Macrophages in Chronic Rejection: The Shapeshifters Behind Transplant Survival
Simple Summary
Abstract
1. Introduction to Chronic Rejection—The Long Game of the Immune System
2. Macrophage Origins and Plasticity—Two Roads to the Same Cell
3. Recruitment and Activation—How Macrophages Get the Call
4. Macrophages in Transplant Vasculopathy—Remodeling Gone Wrong
5. Donor Macrophages—The Silent Passengers That Shape Rejection
5.1. Early Sentinels of Danger
5.2. Antigen Presentation—Donor Cells as Teachers
5.3. Chronic Influence—Architects of Fibrosis
5.4. Cross-Talk with Recipient Cells
5.5. Emerging Insights—Potential Targets
6. Fibrosis and Graft Dysfunction—When Healing Becomes Harm
7. Macrophage Molecular Pathways—The Signals Behind Their Shapeshifting
8. Therapeutic Implications—Turning Knowledge into Action
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| α-SMA | Alpha–smooth muscle actin |
| AI | Artificial intelligence |
| AP-1 | Activator protein-1 |
| Arg1 | Arginase-1 |
| ATP | Adenosine triphosphate |
| CARD9 | Caspase recruitment domain–containing protein 9 |
| C/EBP | CCAAT/enhancer-binding protein |
| CCL2 | C-C motif chemokine ligand 2 |
| CD40 | Cluster of differentiation 40 |
| CD80 | Cluster of differentiation 80 |
| CD86 | Cluster of differentiation 86 |
| CD163 | Cluster of differentiation 163 |
| CD206 | Cluster of differentiation 206 |
| CD209 | Cluster of differentiation 209 (DC-SIGN) |
| Clec2d | C-type lectin domain family 2 member D |
| CNRS | Centre National de la Recherche Scientifique |
| CSF1R | Colony-stimulating factor 1 receptor |
| CXCL10 | C-X-C motif chemokine ligand 10 |
| DAMPs | Damage-associated molecular patterns |
| DNGR-1 | Dendritic cell NK lectin group receptor-1 (CLEC9A) |
| ECM | Extracellular matrix |
| HIF-1α | Hypoxia-inducible factor 1-alpha |
| HMGB1 | High mobility group box 1 |
| IKK | IκB kinase |
| IL-1β | Interleukin-1 beta |
| IL-4 | Interleukin-4 |
| IL-6 | Interleukin-6 |
| IL-10 | Interleukin-10 |
| IL-12 | Interleukin-12 |
| IL-13 | Interleukin-13 |
| IL-18 | Interleukin-18 |
| IL-23 | Interleukin-23 |
| IFN-γ | Interferon gamma |
| JAK | Janus kinase |
| KRAS | Kirsten rat sarcoma viral oncogene |
| MAPK | Mitogen-activated protein kinase |
| MCP-1 | Monocyte chemoattractant protein-1 (same as CCL2) |
| MHC II | Major histocompatibility complex class II |
| miR-155 | MicroRNA-155 |
| miR-146b | MicroRNA-146b |
| miR-223 | MicroRNA-223 |
| MMPs | Matrix metalloproteinases |
| MSC | Mesenchymal stem cell |
| M0/M1/M2 | Macrophage phenotypes (naïve, inflammatory, reparative) |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NLRP3 | NOD-like receptor protein 3 |
| NOS2 | Nitric oxide synthase 2 (iNOS) |
| OXPHOS | Oxidative phosphorylation |
| P2X7 | Purinergic receptor P2X ligand-gated ion channel 7 |
| PDGF | Platelet-derived growth factor |
| PI3K | Phosphoinositide 3-kinase |
| RAGE | Receptor for advanced glycation end products |
| ROS | Reactive oxygen species |
| ROCK | Rho-associated protein kinase |
| SOCS | Suppressor of cytokine signaling |
| STAT1/STAT3/STAT6 | Signal transducer and activator of transcription 1, 3, 6 |
| TGF-β | Transforming growth factor beta |
| TLR2/TLR3/TLR4 | Toll-like receptors 2, 3, 4 |
| TNF-α | Tumor necrosis factor alpha |
| TRIF | TIR-domain-containing adapter-inducing interferon-β |
| VEGF | Vascular endothelial growth factor |
References
- Cornell, L.D.; Smith, R.N.; Colvin, R.B. Kidney transplantation: Mechanisms of rejection and acceptance. Annu. Rev. Pathol. 2008, 3, 189–220. [Google Scholar] [CrossRef]
- Diebold, M.; Mayer, K.A.; Hidalgo, L.; Kozakowski, N.; Budde, K.; Böhmig, G.A. Chronic rejection after kidney transplantation. Transplantation 2025, 109, 610–621. [Google Scholar] [CrossRef]
- Hidalgo, L.G.; Sellares, J.; Sis, B.; Mengel, M.; Chang, J.; Halloran, P.F. Interpreting NK cell transcripts versus T cell transcripts in renal transplant biopsies. Am. J. Transplant. 2012, 12, 1180–1191. [Google Scholar] [CrossRef]
- Angewisch, E.; Mannon, R.B. Chronic allograft injury. Clin. J. Am. Soc. Nephrol. 2021, 16, 1723–1729. [Google Scholar] [CrossRef]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef]
- Pober, J.S.; Tellides, G. Participation of blood vessel cells in human adaptive immune responses. Trends Immunol. 2012, 33, 49–57. [Google Scholar] [CrossRef]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins as diagnostic tools. J. Pharm. Bioallied Sci. 2017, 9, 118–127. [Google Scholar] [CrossRef]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Nochy, D.; Hill, G.S.; Suberbielle-Boissel, C.; Antoine, C.; Charron, D.; Glotz, D. Determinants of poor graft outcome in patients with antibody-mediated acute rejection. Am. J. Transplant. 2007, 7, 832–841. [Google Scholar] [CrossRef]
- Yazdani, S.; Callemeyn, J.; Gazut, S.; Lerut, E.; de Loor, H.; Wevers, M.; Heylen, L.; Saison, C.; Koenig, A.; Thaunat, O.; et al. Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney Int. 2019, 95, 188–198. [Google Scholar] [CrossRef]
- Callemeyn, J.; Lamarthée, B.; Koenig, A.; Koshy, P.; Thaunat, O.; Naesens, M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 2022, 101, 692–710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Szretter, K.J.; Vermi, W.; Gilfillan, S.; Rossini, C.; Cella, M.; Barrow, A.D.; Diamond, M.S.; Colonna, M. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 2012, 13, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Blériot, C.; Chakarov, S.; Ginhoux, F. Determinants of resident macrophage identity. Immunity 2020, 52, 957–970. [Google Scholar] [CrossRef]
- Gordon, S.; Plüddemann, A. Tissue macrophages: Heterogeneity and functions. BMC Biol. 2017, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef]
- Stewart, B.J.; Ferdinand, J.R.; Young, M.D.; Mitchell, T.J.; Loudon, K.W.; Riding, A.M.; Richoz, N.; Frazer, G.L.; Staniforth, J.U.L.; Vieira Braga, F.A.; et al. Spatiotemporal immune zonation of the human kidney. Science 2019, 365, 1461–1466. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, F. Targeting hypoxia-inducible factor 1α in chronic graft-versus-host disease to enhance graft-versus-leukemia responses: Implications for nanotherapeutics. Front. Immunol. 2025, 16, 1605669. [Google Scholar] [CrossRef]
- Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-resident macrophages. Nat. Immunol. 2013, 14, 986–995. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Schroder, K.; Tschopp, J. The inflammasomes. Cell 2010, 140, 821–832. [Google Scholar] [CrossRef]
- O’Neill, L.A.J.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016, 16, 553–565. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, V.; Panicker, A.J.; Dey, A.K.; Mohammad, S.; Chakraborty, A.; Samal, S.K.; Dash, A.; Bhadra, J.; Suar, M.; Khare, M.; et al. Integrated approaches for immunotoxicity risk assessment: Challenges and future directions. Discov. Toxicol. 2024, 1, 9. [Google Scholar] [CrossRef]
- Epelman, S.; Lavine, K.J.; Randolph, G.J. Origin and functions of tissue macrophages. Immunity 2014, 41, 21–35. [Google Scholar] [CrossRef]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- Wells, R.G.; Schwabe, R.F. Origin and function of myofibroblasts in the liver. Semin. Liver Dis. 2015, 35, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, B.D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, A.F.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef]
- Owen, M.C.; Kopecky, B.J. Targeting macrophages in organ transplantation: A step toward personalized medicine. Transplantation 2024, 108, 2045–2056. [Google Scholar] [CrossRef]
- Na, Y.R.; Kim, S.W.; Seok, S.H. A new era of macrophage-based cell therapy. Exp. Mol. Med. 2023, 55, 1945–1954. [Google Scholar] [CrossRef]
- Fleischmann, R.; Kremer, J.; Tanaka, Y.; Gruben, D.; Kanik, K.; Koncz, T.; Krishnaswami, S.; Wallenstein, G.; Wilkinson, B.; Zwillich, S.H.; et al. Efficacy and safety of tofacitinib in patients with active rheumatoid arthritis: Review of key Phase 2 studies. Int. J. Rheum. Dis. 2016, 19, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Rostaing, L.; Grinyó, J.; Rice, K.; Steinberg, S.; Gaite, L.; Moal, M.C.; Mondragon-Ramirez, G.A.; Kothari, J.; Polinsky, M.S.; et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 2016, 374, 333–343. [Google Scholar] [CrossRef]
- Stegall, M.D.; Diwan, T.; Raghavaiah, S.; Cornell, L.D.; Burns, J.; Dean, P.G.; Cosio, F.G.; Gandhi, M.J.; Kremers, W.; Gloor, J.M. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 2011, 11, 2405–2413. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.J. Regulatory T cells in transplantation. Transplant. Proc. 2011, 43, 2135–2136. [Google Scholar] [CrossRef]
- Abbas, A.K.; Trotta, E.; Simeonov, D.R.; Marson, A.; Bluestone, J.A. Revisiting IL-2: Biology and therapeutic prospects. Sci. Immunol. 2018, 3, eaat1482. [Google Scholar] [CrossRef]
- Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; McNamee, E.N.; Idzko, M.; Gambari, R.; Eltzschig, H.K. Purinergic signaling during immune cell trafficking. Trends Immunol. 2016, 37, 399–411. [Google Scholar] [CrossRef]
- Shi, J.; Wei, L. Rho kinase in the regulation of cell death and survival. Arch. Immunol. Ther. Exp. 2007, 55, 61–75. [Google Scholar] [CrossRef]
- Phinney, D.G.; Pittenger, M.F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017, 35, 851–858. [Google Scholar] [CrossRef]
- Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503. [Google Scholar] [CrossRef]
- Bagley, J.; Iacomini, J. Gene therapy progress and prospects: Gene therapy in organ transplantation. Gene Ther. 2003, 10, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H. Modeling development and disease with organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Badylak, S.F.; Weiss, D.J.; Caplan, A.; Macchiarini, P. Engineered whole organs and complex tissues. Lancet 2012, 379, 943–952. [Google Scholar] [CrossRef]





| Therapeutic Category | Target/Mechanism | Representative Approaches | Intended Immunological Effect |
|---|---|---|---|
| Immunosuppressive strategies | Inhibition of intracellular inflammatory signaling | JAK inhibitors | Suppression of macrophage activation and cytokine production |
| Blockade of costimulatory pathways | Costimulatory blockers | Reduced T-cell–macrophage crosstalk | |
| Complement pathway inhibition | Complement antibodies | Attenuation of antibody-mediated injury and inflammation | |
| Macrophage-targeting therapies | Inhibition of macrophage survival and differentiation | CSF-1R inhibitors | Reduction in graft-infiltrating macrophages |
| Blockade of purinergic signaling | P2X7 antagonists | Inhibition of inflammasome activation and IL-1β release | |
| Modulation of cytoskeletal and signaling pathways | ROCK inhibitors | Suppression of macrophage migration and pro-inflammatory polarization | |
| Immune tolerance approaches | Expansion of regulatory immune networks | Regulatory T cells (Tregs) | Promotion of long-term graft tolerance |
| Innovative approaches | Targeted intercellular communication | Exosome-based delivery | Selective modulation of macrophage phenotype |
| Genetic reprogramming | Gene therapy | Stable induction of anti-inflammatory macrophage states | |
| Advanced tissue modeling | Organoid models | Mechanistic evaluation of macrophage–graft interactions | |
| Bioengineered tissues | Engineered grafts | Improved graft integration and immune compatibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Uosef, A.; Kubiak, J.Z.; Ghobrial, R.M. Macrophages in Chronic Rejection: The Shapeshifters Behind Transplant Survival. Biology 2026, 15, 162. https://doi.org/10.3390/biology15020162
Uosef A, Kubiak JZ, Ghobrial RM. Macrophages in Chronic Rejection: The Shapeshifters Behind Transplant Survival. Biology. 2026; 15(2):162. https://doi.org/10.3390/biology15020162
Chicago/Turabian StyleUosef, Ahmed, Jacek Z. Kubiak, and Rafik M. Ghobrial. 2026. "Macrophages in Chronic Rejection: The Shapeshifters Behind Transplant Survival" Biology 15, no. 2: 162. https://doi.org/10.3390/biology15020162
APA StyleUosef, A., Kubiak, J. Z., & Ghobrial, R. M. (2026). Macrophages in Chronic Rejection: The Shapeshifters Behind Transplant Survival. Biology, 15(2), 162. https://doi.org/10.3390/biology15020162

