Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System
Abstract
:1. Introduction
2. Nanodelivery Systems
2.1. Alginate
2.1.1. Encapsulation of Bacterial Antigens in Alginate Microparticles
2.1.2. Encapsulation of Viral DNA in Alginate Microparticles
Microparticle | Size | Production Technique and Composition | Encapsulated Molecule | Administration | Species | Fish Size | RPS | Reference |
---|---|---|---|---|---|---|---|---|
Alginate | 30 µm | Spray method, sodium alginate, 0.5% (w/v) | FKB from Lactococcus garviaeae | Oral | Onchorhynchus mykiss | 22 g | 35% E and 100% N at 30 DPV; 5% E and 40% N at 90 DPV; 61% first V with N and second with E at 180 DPV | [44] |
n.d. | Orifice-ionic gelation, Sodium alginate, 4% (w/v) | FKB From Lactococcus garviaeae | Oral | Onchorhynchus mykiss | 20 g | 53% E and 95% N at 30 DPV; 38% E and 82% at 60 DPV; 67% first V with N and second with E at 90 DPV; 62% first and second V with E at 120 DPV | [45] | |
n.d. | Emulsification, sodium alginate, 3.5% (w/v) | FKB from Flavobacterium columnare | Oral | Oreochromis niloticus | 15.7 g | 0% E and 0% N at 21 DPC | [40] | |
≤ 10 µm | Emulsification, sodium alginate, 3% (w/v) | Plasmid DNA: MCP from LCDV | Oral | Paralichthys olivaceus | 40–60 g | n.d. | [41] | |
10 µm | Emulsification, sodium alginate, 3% (w/v) | Plasmid DNA: VP2 from IPNV | Oral | Salmo trutta | 1.5 g/3 cm | At 15 DPV: 78% E and 0% empty plasmid at 30 DPC, At 30 DPV: 79% and 0% empty plasmid at 30 DPC (*) | [42] | |
10 µm | Emulsification, sodium alginate, 3% (w/v) | Plasmid DNA: VP2 from IPNV | Oral | Onchorhynchus mykiss | 1 g/3.5 cm | At 15 DPV: 80% E and 5% empty plasmid at 30 DPC; At 30 DPV: 67% and 0% empty plasmid at 30 DPC (*) | [42] | |
Chitosan | ≤ 10 µm | Emulsification, 3% chitosan (m/v) | Plasmid DNA: MCP from LCDV | Oral | Paralichthys olivaceus | 50–100 g and 13–15 cm | n.d. | [52] |
< 5 µm | Spray drying, 240 mg of PVMMA and 250 mg of chitosan Seacure 210 HCl | Surface antigens (Ag) from Philasterides dicentrarchi | i.p. injection | Scophthalmus maximus | 50 g | 68% E, 58% Ag in FCA and 43% FCA at 20 DPC | [53] | |
4.28 ± 0.4 µm | Spray drying, 240 mg of GantrezAN119 and 250 mg of chitosan Seacure 210 HCl | Surface antigens (Ag) from Philasterides dicentrarchi | In vitro, anterior kidney leukocytes | Scophthalmus maximus | n.d | n.d. | [54] | |
1.101 ± 0.0103 µm | TPP ionic gelation, 5 mg/mL chitosan in sodium alginate solution at concentration of 10 mg/mL | FKB from Aeromonas hydrophila | Oral | Labeo rohita | Juveniles | 13% alginate and chitosan E, 13% chitosan E, 16% alginate and chitosan, 0% N at 15 DPC (*) | [55] | |
PLGA | 1.12 µm | D.E., PLGA 50:50, MW: 30–70 kDa | OMP from Aeromona hydrophila | Parenteral | Labeo rohita | 30–40 g and 250–300 g | n.d. | [56] |
< 10 µm | D.E., L:G = 75:25, MW:50 kDa | Plasmid DNA: MCP from LCDV | Oral | Paralichthys olivaceus | 500–1000 g | n.d. | [57] | |
1 µm | Emulsion, PLGA 50:50 | γ-globulins from human blood | Oral | Onchorhynchus mykiss | 100–200 g | n.d. | [58] | |
n.d. | D.E., PLGA 50:50 | i-antigen from Uromena marinum | i.p. injection | Epinephelus bruneus | 31.4 ± 2.3 g | 78% E and 66% N at 30 DPC (*) | [59] | |
PLGA/Liposome | 5–10 µm | Film dispersion method, PS, PC, and Chol (molar ratio 1:10:5) | FKB from Aeromonas hydrophila | Oral | Cyprinus carpio | 30 g | 64% E at 12 DPC | [60] |
n.d. | D.E., PLGA 50:50 | ODN1668 | i.p. injection | Epinephelus bruneus | 36.7 ± 2.8 g | 78% PLGA E, 83% Liposome E, 83% PLGA/Liposome E and 78% N at 30 DPC (*) | [61] |
2.2. Carbon nanotubes
2.2.1. Functionalization of CNTs
2.2.2. Encapsulation of Viral DNA in CNTs
2.3. Chitosan
2.3.1. Encapsulation of Compounds in Chitosan Nanoparticles
2.3.2. Encapsulation of Compounds in Chitosan Microparticles
2.4. Liposomes
2.4.1. Encapsulation of Bacterial Antigens in Liposomes
2.4.2. Encapsulation of Viral Antigens in Liposomes
Nanoparticle | Size | Production Technique and Composition | Encapsulated Molecule | Administration | Species | Fish Size | RPS | Reference |
---|---|---|---|---|---|---|---|---|
Calcium phosphate | 224.98 ± 14.62 nm | n.d. | S-layer protein from Aeromonas hydrophila | i.p. injection | Labeo rohita | 100–150 g | 97% E, 13% N and 94% E with FIA at 15 DPC (*) | [119] |
Carbon nanotubes | d: 10-20 nm; l: 1–2 µm | n.d., SWCNTs and MWCNTs | Sulfonate group, polyethyleglycol and sulfonic acid | In vitro, head kidney monocytes | Oncorhynchus mykiss | 0.5–1 kg | n.d. | [72] |
d: 19.9 ± 8.25 nm; l: 0.8 ± 0.5 µm | n.d., MWCNTs | BSA | Microinjection | Danio rerio | embryos/larvae | n.d. | [71] | |
n.d. | n.d., SWCNTs | Plasmid DNA: VP7 from grass carp reovirus | i.p. injection | Ctenopharyngodon idella | 25–30 g | 73% E (1 µg), 91% E (5 µg) 100% E (10 µg), 9% N (1 µg), 27% N (5 µg) and N (10 µg) at 15 DPC | [73] | |
Chitosan | n.d. | 0.02% chitosan in sodium acetate buffer | Plasmid DNA: OMP38 | Oral | Lates calcarifer | Juveniles | 46% E at 14 DPC | [94] |
218.9 nm | TPP ionic gelation, 2 mg/mL chitosan in 3% (v/v) acetate | Plasmid DNA: OMPK | Oral | Acanthopagrus schlegelii | 15–16 cm | 72.3% E and 0% N 14 DPC | [95] | |
n.d. | Complex coacervation, 0.02% (w/v) powdered chitosan | Plasmid DNA: βgalactosidase | Oral | Oreochromis niloticus | 5–10 cm and 33–40 g | n.d. | [93] | |
287.1 ± 1.49 nm | Complex coacervation, chitosan to RNA ratio: 1:1, 2:1, and 3:1 | Bare RNA | Oral | Labeo rohita | 2.7–3.1 g | 83% E (2:1) and 33% N at 15 DPC (*) | [92] | |
185.4 ± 2.1 nm | TPP ionic gelation, chitosan in 1% (w/v) acetic acid solution | Vitamin C | Oral | Onchorhynchus mykiss | Adult | n.d. | [91] | |
253–258 nm | Ionotropic gelation, chitosan at concentration of 2.4 mg/mL in acetic acid solution (0.4% v/v) | Vitamin C | Oral | Solea senegalensis | Larvae | n.d. | [97] | |
Liposomes | n.d. | Film dispersion method. DPPC, DPPS, Chol (molar ratio 1:10:5) | FKB Vibrio harveyi | i.p.injection | Epinephelus bruneus | 29.5 ± 2.1 g | 75% E, 65% N and 60% liposome at 30 DPC | [113] |
n.d. | Film dispersion method. DPPC (0.5 µmol), DPPS (0.5 µmol) and Chol (1 µmol) | Aeromonas salmonicida total extract | Oral | Cyprinus carpio | 350 g | 54% E at 30 DPC (*) | [114] | |
200 nm | Extrusion method. PC:Chol: PG or PC:Chol:SA in a 6:3:1 molar ratio | LPS from Aeromonas salmonicida | i.p.injection | Onchorhynchus mykiss | 40 and 80 g | n.d. | [115] | |
n.d. | Film dispersion method. 600 mg of phosphatidylcholine in 25 mL chloroform | FKB Aeromonas salmonicida, inactivated toxin and LPS | Immersion | Salmo gairdneri | Fry | 70% E and 59% N at 126 DPC (*) | [116] | |
n.d. | Film dispersion method. PS, PC, and Chol (molar ratio 1:10:5) | Koi herpesvirus whole extract | Oral | Cyprinus carpio | 30 g | 74% E (NKC03) and 65% E (IKC03) at 23 DPC | [117] | |
125 nm | Extrusion method. DOPA, DLPC, Chol, Cholesteryl and Chol-PEG600 | LPS and Poly I:C | In vitro, zebrafish hepatocytes and head kidney macrophages | Danio rerio and Onchorhynchus mykiss | Zebrafish hepatocytes, trout macrophages | n.d. | [118] | |
125 nm | Extrusion method. DOPA, DLPC, Chol, Cholesteryl and Chol-PEG600 | LPS and Poly I:C | Injection and immersion | Danio rerio | Adult | 33% E, 21% N and 20% liposome at 15 DPC | [23] | |
n.d. | High-pressure homogenization. 6% (wt/v) cinnamaldehyde, 10% (v/v) lecithin and 0.5% (v/v) α-tocopherol | Cinnamaldehyde | Immersion | Danio rerio | Adult | 58% E at 11 DPC (Vibrio Vulnificus), 35% E at 8 DPC (Aeromonas hydrophila) and 31% E at 8 DPC (Streptococcus agalactiae) (*) | [120] | |
Liposome | n.d. | Lipid film hydration, lipid:peptide ratio of 1:50 | Melittin | In vitro, EPC cell line | Pimephales promelas | EPC cell line | n.d. | [121] |
n.d | Film dispersion method, DPPC (0.5 µmol), DPPS (0.5 µmol) and Chol (1 µmol), or DPPC (3.5 µmol) and Chol (1 µmol) | BSA | Oral | Cyprinus carpio | 350 g | n.d. | [122] | |
PLGA | 125–225 nm | D.E., PLGA: 50:50 (40–75 kDa); PLA (85–160 kDa) | OMP from Aeromonas hydrophila | i.p. injection | Labaeo rohita | 50 ± 10 g | 75% PLA, 55% PLGA and 38 % N at 42 DPV | [123] |
320–500 nm | D.E., n.d. | Plasmid DNA: Firefly luciferase gene | i.m. injection | Salmo salar | 30 g | n.d. | [124] | |
< 500 nm | D.E., n.d. | Plasmid DNA: MCP from LCDV | Oral | Paralich thys olivaceus | 50–100 g | n.d. | [125] | |
n.d. | D.E., 5% of PLGA/methylene chloride and 5% of PVA/water soluble | Plasmid DNA: protein-G from IHNV | Oral | Onchorhynchus mykiss | 5 g | 11% E low dose, 22% E high dose and 82% N at 180 DPC; 0% E low dose, 19% E high dose and 55% N at 300 DPC | [126] | |
300–400 nm | D.E., PLGA : 50:50 (5–15 kDa; 40–75 kDa); 75:25 (66–107 kDa); PLA (24–47 kDa) | Hemocyanin from Limulus polyphemus | i.p. injection | Salmo salar | 29 ± 3.1 g | n.d. | [127] | |
300–400 nm | D.E., PLGA: 50:50 (5–15 kDa; 40–75 kDa); 75:25 (66–107 kDa); PLA (24–47 kDa) | β-glucan | i.p. injection | Salmo salar | 29 ± 3.1 g | n.d. | [127] | |
300–400 nm | D.E., PLGA: 50:50 (5–15 kDa; 40–75 kDa); 75:25 (66–107 kDa); PLA (24–47 kDa) | β-glucan | i.p. injection | Salmo salar | 29 ± 3.1 g | n.d. | [127] | |
< 1000 nm | D.E., n.d. | γ-globulins from human blood | i.p. injection | Salmo salar | 30 g | n.d. | [128] | |
< 1000 nm | D.E., n.d. | β-glucan | i.p. injection | Salmo salar | 30 g | n.d. | [128] | |
SLN | 141–335 nm | n.d. | 6-Coumarin | In vitro, SAF-1 cell line and HK leukocytes | Sparus aurata | 100 g | n.d. | [129] |
2.4.3. Encapsulation of Other Compounds in Liposomes
2.5. Poly (Lactic-co-Glycolic Acid) (PLGA)
2.5.1. Encapsulation of Bacterial Antigens in PLGA-NPs and -MPs
2.5.2. Encapsulation of Viral Antigens in PLGA-NPs and -MPs
2.5.3. Encapsulation of Other Antigens into PLGA-NPs and -MPs
2.6. Other Nanodelivery Systems
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Duff, D. The oral immunization of trout against Bacterium salmonicida. J. Immunol. 1942, 44, 87–94. [Google Scholar]
- Hastein, T.; Gudding, R.; Evensen, O. Bacterial vaccines for fish—An update of the current situation worldwide. Dev. Biol. 2005, 121, 55–74. [Google Scholar]
- Sommerset, I.; Krossoy, B.B.E.; Frost, P. Vaccines for fish in aquaculture. Expert Rev. Vaccines 2005, 4, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, H. Choosing a furunculosis vaccine: Points to consider. Bull. Aquac. Assoc. Can. 1995, 95, 30–37. [Google Scholar]
- Kibenge, F.S.B.; Godoy, M.G.; Fast, M.; Workenhe, S.; Kibenge, M.J.T. Countermeasures against viral diseases of farmed fish. Antivir. Res. 2012, 95, 257–281. [Google Scholar] [CrossRef] [PubMed]
- Koppang, E.O.; Haugarvoll, E.; Hordvik, I.; Aune, L.; Poppe, T.T. Vaccine-associated granulomatous inflammation and melanin accumulation in Atlantic salmon, Salmo salar L., white muscle. J. Fish Dis. 2005, 28, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Midtlyng, P.J. A field study on intraperitoneal vaccination of Atlantic salmon (Salmo salar L) against furunculosis. Fish Shellfish Immunol. 1996, 6, 553–565. [Google Scholar] [CrossRef]
- Anderson, D.P. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Ann. Rev. Fish Dis. 1992, 2, 281–307. [Google Scholar] [CrossRef]
- Lund, R.A.; Midtlyng, P.J.; Hansen, L.P. Post-vaccination intra-abdominal adhesions as a marker to identify Atlantic salmon, Salmo salar L., escaped from commercial fish farms. Aquaculture 1997, 154, 27–37. [Google Scholar] [CrossRef]
- Sorum, U.; Damsgard, B. Effects of anaesthetisation and vaccination on feed intake and growth in Atlantic salmon (Salmo salar L.). Aquaculture 2004, 232, 333–341. [Google Scholar] [CrossRef]
- Berg, A.; Rødseth, O.M.; Tangerås, A.; Hansen, T. Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar. Dis. Aquat. Organ 2006, 69, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Horne, M.T. Technical aspects of the administration of vaccines. Dev. Boil. Stand. 1996, 90, 79–89. [Google Scholar]
- Nakanishi, T.; Ototake, M. Antigen uptake and immune responses after immersion vaccination. Dev. Boil. Stand. 1996, 90, 59–68. [Google Scholar]
- Kai, Y.H.; Chi, S.C. Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization. Vaccine 2008, 26, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Quentel, C.; Vigneulle, M. Antigen uptake and immune responses after oral vaccination. Dev. Boil. Stand. 1996, 90, 69–78. [Google Scholar]
- Plant, K.P.; LaPatra, S.E. Advances in fish vaccine delivery. Dev. Comp. Immunol. 2011, 35, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230. [Google Scholar] [CrossRef] [PubMed]
- Yatvin, M.B.; Kreutz, W.; Horwitz, B.A.; Shinitzky, M. pH-sensitive liposomes: possible clinical implications. Science 1980, 210, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, H.; Nakao, A.; Bailey, R.J.; Nalesnik, M.A.; Kaizu, T.; Lemoine, J.L.; Ikeda, A.; Tomiyama, K.; Papworth, G.D.; Huang, L. Relative contribution of direct and indirect allorecognition in developing tolerance after liver transplantation. Liver Transplantat. 2008, 14, 346–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.D.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896. [Google Scholar] [CrossRef] [PubMed]
- Canton, I.; Battaglia, G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012, 41, 2718–2739. [Google Scholar] [CrossRef] [PubMed]
- Ruyra, A.; Cano-Sarabia, M.; Garcia-Valtanen, P.; Yero, D.; Gibert, I.; Mackenzie, S.A.; Estepa, A.; Maspoch, D.; Roher, N. Targeting and stimulation of the zebrafish (Danio rerio) innate immune system with LPS/dsRNA-loaded nanoliposomes. Vaccine 2014, 32, 3955–3962. [Google Scholar] [CrossRef] [PubMed]
- Handy, R.D.; Von der Kammer, F.; Lead, J.R.; Hassellov, M.; Owen, R.; Crane, M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 2008, 17, 287–314. [Google Scholar] [CrossRef] [PubMed]
- Doshi, N.; Mitragotri, S. Designer biomaterials for nanomedicine. Adv. Funct. Mater. 2009, 19, 3843–3854. [Google Scholar] [CrossRef]
- Gratton, S.E.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 2008, 105, 11613–11618. [Google Scholar] [CrossRef] [PubMed]
- Champion, J.A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. 2006, 103, 4930–4934. [Google Scholar] [CrossRef] [PubMed]
- Devine, D.V.; Wong, K.; Serrano, K.; Chonn, A.; Cullis, P.R. Liposome-complement interactions in rat serum—Implications for liposome survival studies. BBA Biomembr. 1994, 1191, 43–51. [Google Scholar] [CrossRef]
- Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.C.; Xie, J.W.; Wurm, P.A.; Xia, Y.N. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I-2/KI etchant. Nano Lett. 2009, 9, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.R.; Bondurant, B.; McLean, S.D.; McGovern, K.A.; O’Brien, D.F. Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 1998, 37, 12875–12883. [Google Scholar] [CrossRef] [PubMed]
- Mislick, K.A.; Baldeschwieler, J.D. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. 1996, 93, 12349–12354. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, V.J.; Chen, Y. Nanoparticles—A review. Trop. J. Pharm. Res. 2007, 5, 561–573. [Google Scholar] [CrossRef]
- Gombotz, W.R.; Wee, S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 2012, 31, 267–285. [Google Scholar] [CrossRef]
- Østgaard, K.; Knutsen, S.H.; Dyrset, N.; Aasen, I.M. Production and characterization of guluronate lyase from Klebsiella pneumoniae for applications in seaweed biotechnology. Enzyme Microbial. Technol. 1993, 15, 756–763. [Google Scholar] [CrossRef]
- De Vos, P.; Lazarjani, H.A.; Poncelet, D.; Faas, M.M. Advanced drug delivery reviews. Adv. Drug Deliv. Rev. 2014, 67–68, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Sosnik, A. Alginate particles as platform for drug delivery by the oral route: State-of-the-Art. ISRN Pharm. 2014, 2014, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Matsumura, M. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng. 1984, 26, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.P.; Hirsch, D.; Figueiredo, H.C.P.; Logato, P.V.R.; Moraes, Â.M. Production and characterisation of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Proc. Biochem. 2006, 41, 638–643. [Google Scholar] [CrossRef]
- Leal, C.A.G.; Carvalho-Castro, G.A.; Sacchetin, P.S.C.; Lopes, C.O.; Moraes, Â.M.; Figueiredo, H.C.P. Oral and parenteral vaccines against Flavobacterium columnare: evaluation of humoral immune response by ELISA and in vivo efficiency in Nile tilapia (Oreochromis niloticus). Aquacult. Int. 2010, 18, 657–666. [Google Scholar] [CrossRef]
- Tian, J.; Sun, X.; Chen, X. Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder. Fish Shellfish Immunol. 2008, 24, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Ana, I.; Saint-Jean, S.R.; Pérez-Prieto, S.I. Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. Fish Shellfish Immunol. 2010, 28, 562–570. [Google Scholar]
- Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006, 2, 8–21. [Google Scholar] [PubMed]
- Romalde, J.L.; Luzardo-Alvárez, A.; Ravelo, C.; Toranzo, A.E.; Blanco-Méndez, J. Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture 2004, 236, 119–129. [Google Scholar]
- Altun, S.; Kubilay, S.; Ekici, S.; Didinen, B.; Diler, O. Oral vaccination against lactococcosis in rainbow trout (Oncorhynchus mykiss) using sodium alginate and poly (lactide-co-glycolide) carrier. Kafkas Univ. Vet. Fak. Derg. 2010, 16, 211–217. [Google Scholar]
- Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym. 2006, 66, 1–7. [Google Scholar] [CrossRef]
- Sarmento, B.; Ribeiro, A.J.; Veiga, F.; Ferreira, D.C.; Neufeld, R.J. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J. Nanosci. Nanotech. 2007, 7, 2833–2841. [Google Scholar] [CrossRef]
- Ahmad, Z.; Khuller, G.K. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin. Drug Deliv. 2008, 5, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Fonte, P.; Araújo, F.; Silva, C.; Pereira, C.; Reis, S.; Santos, H.A.; Sarmento, B. Fonte. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol. Adv. 2015, 33, 1342–1354. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, L.D.; LaPatra, S.E.; Cain, K.D. Systemic and mucosal antibody response in tilapia, Oreochromis niloticus (L.), following immunization with Flavobacterium columnare. J. Fish Dis. 2004, 27, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.K.; Manna, S.K.; Thomas Allnutt, F.C. Viral vaccines for farmed finfish. Virus Dis. 2014, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Yu, J.; Sun, X. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol. 2008, 126, 220–229. [Google Scholar] [CrossRef] [PubMed]
- León-Rodríguez, L.; Luzardo-Álvarez, A.; Blanco-Méndez, J.; Lamas, J.; Leiro, J. A vaccine based on biodegradable microspheres induces protective immunity against scuticociliatosis without producing side effects in turbot. Fish Shellfish Immunol. 2012, 33, 21–27. [Google Scholar] [CrossRef] [PubMed]
- León-Rodríguez, L.; Luzardo-Álvarez, A.; Blanco-Méndez, J.; Lamas, J.; Leiro, J. Biodegradable microparticles covalently linked to surface antigens of the scuticociliate parasite P. dicentrarchi promote innate immune responses in vitro. Fish Shellfish Immunol. 2013, 34, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Behera, T.; Swain, P. Antigen encapsulated alginate-coated chitosan microspheres stimulate both innate and adaptive immune responses in fish through oral immunization. Aquacult. Int. 2014, 22, 673–688. [Google Scholar] [CrossRef]
- Behera, T.; Nanda, P.K.; Mohanty, C.; Mohapatra, D.; Swain, P.; Das, B.K.; Routray, P.; Mishra, B.K.; Sahoo, S.K. Parenteral immunization of fish, Labeo rohita with Poly d,l-lactide-co-glycolic acid (PLGA) encapsulated antigen microparticles promotes innate and adaptive immune responses. Fish Shellfish Immunol. 2010, 28, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Sun, X.; Chen, X.; Yu, J.; Qu, L.; Wang, L. The formulation and immunisation of oral poly (dl-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int. Immunopharmacol. 2008, 8, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, E.C.; Jenkins, P.G.; Harris, J.E. Oral immunization of rainbow trout with antigen microencapsulated in poly (dl-lactide-co-glycolide) microparticles. Vaccine 1997, 15, 1070–1078. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.S. Poly d,l-lactide-co-glycolic acid (PLGA)-encapsulated vaccine on immune system in Epinephelus bruneus against Uronema marinum. Exp. Parasitol. 2012, 131, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, S.; Yoshimura, T.; Miyazaki, T. Oral immunization of common carp with a liposome vaccine containing Aeromonas hydrophila antigen. Fish Pathol. 2006, 41, 45–49. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Poly d,l-lactide-co-glycolic acid-liposome encapsulated ODN on innate immunity in Epinephelus bruneus against Vibrio alginolyticus. Vet. Immunol. Immunopathol. 2012, 147, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Pagona, G.; Tagmatrachis, N. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr. Med. Chem. 2006, 13, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: Applications in pharmacy and medicine. Bio. Med. Res. Int. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.P.; Prato, M.; Muller, S.; Bianco, A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006, 6, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Kostarelos, K.; Bianco, A.; Prato, M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotechnol. 2009, 4, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Pantarotto, D.; Partidos, C.D.; Hoebeke, J.; Brown, F.; Kramer, E.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Immunization with peptide-functionalized carbon nanotubes enhances virus—Specific neutralizing antibody responses. Chem. Biol. 2003, 10, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. 2004, 43, 5242–5246. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, P.; Marches, R. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. 2008, 105, 8697–8702. [Google Scholar] [PubMed]
- Yacoby, I.; Benhar, I. Antibacterial nanomedicine. Nanomedicine 2008, 3, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Chan, C.M.; Veca, L.M.; Poon, W.L.; Chan, P.K.; Qu, L.; Sun, Y.P.; Cheng, S.H. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 2009, 235, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Klaper, R.; Arndt, D.; Setyowati, K.; Chen, J.; Goetz, F. Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aqua. Toxicol. 2010, 100, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Liu, G.L.; Gong, Y.X.; Ling, F.; Wang, G.X. Protective immunity of grass carp immunized with DNA vaccine encoding the vp7 gene of grass carp reovirus using carbon nanotubes as a carrier molecule. Fish Shellfish Immunol. 2015, 42, 325–334. [Google Scholar]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M.J. Development of positively charged colloidal drug carriers: Chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid. Polym. Sci. 1997, 275, 46–53. [Google Scholar] [CrossRef]
- Pan, Y.; Li, Y.J.; Zhao, H.Y.; Zheng, J.M.; Xu, H.; Wei, G.; Hao, J.S. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 2002, 249, 139–147. [Google Scholar] [CrossRef]
- Lavertu, M.; Methot, S.; Tran-Khanh, N.; Buschmann, M.D. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 2006, 27, 4815–4824. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, X.; Cheng, C.; Cheng, S.X.; Zhuo, R.X. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 2007, 28, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Seo, S.J.; Moon, H.S.; Yoo, M.K.; Park, I.Y.; Kim, B.C.; Cho, C.S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 2008, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbial. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.B.; Sharma, C.P. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J. Biomed. Mat. Res. 1997, 34, 21–28. [Google Scholar] [CrossRef]
- Chiang, M.T.; Yao, H.T.; Chen, H.C. Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Biosci. Biotechnol. Biochem. 2000, 64, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Meshkini, S.; Tafy, A.A.; Tukmechi, A.; Farhang-Pajuh, F. Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Vet. Res. Forum 2012, 3, 49–54. [Google Scholar] [PubMed]
- Cha, S.H.; Lee, J.S.; Song, C.B.; Lee, K.J.; Jeon, Y.J. Effects of chitosan-coated diet on improving water quality and innate immunity in the olive flounder, Paralichthys olivaceus. Aquaculture 2008, 278, 110–118. [Google Scholar] [CrossRef]
- Lin, S.; Pan, Y.; Luo, L.; Luo, L. Effects of dietary beta-1, 3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish Immunol. 2011, 31, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, R.; Kim, J.S.; Balasundaram, C.; Heo, M.S. Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Exp. Parasitol. 2012, 131, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.Q.; Xu, W.; Ai, Q.H.; Wang, D.F.; Mai, K.S. Effects of dietary chitosan oligosaccharide complex with rare earth on growth performance and innate immune response of turbot, Scophthalmus maximus L. Aquac. Res. 2013, 44, 683–690. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Yang, Y.; Han, D.; Jin, J.; Xie, S. Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquacult. Nutr. 2014, 20, 532–546. [Google Scholar] [CrossRef]
- Mari, L.S.S.; Jagruthi, C.; Anbazahan, S.M.; Yogeshwari, G.; Thirumurugan, R.; Arockiaraj, J.; Mariappan, P.; Balasundaram, C.; Harikrishnan, R. Protective effect of chitin and chitosan enriched diets on immunity and disease resistance in Cirrhina mrigala against Aphanomyces invadans. Fish Shellfish Immunol. 2014, 39, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Prasad, K.P.; Vani, T.; Kumar, R. Effect of dietary chitosan on haematology, innate immunity and disease resistance of Asian seabass Lates calcarifer (Bloch). Aquac. Res. 2014, 45, 983–993. [Google Scholar] [CrossRef]
- Alishahi, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Koshio, S.; Dorkoosh, F.A.; Elsabee, M.Z. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr. Polym. 2011, 86, 142–146. [Google Scholar] [CrossRef]
- Ferosekhan, S.; Gupta, S.; Singh, A.R.; Rather, M.A.; Kumari, R.; Kothari, D.C.; Pal, A.K.; Jadhao, S.B. RNA-loaded chitosan nanoparticles for enhanced growth, immunostimulation and disease resistance in fish. Curr. Nanosci. 2014, 10, 453–464. [Google Scholar] [CrossRef]
- Ramos, E.A.; Relucio, J.L.V.; Torres-Villanueva, C.A.T. Gene expression in tilapia following oral delivery of chitosan-encapsulated plasmid DNA incorporated into fish feeds. Marine biotechnol. 2005, 7, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.R.; Ahmed, V.P.I.; Parameswaran, V.; Sudhakaran, R.; Babu, V.S.; Hameed, A.S.S. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol. 2008, 25, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, S.L.; Deng, L.; Liu, Z.G. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J. Fish Dis. 2013, 36, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar]
- Jimenez-Fernandez, E.; Ruyra, A.; Roher, N.; Zuasti, E.; Infante, C.; Fernandez-Diaz, C. Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 2014, 432, 426–433. [Google Scholar] [CrossRef]
- Arbos, P.; Wirth, M.; Arangoa, M.A.; Gaborb, F.; Irache, J.M. AN as a new polymer for the preparation of ligand-nanoparticle conjugates. J. Control. Release 2002, 83, 321–330. [Google Scholar] [CrossRef]
- Trotta, M.; Gasco, M.R.; Morel, S. Release of drugs from oil-water microemulsions. J. Control. Release 1989, 10, 237–243. [Google Scholar] [CrossRef]
- Mezei, M.; Gulasekharam, V. Liposomes-a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci. 1980, 26, 1473–1477. [Google Scholar] [CrossRef]
- Lieb, L.M.; Ramachandran, C.; Egbaria, K.; Weiner, N. Topical delivery enhancement with multilamellar liposomes into pilosebaceous units: I. In vitro evaluation using fluorescent techniques with the hamster ear model. J. Investing. Dermatol. 1992, 99, 108–113. [Google Scholar]
- Honzak, L.; Šentjurc, M. Development of liposome encapsulated clindamycin for treatment of acne vulgaris. Pflügers Archiv. 2000, 440, 44–45. [Google Scholar] [CrossRef]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef]
- Knudsen, N.O.; Jorgensen, L.; Hansen, J.; Vermehren, C.; Frokjaer, S.; Foged, C. Targeting of liposome-associated calcipotriol to the skin: effect of liposomal membrane fluidity and skin barrier integrity. Int. J. Pharm. 2011, 416, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Romoren, K.; Thu, B.J.; Smistad, G.; Evensen, O. Immersion delivery of plasmid DNA I. A study of the potentials of a liposomal delivery system in rainbow trout (Oncorhynchus mykiss) fry. J. Control. Release 2002, 85, 203–213. [Google Scholar] [CrossRef]
- Maherani, B.; Arab-Tehrany, E.; Mozafari, M.R.; Gaiani, C.; Linder, M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr. Nanosci. 2011, 7, 436–452. [Google Scholar] [CrossRef]
- Meure, L.A.; Foster, N.R.; Dehghani, F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS Pharm. Sci. Tech. 2008, 9, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Berger, N.; Sachse, A.; Bender, J.; Schubert, R.; Brandl, M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 2001, 223, 55–68. [Google Scholar] [CrossRef]
- Maherani, B.; Arab-Tehrany, E.; Kheirolomoom, A.; Reshetov, V.; Stebe, M.J.; Linder, M. Optimization and characterization of liposome formulation by mixture design. The Analyst. 2012, 137, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Hope, M.J.; Bally, M.B.; Webb, G.; Cullis, P.R. Production of large unilamellar vesicles by a rapid extrusion procedure—Characterization of size distribution, trapped volume and ability to maintain a membrane-potential. BBA Biomembr. 1985, 812, 55–65. [Google Scholar] [CrossRef]
- Macdonald, R.C.; Macdonald, R.I.; Menco, B.P.M.; Takeshita, K.; Subbarao, N.K.; Hu, L.R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. BBA Biomembr. 1991, 1061, 297–303. [Google Scholar] [CrossRef]
- Mozafari, M.R. Nanocarrier Technologies: Frontiers of Nanotherapy, 1st ed.; Springer Netherland: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Harikrishnan, R.; Kim, J.S.; Balasundaram, C.; Heo, M.S. Vaccination effect of liposomes entrapped whole cell bacterial vaccine on immune response and disease protection in Epinephelus bruneus against Vibrio harveyi. Aquaculture 2012, 342, 69–74. [Google Scholar] [CrossRef]
- Irie, T.; Watarai, S.; Iwasaki, T.; Kodama, H. Protection against experimental Aeromonas salmonicida infection in carp by oral immunisation with bacterial antigen entrapped liposomes. Fish Shellfish Immunol. 2005, 18, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Nakhla, A.N.; Szalai, A.J.; Banoub, J.H.; Keough, K.M.W. Serum anti-LPS antibody production by rainbow trout (Oncorhynchus mykiss) in response to the administration of free and liposomally-incorporated LPS from Aeromonas salmonicida. Fish Shellfish Immunol. 1997, 7, 387–401. [Google Scholar] [CrossRef]
- Rodgers, S. Immersion vaccination for control of fish furunculosis. Dis. Aqua. Org. 1990, 8, 69–72. [Google Scholar] [CrossRef]
- Yasumoto, S.; Kuzuya, Y.; Yasuda, M.; Yoshimura, T.; Miyazaki, T. Oral immunization of common carp with a liposome vaccine fusing koi herpesvirus antigen. Fish Pathol. 2006, 41, 141–145. [Google Scholar] [CrossRef]
- Ruyra, A.; Cano-Sarabia, M.; Mackenzie, S.A.; Maspoch, D.; Roher, N. A novel liposome-based nanocarrier loaded with an LPS-dsRNA cocktail for fish innate immune system stimulation. PLoS ONE 2013, 8, e76338. [Google Scholar] [CrossRef] [PubMed]
- Behera, T.; Swain, P. Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell. Immunol. 2011, 271, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Faikoh, E.N.; Hong, Y.H.; Hu, S.Y. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae. Fish Shellfish Immunol. 2014, 38, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Falco, A.; Barrajón-Catalán, E.; Menéndez-Gutiérrez, M.P.; Coll, J.; Micol, V.; Estepa, A. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antivir. Res. 2013, 97, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Irie, T.; Watarai, S.; Kodama, H. Humoral immune response of carp (Cyprinus carpio) induced by oral immunization with liposome-entrapped antigen. Dev. Comp. Immunol. 2003, 27, 413–421. [Google Scholar] [CrossRef]
- Rauta, P.R.; Nayak, B. Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: Evaluation of immunostimulatory action in Labeo rohita (rohu). Fish Shellfish Immunol. 2015, 44, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Hølvold, L.B.; Fredriksen, B.N.; Bøgwald, J.; Dalmo, R.A. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles. Fish Shellfish Immunol. 2013, 35, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Yu, J. Poly (lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol. 2011, 30, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Adomako, M.; St-Hilaire, S.; Zheng, Y.; Eley, J.; Marcum, R.D.; Sealey, W.; Donahower, B.C.; LaPatra, S.; Sheridan, P.P. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(d,l-Lactic-Co-Glycolic Acid)] nanoparticles. J. Fish Dis. 2012, 35, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Fredriksen, B.N.; Sævareid, K.; McAuley, L.; Lane, M.E.; Bogwald, J.; Dalmo, R.A. Early immune responses in Atlantic salmon (Salmo salar L.) after immunization with PLGA nanoparticles loaded with a model antigen and β-glucan. Vaccine 2011, 29, 8338–8349. [Google Scholar] [CrossRef] [PubMed]
- Fredriksen, B.N.; Grip, J. PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine 2012, 30, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Trapani, A.; Mandracchia, D.; Di Franco, C.; Cordero, H.; Morcillo, P.; Comparelli, R.; Cuesta, A.; Esteban, M.A. In vitro characterization of 6-Coumarin loaded solid lipid nanoparticles and their uptake by immunocompetent fish cells. Coll. Surf. 2015, 127, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Vert, M.; Mauduit, J.; Li, S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 1994, 15, 1209–1213. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Jeffery, H.; Roberts, M.; McGee, J.P. Controlled release microparticles for vaccine development. Vaccine 1991, 10, 768–771. [Google Scholar] [CrossRef]
- Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, 55, 329–347. [Google Scholar] [CrossRef]
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58. [Google Scholar] [CrossRef] [PubMed]
- McCall, R.L.; Sirianni, R.W. PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin E-TPGS. JoVE 2013, 82, e51015. [Google Scholar] [CrossRef] [PubMed]
- Newman, K.D.; Elamanchili, P.; Kwon, G.S.; Samuel, J. Uptake of poly(d,l-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mat. Res. 2002, 60, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Lassalle, V.; Ferreira, M.L. PLA nano- and microparticles for drug delivery: An overview of the methods of preparation. Macromol. Biosci. 2007, 7, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.Z.; Zeng, Z.; Zhou, G.L.; Wang, J.J.; Li, F.Z.; Wang, A.M. Recent advances in PEG–PLA block copolymer nanoparticles. Int. J. Nanomed. 2010, 5, 1057–1065. [Google Scholar]
- Iliev, D.B.; Skjæveland, I.; Jørgensen, J.B. CpG oligonucleotides bind TLR9 and RRM-Containing proteins in Atlantic Salmon (Salmo salar). BMC Immunol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.C.; Cano, I.; Garcia-Rosado, E.; Castro, D.; Lamas, J.; Barja, J.L.; Borrego, J.J.; Bergmann, S.M. Isolation of lymphocystis disease virus from sole, Solea senegalensis Kaup, and blackspot sea bream, Pagellus bogaraveo (Brunnich). J. Fish Dis. 2005, 28, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Loomba, L.; Sekhon, B.S. Calcium Phosphate Nanoparticles and their Biomedical Potential. J. Nanomater. Mol. Nanotechnol. 2015, 4, 1–12. [Google Scholar]
- Guo, S.; Huang, L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv. 2014, 32, 778–788. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, M.B.; Zuhorn, I.S. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J. Control. Release 2015, 201, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 2011, 8, 1407–1424. [Google Scholar] [CrossRef] [PubMed]
- Parhi, R.; Suresh, P. Preparation and characterization of solid lipid nanoparticles—A review. Curr. Drug Discov. Technol. 2012, 9, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.H.E.; Lundberg, D.; Ribeiro, A.J.; Veiga, F.J.; Miguel, M.G.; Lindman, B.; Olsson, U. Encapsulation of DNA in macroscopic and nanosized calcium alginate gel particles. Langmuir 2013, 29, 15926–15935. [Google Scholar] [CrossRef] [PubMed]
- Brudeseth, B.E.; Wiulsrød, R.; Fredriksen, B.N.; Lindmo, K.; Løkling, K.-E.; Bordevik, M.; Steine, N.; Klevan, A.; Gravningen, K. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 2013, 6, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, B.; Palić, D. Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish—Review of current knowledge, gap identification, and call for further research. Aqua. Toxicol. 2012, 118, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, B.; Whitley, E.M.; Kimura, K.; Crumpton, A.; Palić, D. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ. Pollut. 2015, 203, 153–164. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Torrealba, D.; Ruyra, À.; Roher, N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology 2015, 4, 664-696. https://doi.org/10.3390/biology4040664
Ji J, Torrealba D, Ruyra À, Roher N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology. 2015; 4(4):664-696. https://doi.org/10.3390/biology4040664
Chicago/Turabian StyleJi, Jie, Debora Torrealba, Àngels Ruyra, and Nerea Roher. 2015. "Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System" Biology 4, no. 4: 664-696. https://doi.org/10.3390/biology4040664
APA StyleJi, J., Torrealba, D., Ruyra, À., & Roher, N. (2015). Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology, 4(4), 664-696. https://doi.org/10.3390/biology4040664