Proteins (FREPs) in mollusks. Results Probl. Cell Differ. 2015, 57, 111–129. [Google Scholar] [PubMed]
- Pila, E.A.; Li, H.; Hambrook, J.R.; Wu, X.; Hanington, P.C. Schistosomiasis from a Snail’s Perspective: Advances in snail immunity. Trends Parasitol. 2017, 33, 845–857. [Google Scholar] [CrossRef] [PubMed]
- McDowell, I.C.; Modak, T.H.; Lane, C.E.; Gomez-Chiarri, M. Multi-species protein similarity clustering reveals novel expanded immune gene families in the eastern oyster Crassostrea virginica. Fish Shellfish Immunol. 2016, 53, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hida, S.; Miura, N.N.; Adachi, Y.; Ohno, N. Influence of arginine deimination on antigenicity of fibrinogen. J. Autoimmun. 2004, 23, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Blachère, N.E.; Parveen, S.; Frank, M.O.; Dill, B.D.; Molina, H.; Orange, D.E. High-titer rheumatoid arthritis antibodies preferentially bind fibrinogen citrullinated by peptidylarginine deiminase. Arthritis Rheumatol. 2017, 69, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Manfrin, C.; De Moro, G.; Figueras, A.; Novoa, B.; Venier, P.; Pallavicini, A. The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: A widespread and diverse family of immune-related molecules. Dev. Comp. Immunol. 2011, 35, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Leite, R.B.; Milan, M.; Coppe, A.; Bortoluzzi, S.; dos Anjos, A.; Reinhardt, R.; Saavedra, C.; Patarnello, T.; Cancela, M.L.; Bargelloni, L. mRNA-Seq and microarray development for the Grooved Carpet shell clam, Ruditapes decussatus: A functional approach to unravel host-parasite interaction. BMC Genomics 2013, 14, 741. [Google Scholar] [CrossRef] [Green Version]
- Allam, B.; Pales Espinosa, E.; Tanguy, A.; Jeffroy, F.; Le Bris, C.; Paillard, C. Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to Brown Ring Disease. Fish Shellfish Immunol. 2014, 41, 2–11. [Google Scholar] [CrossRef]
- Kong, P.; Zhang, H.; Wang, L.; Zhou, Z.; Yang, J.; Zhang, Y.; Qiu, L.; Wang, L.; Song, L. AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity. Dev. Comp. Immunol. 2010, 34, 837–846. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Wang, W.N.; Mai, W.J.; Xin, Y.; Zhou, J.; He, W.Y.; Wang, A.L.; Sun, R.Y. Molecular characterization and expression analysis of elongation factors 1A and 2 from the Pacific white shrimp, Litopenaeus vannamei. Mol. Biol. Rep. 2011, 38, 2167–2178. [Google Scholar] [CrossRef]
- Smith, A.M.; Papaleo, C.; Reid, C.W.; Bliss, J.M. RNA-Seq reveals a central role for lectin, C1q and von Willebrand factor A domains in the defensive glue of a terrestrial slug. Biofouling 2017, 33, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.B.; De Jong-Brink, M.; Li, K.W.; Sassen, M.M.; Spijker, S.; van Elk, R.; Buijs, S.; van Minnen, J.; van Kesteren, R.E. Granularin, a novel molluscan opsonin comprising a single vWF type C domain is up-regulated during parasitation. FASEB J. 2004, 18, 845–847. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.P.; Evans, J.S. Pif97, a von willebrand and peritrophin biomineralization protein, organizes mineral nanoparticles and creates intracrystalline nanochambers. Biochemistry 2015, 54, 5348–5355. [Google Scholar] [CrossRef] [PubMed]
- Jain, G.; Pendola, M.; Huang, Y.C.; Gebauer, D.; Koutsoumpeli, E.; Johnson, S.; Evans, J.S. Selective synergism created by interactive nacre framework-associated proteins possessing EGF and vWA motifs: Implications for mollusk shell formation. Biochemistry 2018, 57, 2657–2666. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.Y.; Huang, J.; Li, L.; Foo, M.; Zeng, H.; Hwang, D.S. Nanomechanical contribution of collagen and von willebrand factor A in marine underwater adhesion and its implication for collagen manipulation. Biomacromolecules 2016, 17, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Foulon, V.; Boudry, P.; Artigaud, S.; Guérard, F.; Hellio, C. In Silico Analysis of Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int. J. Mol. Sci. 2019, 20, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Xie, L.; Zhang, R. Ca2+ mediates the self-assembly of the foot proteins of Pinctada fucata from the Nanoscale to the Microscale. Biomacromolecules 2016, 17, 3347–3355. [Google Scholar] [CrossRef] [PubMed]
- Tarcsa, E.; Marekov, L.N.; Mei, G.; Melino, G.; Lee, S.C.; Steinert, P.M. Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J. Biol. Chem. 1996, 271, 30709–30716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vafiadaki, E.; Arvanitis, D.A.; Sanoudou, D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015, 566, 1–7. [Google Scholar] [CrossRef]
- Guan, R.B.; Li, H.C.; Miao, X.X. Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis. Insect Sci. 2018, 25, 356–367. [Google Scholar] [CrossRef]
- Luo, J.; Shen, H.; Ren, Q.; Guan, G.; Zhao, B.; Yin, H.; Chen, R.; Zhao, H.; Luo, J.; Li, X.; et al. Characterization of an MLP Homologue from Haemaphysalis longicornis (Acari: Ixodidae) Ticks. Pathogens 2020, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- de Zoysa, M.; Nikapitiya, C.; Oh, C.; Lee, Y.; Whang, I.; Lee, J.S.; Choi, C.Y.; Lee, J. Microarray analysis of gene expression in disk abalone Haliotis discus discus after bacterial challenge. Fish Shellfish Immunol. 2011, 30, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M.; Runci, A.; Russo, M.A.; Tafani, M. Muscle Lim Protein (MLP)/CSRP3 at the crossroad between mechanotransduction and autophagy. Cell Death Dis. 2015, 6, e1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, Q.; Yu, H.; Du, S. Developmental dynamics of myogenesis in Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019, 227, 21–30. [Google Scholar] [CrossRef]
- Liu, J.J.; Sturrock, R.; Ekramoddoullah, A.K. The superfamily of thaumatin-like proteins: Its origin, evolution, and expression towards biological function. Plant Cell Rep. 2010, 29, 419–436. [Google Scholar] [CrossRef]
- Brandazza, A.; Angeli, S.; Tegoni, M.; Cambillau, C.; Pelosi, P. Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Lett. 2004, 572, 3–7. [Google Scholar] [CrossRef]
- Leprêtre, M.; Almunia, C.; Armengaud, J.; Salvador, A.; Geffard, A.; Palos-Ladeiro, M. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. J. Proteom. 2019, 202, 103366. [Google Scholar] [CrossRef]
- Nakamura, N. Ubiquitin system. Int. J. Mol. Sci. 2018, 19, 1080. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Cheng, Q.; Song, X.; Wang, H.; Wang, X.; Wang, L.; Zhu, B.; Song, L. A vital ubiquitin-conjugating enzyme CgUbe2g1 participated in regulation of immune response of Pacific oyster Crassostrea Gigas. Dev. Comp. Immunol. 2019, 91, 132–142. [Google Scholar] [CrossRef]
- Ohtake, F.; Tsuchiya, H. The emerging complexity of ubiquitin architecture. J. Biochem. 2017, 161, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Hershko, A.; Ganoth, D.; Pehrson, J.; Palazzo, R.E.; Cohen, L.H. Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 1991, 266, 16376–16379. [Google Scholar] [PubMed]
- Chen, R.H.; Chen, Y.H.; Huang, T.Y. Ubiquitin-mediated regulation of autophagy. J. Biomed. Sci. 2019, 26, 80. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K.; Lee, M.J.; Go, H.J.; Kim, G.D.; Jeong, H.D.; Nam, B.H.; Park, N.G. Purification and antimicrobial function of ubiquitin isolated from the gill of Pacific oyster, Crassostrea gigas. Mol. Immunol. 2013, 53, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Leu, J.H.; Lin, S.J.; Huang, J.Y.; Chen, T.C.; Lo, C.F. A model for apoptotic interaction between white spot syndrome virus and shrimp. Fish Shellfish Immunol. 2013, 34, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Götze, S.; Saborowski, R.; Martínez-Cruz, O.; Muhlia-Almazán, A.; Sánchez-Paz, A. Proteasome properties of hemocytes differ between the whiteleg shrimp Penaeus vannamei and the brown shrimp Crangon crangon (Crustacea, Decapoda). Cell Stress Chaperones 2017, 22, 879–891. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci. 2016, 8, 303. [Google Scholar] [CrossRef]
- Fujita, Y.; Tinoco, R.; Li, Y.; Senft, D.; Ronai, Z.A. Ubiquitin ligases in cancer immunotherapy—Balancing antitumor and autoimmunity. Trends Mol. Med. 2019, 25, 428–443. [Google Scholar] [CrossRef] [Green Version]
- Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014, 20, 1242–1253. [Google Scholar] [CrossRef]
- Zhao, Y.; Hegde, A.N.; Martin, K.C. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr. Biol. 2003, 13, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Portilho, L.G.; Duarte, B.C.D.; Queiroz, F.R.; Ribeiro, T.H.C.; Jeremias, W.J.; Babá, E.H.; Coelho, P.M.Z.; Morais, E.R.; Cabral, F.J.; Caldeira, R.L.; et al. Genome-wide identification, characterisation and expression profiling of the ubiquitin-proteasome genes in Biomphalaria Glabrata. Memórias Inst. Oswaldo Cruz 2019, 114, e190052. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.K.; Kim, D.G.; Oh, R.; Park, K.S.; Lee, I.A.; Cho, S.M.; Lee, K.Y.; Nam, B.H. Antimicrobial effect of the 60S ribosomal protein L29 (cgRPL29), purified from the gill of pacific oyster, Crassostrea Gigas. Fish Shellfish Immunol. 2017, 67, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.; Manahan, D.T. Gene expression profiling of genetically determined growth variation in bivalve larvae (Crassostrea gigas). J. Exp. Biol. 2010, 213, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kournoutou, G.G.; Giannopoulou, P.C.; Sazakli, E.; Leotsinidis, M.; Kalpaxis, D.L. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals. Aquat. Toxicol. 2017, 192, 136–147. [Google Scholar] [CrossRef]
- Su, J.; Song, L.; Xu, W.; Wu, L.; Li, H.; Xiang, J. cDNA cloning and mRNA expression of the lipopolysaccharide- and beta-1,3-glucan-binding protein gene from scallop Chlamys farreri. Aquaculture 2004, 239, 69–80. [Google Scholar] [CrossRef]
- Jayaraj, S.S.; Thiagarajan, R.; Arumugam, M.; Mullainadhan, P. Isolation, purification and characterization of beta-1,3-glucan binding protein from the plasma of marine mussel Perna viridis. Fish Shellfish Immunol. 2008, 24, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Kamitaka, R.; Takahashi, K.G.; Osada, M. Identification and characterization of multiple beta-glucan binding proteins in the Pacific oyster, Crassostrea gigas. Dev. Comp. Immunol. 2010, 34, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Nam, B.H.; Moon, J.Y.; Park, E.H.; Kong, H.J.; Kim, Y.O.; Kim, D.G.; Kim, W.J.; An, C.M.; Seo, J.K. Antimicrobial and antitumor activities of novel peptides derived from the lipopolysaccharide- and β-1,3-glucan binding protein of the pacific abalone Haliotis discus hannai. Mar. Drugs 2016, 14, 227. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, J.; Yang, Y.; Liu, W.; Zhang, J. BTB domain-containing protein 6 is involved in the development of locust wings during the nymph to adult transition. Int. J. Biol. Macromol. 2020, 150, 965–973. [Google Scholar] [CrossRef]
- Chaharbakhshi, E.; Jemc, J.C. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis 2016, 54, 505–518. [Google Scholar] [CrossRef]
- Perez-Torrado, R.; Yamada, D.; Defossez, P.A. Born to bind: The BTB protein-protein interaction domain. Bioessays 2006, 28, 1194–1202. [Google Scholar] [CrossRef]
- Wang, P.; Song, J.; Ye, D. CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. Adv. Exp. Med. Biol. 2020, 1217, 211–223. [Google Scholar] [PubMed]
- Ellmeier, W.; Taniuchi, I. The role of BTB-zinc finger transcription factors during T cell development and in the regulation of T cell-mediated immunity. Curr. Top. Microbiol. Immunol. 2014, 381, 21–49. [Google Scholar] [PubMed]
- Šeda, O.; Šedová, L.; Včelák, J.; Vaňková, M.; Liška, F.; Bendlová, B. ZBTB16 and metabolic syndrome: A network perspective. Physiol. Res. 2017, 66 (Suppl. 3), S357–S365. [Google Scholar]
- Liu, Y.; Song, J.; Zhang, J.; Yang, L.; Liu, Z.; Wang, X. BTB/POZ domain-containing protein 7 is inversely associated with fibronectin expression in salivary adenoid cystic carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 468–477. [Google Scholar] [CrossRef]
- Stogios, P.J.; Downs, G.S.; Jauhal, J.J.; Nandra, S.K.; Privé, G.G. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005, 6, R82. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Braunschweig, U.; Gonatopoulos-Pournatzis, T.; Weatheritt, R.J.; Hirsch, C.L.; Ha, K.; Radovani, E.; Nabeel-Shah, S.; Sterne-Weiler, T.; Wang, J.; et al. Multilayered control of alternative splicing regulatory networks by transcription factors. Mol. Cell 2017, 65, 539–553.e7. [Google Scholar] [CrossRef] [Green Version]
- Strang, C.; Kunjilwar, K.; DeRubeis, D.; Peterson, D.; Pfaffinger, P.J. The role of Zn2+ in Shal voltage-gated potassium channel formation. J. Biol. Chem. 2003, 278, 31361–31371. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Guo, Y.; Li, L.; Fan, S.; Yu, Z.; Yu, D. Genomic structure of the α-amylase gene in the pearl oyster Pinctada fucata and its expression in response to salinity and food concentration. Gene 2016, 587, 98–105. [Google Scholar] [CrossRef]
- Fernández-Reiriz, M.J.; Navarro, J.M.; Labarta, U. Enzymatic and feeding behaviour of Argopecten purpuratus under variation in salinity and food supply. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005, 141, 153–163. [Google Scholar] [CrossRef]
- Lombraña, M.; Suárez, P.; Juan, F.S. Two forms of alpha-amylase in mantle tissue of Mytilus galloprovincialis: Purification and molecular properties of form II. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 142, 56–66. [Google Scholar] [CrossRef]
- Nikapitiya, C.; Oh, C.; Whang, I.; Kim, C.G.; Lee, Y.H.; Kim, S.J.; Lee, J. Molecular characterization, gene expression analysis and biochemical properties of alpha-amylase from the disk abalone, Haliotis discus discus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 152, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, J.A.; Deaton, L.E. The effect of cadmium exposure on digestive enzymes in the eastern oyster Crassostrea virginica. J. Shellfish Res. 2012, 31, 631–634. [Google Scholar] [CrossRef]
- Huvet, A.; Béguel, J.P.; Cavaleiro, N.P.; Thomas, Y.; Quillien, V.; Boudry, P.; Alunno-Bruscia, M.; Fabioux, C. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas. J. Exp. Biol. 2015, 218, 1740–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahapatra, E.; Dasgupta, D.; Bhattacharya, N.; Mitra, S.; Banerjee, D.; Goswami, S.; Ghosh, N.; Dey, A.; Chakraborty, S. Sustaining immunity during starvation in bivalve mollusc: A costly affair. Tissue Cell 2017, 49, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Alliegro, M.C.; Hartson, S.; Alliegro, M.A. Composition and dynamics of the nucleolinus, a link between the nucleolus and cell division apparatus in surf clam (Spisula) oocytes. J. Biol. Chem. 2012, 287, 6702–6713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chora, S.; Starita-Geribaldi, M.; Guigonis, J.M.; Samson, M.; Roméo, M.; Bebianno, M.J. Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquat. Toxicol. 2009, 94, 300–308. [Google Scholar] [CrossRef]
- Khacho, M.; Mekhail, K.; Pilon-Larose, K.; Pause, A.; Côté, J.; Lee, S. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol. Biol. Cell 2008, 19, 5296–5308. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, L.; Kong, P.; Yang, J.; Zhang, H.; Wang, M.; Zhou, Z.; Qiu, L.; Song, L. A novel C1qDC protein acting as pattern recognition receptor in scallop Argopecten irradians. Fish Shellfish Immunol. 2012, 33, 427–435. [Google Scholar] [CrossRef]
- Talapatra, S.; Wagner, J.D.; Thompson, C.B. Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ. 2020, 9, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Vera, M.; Pani, B.; Griffiths, L.A.; Muchardt, C.; Abbott, C.M.; Singer, R.H.; Nudler, E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 2014, 3, e03164. [Google Scholar] [CrossRef]
- Zapata, M.; Tanguy, A.; David, E.; Moraga, D.; Riquelme, C. Transcriptomic response of Argopecten purpuratus post-larvae to copper exposure under experimental conditions. Gene 2009, 442, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Jeon, H.Y.; Kim, S.R.; Yum, S. Differentially displayed genes with oxygen depletion stress and transcriptional responses in the marine mussel, Mytilus galloprovincialis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2011, 6, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Belenguer-Varea, Á.; Tarazona-Santabalbina, F.J.; Avellana-Zaragoza, J.A.; Martínez-Reig, M.; Mas-Bargues, C.; Inglés, M. Oxidative stress and exceptional human longevity: Systematic review. Free Radic. Biol. Med. 2020, 149, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Tower, J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005, 126, 365–379. [Google Scholar] [CrossRef]
- Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. Environ. Toxicol. Pharmacol. 2018, 58, 105–113. [Google Scholar] [CrossRef]
- Béguel, J.P.; Huvet, A.; Quillien, V.; Lambert, C.; Fabioux, C. Study of the antioxidant capacity in gills of the Pacific oyster Crassostrea gigas in link with its reproductive investment. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2013, 157, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Kurz, S.; Jin, C.; Hykollari, A.; Gregorich, D.; Giomarelli, B.; Vasta, G.R.; Wilson, I.B.; Paschinger, K. Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J. Biol. Chem. 2013, 288, 24410–24428. [Google Scholar] [CrossRef] [Green Version]
- Lassudrie, M.; Wikfors, G.H.; Sunila, I.; Alix, J.H.; Dixon, M.S.; Combot, D.; Soudant, P.; Fabioux, C.; Hégaret, H. Physiological and pathological changes in the eastern oyster Crassostrea virginica infested with the trematode Bucephalus sp. and exposed to the toxic dinoflagellate Alexandrium fundyense. J. Invertebr. Pathol. 2015, 126, 51–63. [Google Scholar] [CrossRef]
- Xue, Q.; Beguel, J.P.; La Peyre, J. Dominin and segon form multiprotein particles in the plasma of Eastern Oysters (Crassostrea virginica) and are likely involved in shell formation. Front. Physiol. 2019, 10, 566. [Google Scholar] [CrossRef]
- Trevisan, R.; Flores-Nunes, F.; Dolores, E.S.; Mattos, J.J.; Piazza, C.E.; Sasaki, S.T.; Taniguchi, S.; Montone, R.C.; Bícego, M.C.; dos Reis, I.M.M.; et al. Thiol oxidation of hemolymph proteins in oysters Crassostrea brasiliana as markers of oxidative damage induced by urban sewage exposure. Environ. Toxicol. Chem. 2017, 36, 1833–1845. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Xue, Q.G.; Schey, K.L.; Li, Y.; Cooper, R.K.; La Peyre, J.F. Characterization of the major plasma protein of the eastern oyster, Crassostrea virginica, and a proposed role in host defense. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Coudane, F.; Mechin, M.C.; Huchenq, A.; Henry, J.; Nachat, R.; Ishigami, A.; Adoue, V.; Sebbag, M.; Serre, G.; Simon, M. Deimination and expression of peptidylarginine deiminases during cutaneous wound healing in mice. Eur. J. Dermatol. 2011, 21, 376–384. [Google Scholar] [CrossRef] [PubMed]
Protein ID Protein Name | Species Name Common Name | Matches (Sequences) | Total Score (p < 0.05) ‡ |
---|---|---|---|
Q6UQ16_MYTED EP protein | Mytilus edulis Blue mussel | 114 (6) | 438 |
Q708T0_MYTED *Heavy metal binding protein | Mytilus edulis Blue mussel | 40 (5) | 291 |
Q05K66_MYTED Actin (Fragment) | Mytilus edulis Blue mussel | 10 (3) | 261 |
Q3S336_MYTED *Alpha-tubulin (Fragment) | Mytilus edulis Blue mussel | 9 (3) | 212 |
G0YFD6_MYTED *Tubulin beta chain (Fragment) | Mytilus edulis Blue mussel | 7 (2) | 201 |
A0A5P8PEH6_MYTED Histone H4 | Mytilus edulis Blue mussel | 6 (3) | 131 |
Q9U9B5_MYTED Actin (Fragment) | Mytilus edulis Blue mussel | 14 (2) | 122 |
Q6WV83_MYTED Histone H2B | Mytilus edulis Blue mussel | 4 (2) | 78 |
A0A096ZTP0_MYTED Histone H3 | Mytilus edulis Blue mussel | 1 (1) | 41 |
B0B039_MYTED Ubiquitin | Mytilus edulis Blue mussel | 1 (1) | 32 |
K1QG58_CRAGI Actin | Crassostrea gigas Pacific oyster | 27 (8) | 571 |
F0V443_MYTGA *Putative C1q domain containing protein MgC1q6 | Mytilus galloprovincialis Mediterranean mussel | 114 (6) | 438 |
A0A077GY54_MYTTR EP protein | Mytilus trossulus Bay mussel | 103 (6) | 426 |
D3GA79_HALTU Actin (Fragment) | Haliotis tuberculata coccinea Green ormer | 6 (5) | 311 |
A0A2C9K042_BIOGL Tubulin alpha chain | Biomphalaria glabrata Freshwater snail | 20 (4) | 290 |
A0A433TJB9_ELYCH Tubulin alpha chain | Elysia chlorotica Eastern emerald elysia | 15 (3) | 215 |
V4A0D9_LOTGI Histone H4 | Lottia gigantea Owl limpet | 10 (5) | 209 |
A0A076FGE1_PATRU *Tubulin beta chain | Patella rustica Rustic limpet | 7 (2) | 201 |
A0A6J8BQL5_MYTCO *TUBA | Mytilus coruscus Korean mussel | 5 (3) | 200 |
A0A649Z2S2_9EUPU Actin (Fragment) | Hemphillia danielsi Roundback slug | 7 (6) | 198 |
A0A077D3S6_MYTGA Glyceraldehyde-3-phosphate dehydrogenase | Mytilus galloprovincialis Mediterranean mussel | 7 (2) | 181 |
A0A649Z3D9_9EUPU Actin (Fragment) | Hemphillia skadi Skade’s jumping-slug | 7 (5) | 163 |
H6BD30_OSTED GAPDH glyceraldehyde 3 phosphate dehydrogenase | Ostrea edulis European flat oyster | 15 (2) | 136 |
A0A077GYT3_MYTTR Cold-shock domain protein | Mytilus trossulus Bay mussel | 1 (1) | 134 |
A0A3S0ZQE0_ELYCH *Uncharacterized protein (RAB1) | Elysia chlorotica Eastern emerald elysia | 1 (1) | 216 |
A0A6J8C382_MYTCO H2A | Mytilus coruscus Korean mussel | 4 (3) | 117 |
A0A4D6DEH0_9GAST Histone H3 (Fragment) | Georissa similis Land snail | 6 (3) | 111 |
E7DS85_9EUPU Actin (Fragment) | Gulella pretiosa Land snail | 3 (3) | 105 |
G3ET72_9BIVA *Tubulin beta chain | Malletia johnsoni Land snail | 1 (1) | 91 |
A0A6J7ZUB9_MYTCO PGK | Mytilus coruscus Korean mussel | 1 (1) | 82 |
A0A210QDC3_MIZYE *2-phospho-D-glycerate hydrolyase | Mizuhopecten yessoensis Yesso/Ezo scallop | 2 (1) | 81 |
A0A159WJ17_RUDPH *Heat shock protein 60 | Ruditapes philippinarum Manila clam | 1 (1) | 78 |
A0A0B7ANE5_9EUPU *Tubulin beta chain | Arion vulgaris Spanish slug | 1 (1) | 75 |
A0A194ALQ1_PINFU Elongation factor 1-alpha | Pinctada fucata Akoya pearl oyster | 1 (1) | 70 |
V4AQU9_LOTGI Tubulin_C domain-containing protein | Lottia gigantea Owl limpet | 11 (1) | 64 |
K1RVE3_CRAGI Actin | Crassostrea gigas Pacific oyster | 1 (1) | 62 |
A0A077H3L5_MYTTR *40S ribosomal protein S27a | Mytilus trossulus Bay mussel | 2 (2) | 62 |
A0A0B7B879_9EUPU *Uncharacterized protein | Arion vulgaris Spanish slug | 1 (1) | 61 |
V4B3G5_LOTGI *Uncharacterized protein | Lottia gigantea Owl limpet | 15 (1) | 55 |
A0A499QNG2_RUDPH Receptor for activated C kinase 1 | Ruditapes philippinarum Manila clam | 6 (1) | 51 |
K1PNQ5_CRAGI *Heat shock protein HSP 90-alpha 1 | Crassostrea gigas Pacific oyster | 1 (1) | 51 |
A0A6J8AYS7_MYTCO *Uncharacterized protein | Mytilus coruscus Korean mussel | 20 (1) | 50 |
A0A6J8AKT9_MYTCO *Uncharacterized protein | Mytilus coruscus Korean mussel | 7 (2) | 50 |
A0A6J8AIA4_MYTCO *Uncharacterized protein (GTP cyclohydrolase 1 feedback regulatory protein) | Mytilus coruscus Korean mussel | 2 (2) | 49 |
A0A6J8B742_MYTCO *TRIM2_3 | Mytilus coruscus Korean mussel | 3 (1) | 49 |
A0A0B7AV89_9EUPU *Sodium/potassium-transporting ATPase subunit alpha | Arion vulgaris Spanish slug | 1 (1) | 48 |
A0A433U913_ELYCH *Uncharacterized protein | Elysia chlorotica Eastern emerald elysia | 1 (1) | 48 |
A0A0L8FZD1_OCTBM *Uncharacterized protein | Octopus bimaculoides California two-spot octopus | 2 (2) | 43 |
A0A2T7NEC2_POMCA *Fibrinogen C-terminal domain-containing protein | Pomacea canaliculata Channeled applesnail | 6 (1) | 41 |
A0A3S1CEU4_ELYCH *Uncharacterized protein | Elysia chlorotica Eastern emerald elysia | 5 (1) | 41 |
Protein ID Protein Name | Species Name Common Name | Matches (Sequences) | Total Score (p < 0.05) ‡ |
---|---|---|---|
V9VED0_MYAAR Actin (Fragment) | Mya arenaria Soft shell clam | 7 (5) | 255 |
Q6YNF3_MYAAR Histone H3 (Fragment) | Mya arenaria Soft shell clam | 4 (2) | 90 |
J9Z3Z3_MYAAR Elongation factor 1 alpha | Mya arenaria Soft shell clam | 2 (1) | 38 |
A0A0L8HIZ8_OCTBM Uncharacterized protein (actin) | Octopus bimaculoides California two-spot octopus | 14 (7) | 448 |
A0A6J8C382_MYTCO H2A | Mytilus coruscus Korean mussel | 4 (2) | 188 |
A0A6J8AIH4_MYTCO H3 | Mytilus coruscus Korean mussel | 6 (4) | 164 |
A0A0B7B588_9EUPU Tubulin alpha chain | Arion vulgaris Spanish slug | 2 (2) | 150 |
A0A077D3S6_MYTGA Glyceraldehyde-3-phosphate dehydrogenase | Mytilus galloprovincialis Mediterranean mussel | 3 (1) | 140 |
V4A0D9_LOTGI Histone H4 | Lottia gigantean Owl limpet | 5 (2) | 108 |
A0A6J7ZUB9_MYTCO PGK | Mytilus coruscus Korean mussel | 2 (2) | 94 |
A0A499QNG2_RUDPH Receptor for activated C kinase | Ruditapes philippinarum Manila clam | 3 (1) | 75 |
H6BD30_OSTED GAPDH glyceraldehyde 3 phosphate dehydrogenase | Ostrea edulis European flat oyster | 8 (1) | 71 |
A0A077GY54_MYTTR EP protein | Mytilus trossulus Bay mussel | 1 (1) | 68 |
A0A194ALQ1_PINFU Elongation factor 1-alpha | Pinctada fucata Akoya pearl oyster | 3 (2) | 65 |
A0A077GYT3_MYTTR Cold-shock domain protein | Mytilus trossulus Bay mussel | 1 (1) | 59 |
A0A0R6BQX1_CRAHO Superoxide dismutase | Crassostrea hongkongensis | 1 (1) | 56 |
K1QK39_CRAGI *Dynein heavy chain 2, axonemal | Crassostrea gigas Pacific oyster | 7 (2) | 56 |
V4AES5_LOTGI *Uncharacterized protein | Lottia gigantean Owl limpet | 1 (1) | 54 |
A0A2T7NYL0_POMCA Uncharacterized protein | Pomacea canaliculata Channeled applesnail | 1 (1) | 50 |
A0A6J8AYS7_MYTCO Uncharacterized protein | Mytilus coruscus Korean mussel | 5 (1) | 48 |
A0A210R3U3_MIZYE *80 kDa MCM3-associated protein | Mizuhopecten yessoensis Yesso/Ezo scallop | 27 (2) | 46 |
A0A6J8D0T9_MYTCO PARP7S | Mytilus coruscus Korean mussel | 2 (1) | 44 |
A0A6J8BH71_MYTCO *SCRN | Mytilus coruscus Korean mussel | 1 (1) | 42 |
A0A3S1AG64_ELYCH *Uncharacterized protein | Elysia chlorotica Eastern emerald elysia | 20 (1) | 41 |
Protein ID Protein Name | Species Name Common Name | Matches (Sequences) | Total Score (p < 0.05) ‡ |
---|---|---|---|
Q0KJW4_CRAVI Dominin | Crassostrea virginica Eastern Oyster | 47 (3) | 293 |
H9ZXX0_CRAVI Major plasma protein 2 | Crassostrea virginica Eastern Oyster | 8 (4) | 252 |
D9IA14_CRAVI Histone H4 | Crassostrea virginica Eastern Oyster | 6 (4) | 241 |
Q92193|ACT_CRAVI Actin (Fragment) | Crassostrea virginica Eastern Oyster | 3 (2) | 149 |
A0A0C4URT1_CRAVI Histone H3 (Fragment) | Crassostrea virginica Eastern Oyster | 1 (1) | 41 |
A9XN85_CRAVI Glyceraldehyde 3-phosphate dehydrogenase | Crassostrea virginica Eastern Oyster | 1 (1) | 36 |
Q0KJW4_CRAVI Dominin | Crassostrea virginica Eastern Oyster | 47 (3) | 293 |
A0A6J8CKZ0_MYTCO Uncharacterized protein (H4) | Mytilus coruscus Korean mussel | 7 (5) | 282 |
H9ZXX0_CRAVI Major plasma protein 2 | Crassostrea virginica Eastern Oyster | 8 (4) | 252 |
K1PY89_CRAGI *Extracellular superoxide dismutase [Cu-Zn] | Crassostrea gigas Pacific oyster | 21 (2) | 198 |
A0A0L8HIZ8_OCTBM Uncharacterized protein (Actin) | Octopus bimaculoides California two-spot octopus | 8 (3) | 192 |
A0A077D3S6_MYTGA Glyceraldehyde-3-phosphate dehydrogenase | Mytilus galloprovincialis Mediterranean mussel | 3 (2) | 143 |
K1R781_CRAGI *Muscle LIM protein Mlp84B | Crassostrea gigas Pacific oyster | 3 (3) | 128 |
K1RBZ0_CRAGI *Beta-1,3-glucan-binding protein | Crassostrea gigas Pacific oyster | 4 (2) | 111 |
K1RSS3_CRAGI *Myosin heavy chain, striated muscle | Crassostrea gigas Pacific oyster | 3 (3) | 103 |
K1QW36_CRAGI *60S ribosomal protein L6 | Crassostrea gigas Pacific oyster | 1 (1) | 77 |
A0A0L8HPQ3_OCTBM *60S ribosomal protein L23 | Octopus bimaculoides California two-spot octopus | 1 (1) | 72 |
K1QAH0_CRAGI *Thaumatin-like protein 1a | Crassostrea gigas Pacific oyster | 2 (1) | 72 |
A0A210QTG0_MIZYE *CEP209_CC5 | Mizuhopecten yessoensis Yesso/Ezo scallop | 6 (2) | 62 |
A0A0B6Z082_9EUPU *40S ribosomal protein S23 | Arion vulgaris Spanish slug | 1 (1) | 61 |
H6BD30_OSTED GAPDH | Ostrea edulis European flat oyster | 5 (1) | 61 |
A0A2T7NYP1_POMCA Histone H2B | Pomacea canaliculata Channeled applesnail | 1 (1) | 60 |
A0A076KW18_MYTGA Ubiquitin C | Mytilus galloprovincialis Mediterranean mussel | 1 (1) | 60 |
A0A0L8G4K0_OCTBM *VWFA domain-containing protein | Octopus bimaculoides California two-spot octopus | 1 (1) | 58 |
A0A2C9JK25_BIOGL *Uncharacterized protein | Biomphalaria glabrata Freshwater snail | 4 (1) | 56 |
A0A2T7NYL0_POMCA Uncharacterized protein | Pomacea canaliculata Channeled applesnail | 2 (1) | 55 |
K1QPG2_CRAGI *Uncharacterized protein | Crassostrea gigas Pacific oyster | 1 (1) | 51 |
A0A6J8AYS7_MYTCO Uncharacterized protein | Mytilus coruscus Korean mussel | 2 (1) | 48 |
V4BDC6_LOTGI *BTB domain-containing protein | Lottia gigantean Owl limpet | 5 (2) | 47 |
A0A0M7B3F1_9BIVA *Amylase | Dreissena rostriformis bugensis Quagga mussel | 1 (1) | 47 |
A0A3S1BNG5_ELYCH *RING-type domain-containing protein | Elysia chlorotica Eastern emerald elysia | 1 (1) | 44 |
A0A0L8HLW7_OCTBM *Uncharacterized protein | Octopus bimaculoides California two-spot octopus | 1 (1) | 44 |
A0A649Z2X2_9EUPU Actin (Fragment) | Hemphillia skadi Skade’s jumping-slug | 3 (2) | 44 |
A0A6J8D0T9_MYTCO PARP7S | Mytilus coruscus Korean mussel | 2 (1) | 42 |
A0A141BGR0_PINFU *Beta-catenin | Pinctada fucata Akoya pearl oyster | 1 (1) | 41 |
A0A210R431_MIZYE Sequestosome-1 | Mizuhopecten yessoensis Yesso/Ezo scallop | 1 (1) | 41 |
K1QE77_CRAGI Solute carrier family 25 member 40 | Crassostrea gigas Pacific oyster | 1 (1) | 41 |
Protein ID Protein Name | Species Name Common Name | Matches (Sequences) | Total Score (p < 0.05) ‡ |
---|---|---|---|
A0A6J8CKZ0_MYTCO Histone H4 | Mytilus coruscus Korean mussel | 9 (7) | 314 |
A0A6J8C382_MYTCO Histone H2A | Mytilus coruscus Korean mussel | 9 (7) | 312 |
A0A1B1H1S7_9CAEN Histone H3 (Fragment) | Fonscochlea zeidleri Freshwater snail | 6 (5) | 200 |
V4A0D9_LOTGI Histone H4 | Lottia gigantea Owl limpet | 5 (4) | 186 |
A0A076FHY5_PATCE Beta-actin (Fragment) | Patella caerulea Mediterranean limpet | 5 (2) | 170 |
A0A1V4JT39_PATFA Glyceraldehyde-3-phosphate dehydrogenase | Mytilus galloprovincialis Mediterranean mussel | 2 (1) | 111 |
A0A0K0PUN7_MYTGA *Nacre c1q domain-containing protein 1 | Mytilus galloprovincialis Mediterranean mussel | 2 (2) | 101 |
Q0KJW4_CRAVI Dominin | Crassostrea virginica Eastern Oyster | 4 (2) | 85 |
A0A0R6BQX1_CRAHO Superoxide dismutase | Crassostrea hongkongensis Hong Kong Oyster | 3 (1) | 55 |
K1PY89_CRAGI Extracellular superoxide dismutase | Crassostrea gigas Pacific Oyster | 3 (1) | 55 |
H9ZXX0_CRAVI Major plasma protein 2 | Crassostrea virginica Eastern Oyster | 1 (1) | 84 |
A0A6J7ZZ73_MYTCO *ACTB_G1 | Mytilus coruscus Korean mussel | 2 (2) | 75 |
A0A1B2CWA8_FUSFL Elongation factor 1-alpha | Fusconaia flava Wabash pigtoe | 2 (2) | 72 |
H6BD30_OSTED GAPDH glyceraldehyde 3 phosphate dehydrogenase | Ostrea edulis European flat oyster | 3 (1) | 69 |
A0A6J8D0T9_MYTCO PARP7S | Mytilus coruscus Korean mussel | 3 (1) | 56 |
A0A2T7NYL0_POMCA Uncharacterized protein | Pomacea canaliculata Channeled applesnail | 2 (1) | 55 |
A0A0A7HG21_POMCA *Heat shock protein 90 | Pomacea canaliculata Channeled applesnail | 1 (1) | 53 |
A0A0B7B588_9EUPU Tubulin alpha chain | Arion vulgaris Spanish slug | 1 (1) | 49 |
A0A6J8AYS7_MYTCO Uncharacterized protein | Mytilus coruscus Korean mussel | 3 (1) | 48 |
A0A076KW18_MYTGA Ubiquitin C | Mytilus galloprovincialis Mediterranean mussel | 1 (1) | 43 |
A0A210R431_MIZYE Sequestosome-1 | Mizuhopecten yessoensis Yesso scallop | 1 (1) | 43 |
A0A0L8HUL5_OCTBM *PDZ domain-containing protein | Octopus bimaculoides California two-spot octopus | 1 (1) | 41 |
K1QE77_CRAGI Solute carrier family 25 member 40 | Crassostrea gigas Pacific oyster | 1 (1) | 41 |
A0A6J8A7V5_MYTCO *Uncharacterized protein | Mytilus coruscus Korean mussel | 3 (1) | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowden, T.J.; Kraev, I.; Lange, S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca—The Blue Mussel (Mytilus edulis), Soft Shell Clam (Mya arenaria), Eastern Oyster (Crassostrea virginica) and Atlantic Jacknife Clam (Ensis leei). Biology 2020, 9, 416. https://doi.org/10.3390/biology9120416
Bowden TJ, Kraev I, Lange S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca—The Blue Mussel (Mytilus edulis), Soft Shell Clam (Mya arenaria), Eastern Oyster (Crassostrea virginica) and Atlantic Jacknife Clam (Ensis leei). Biology. 2020; 9(12):416. https://doi.org/10.3390/biology9120416
Chicago/Turabian StyleBowden, Timothy J., Igor Kraev, and Sigrun Lange. 2020. "Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca—The Blue Mussel (Mytilus edulis), Soft Shell Clam (Mya arenaria), Eastern Oyster (Crassostrea virginica) and Atlantic Jacknife Clam (Ensis leei)" Biology 9, no. 12: 416. https://doi.org/10.3390/biology9120416
APA StyleBowden, T. J., Kraev, I., & Lange, S. (2020). Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca—The Blue Mussel (Mytilus edulis), Soft Shell Clam (Mya arenaria), Eastern Oyster (Crassostrea virginica) and Atlantic Jacknife Clam (Ensis leei). Biology, 9(12), 416. https://doi.org/10.3390/biology9120416