Provenance-Specific Height–Diameter Modeling for Chinese Fir: A Clustered Mixed-Effects Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Cluster Analysis
2.4. Height–Diameter Model Development
2.4.1. Base Model
2.4.2. Mixed-Effects Model
2.5. Model Evaluation and Validation
2.6. Methodology Flowchart
2.7. Statistical Software
3. Results
3.1. Cluster Analysis Outcomes
3.2. Base Model Selection
3.3. Mixed-Effects Models with Different Clustering Approaches
3.4. Mixed-Effects Models Incorporating Age and Clustering
3.5. Model Validation
3.6. Model Performance
4. Discussion
4.1. Rationale for Base Model Selection
4.2. Superiority of Height-Based Clustering
4.3. Importance of Age for Dynamic Modeling
4.4. Specification of Random Effects in Mixed Models
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Province | Provenance Origin | Number of Provenances | Longitude (°N) | Latitude (°E) | Mean Annual Temperature (°C) | Mean Annual Precipitation (mm) |
---|---|---|---|---|---|---|
Anhui | Qimen | 4 | 29.85 | 117.72 | 15.6 | 1781 |
Qianshan | 2 | 30.63 | 116.58 | 16.3 | 1336 | |
Xiuning | 8 | 29.79 | 118.19 | 17.0 | 1750 | |
Fujian | Sanming | 7 | 26.27 | 117.63 | 19.2 | 1700 |
Pucheng | 4 | 27.92 | 118.54 | 13.7 | 512 | |
Yangkou | 3 | 26.80 | 117.91 | 18.5 | 1880 | |
Guangdong | Liannan | 4 | 24.73 | 112.29 | 19.5 | 1670 |
Xinyi | 3 | 22.35 | 110.95 | 22.4 | 2012 | |
Guangxi | Liuzhou | 6 | 24.33 | 109.43 | 20.5 | 1500 |
Liuwanshan | 1 | 22.53 | 109.86 | 21.5 | 1900 | |
Naping | 2 | 22.93 | 108.11 | 18.0 | 1350 | |
Zhenglong | 2 | 23.03 | 109.25 | 21.5 | 1477 | |
Guizhou | Jinping | 4 | 26.68 | 109.20 | 16.7 | 1280 |
Rongjiang | 4 | 25.93 | 108.52 | 18.1 | 1190 | |
Hubei | Enshi | 4 | 30.3 | 109.48 | 16.3 | 1500 |
Tongshan | 3 | 29.61 | 114.48 | 17.0 | 1450 | |
Yichang | 2 | 30.69 | 111.29 | 17.0 | 1175 | |
Hunan | Huaihua | 8 | 26.69 | 109.46 | 16.8 | 1400 |
Jiangxi | Ganzhou | 2 | 25.51 | 114.70 | 18.9 | 1500 |
Quannan | 2 | 24.82 | 114.45 | 17.5 | 701 | |
Ruijin | 1 | 25.66 | 115.98 | 19.0 | 1652 | |
Yichun | 8 | 28.21 | 114.97 | 17.6 | 1642 | |
Sichuan | Hongya | 2 | 29.92 | 103.37 | 16.6 | 1370 |
Jianwei | 4 | 29.21 | 103.95 | 17.5 | 1146 | |
Guxian | 4 | 30.97 | 103.93 | 16.1 | 1200 | |
Zhejiang | Linan | 7 | 30.23 | 119.72 | 17.9 | 1630 |
Longquan | 8 | 28.07 | 119.14 | 17.8 | 1650 |
References
- Rehfeldt, G.E.; Leites, L.P.; Clair, J.B.S.; Jaquish, B.C.; Sáenz-Romero, C.; López-Upton, J.; Joyce, D.G. Comparative Genetic Responses to Climate in the Varieties of Pinus ponderosa and Pseudotsuga menziesii: Clines in Growth Potential. For. Ecol. Manag. 2014, 324, 138–146. [Google Scholar] [CrossRef]
- Alexandru, A.M.; Mihai, G.; Stoica, E.; Curtu, A.L. Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians. Plants 2024, 13, 2172. [Google Scholar] [CrossRef]
- Gričar, J.; Arnič, D.; Krajnc, L.; Peter, P.; Božič, G.; Westergren, M.; Mátyás, C.; Kraigher, H. Different Patterns of Inter-Annual Variability in Mean Vessel Area and Tree-Ring Widths of Beech from Provenance Trials in Slovenia and Hungary. Trees 2024, 38, 179–195. [Google Scholar] [CrossRef]
- Yu, X. Cunninghamia lanceolata Cultivation; Fujian Science and Technology Publishing House: Fuzhou, China, 1997. (In Chinese) [Google Scholar]
- Gong, X.; Wan, Z.; Jin, P.; Jin, S.; Li, X. Drought-Driven Divergence in Photosynthetic Performance Between Two Cunninghamia anceolata Provenances: Insights from Gas Exchange and Chlorophyll Fluorescence Dynamics. Plants 2025, 14, 1487. [Google Scholar] [CrossRef]
- Wu, P.; Tigabu, M.; Ma, X.; Odén, P.C.; He, Y.; Yu, X.; He, Z. Variations in Biomass, Nutrient Contents and Nutrient use Efficiency Among Chinese Fir Provenances. Silvae Genet. 2011, 60, 95–105. [Google Scholar] [CrossRef]
- Xu, T.; Niu, X.; Wang, B. Provenance Differences and Factors Influencing Transpiration of Cunninghamia lanceolata in a Common Garden Experiment. Front. Plant Sci. 2025, 16, 1515534. [Google Scholar] [CrossRef] [PubMed]
- Dorado, F.C.; Diéguez-Aranda, U.; Anta, M.B.; RodríguezM, S.; Gadow, K. A Generalized Height-Diameter Model Including Random Components for Radiata pine Plantations in Northwestern Spain. For. Ecol. Manag. 2006, 229, 202–213. [Google Scholar] [CrossRef]
- Gómez-García, E.; Diéguez-Aranda, U.; Castedo-Dorado, F.; Crecente-Campo, F. A Comparison of Model Forms for the Development of Height-Diameter Relationships in Even-Aged Stands. For. Sci. 2014, 60, 560–568. [Google Scholar] [CrossRef]
- Rupšys, P. Height-Diameter Models with Stochastic Differential Equations and Mixed-Effects Parameters. J. For. Res. 2015, 20, 9–17. [Google Scholar] [CrossRef]
- Baia, A.L.P.; Nascimento, H.E.M.; Guedes, M.; Hilário, R.; Toledo, J.J. Tree Height-Diameter Allometry and Implications for Biomass Estimates in Northeastern Amazonian Forests. PeerJ 2025, 13, 18974. [Google Scholar] [CrossRef]
- Pearl, R.; Reed, L.J. On the Rate of Growth of the Population of the United States since 1790 and its Mathematical Representation. Proc. Natl. Acad. Sci. USA 1920, 6, 275–288. [Google Scholar] [CrossRef]
- Richards, F.J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Kuehne, C.; Maleki, K.; Merlin, M.; Granhus, A. Interactive Effects of Species Composition, Site Quality, and Drought on Growth Dynamics of Norway Spruce and Scots pine Stands in Norway. For. Ecol. Manag. 2025, 590, 122804. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, Z.; Wang, W.; Jiang, L. Enhanced Awareness of Height-Diameter Allometry in Response to Climate, Soil, and Competition in Secondary Forests. For. Ecol. Manag. 2023, 548, 121386. [Google Scholar] [CrossRef]
- Pukkala, T.; Lähde, E.; Laiho, O. Optimizing the Structure and Management of Uneven-Sized Stands of Finland. For. Int. J. For. Res. 2010, 83, 129–142. [Google Scholar] [CrossRef]
- Wang, X.; Fang, J.; Tang, Z.; Zhu, B. Climatic Control of Primary Forest Structure and DBH-Height Allometry in Northeast China. For. Ecol. Manag. 2006, 234, 264–274. [Google Scholar] [CrossRef]
- Ismail, M.J.; Poudel, T.R.; Ali, A.; Dong, L. Incorporating Stand Parameters in Nonlinear Height-Diameter Mixed-Effects Model for Uneven-Aged Larix gmelinii Forests. Front. For. Glob. Change 2025, 7, 1491648. [Google Scholar] [CrossRef]
- Özçelika, R.; Cao, Q.V.; Trincadoc, G.; Göçerd, N. Predicting Tree Height from Tree Diameter and Dominant Height using Mixed-Effects and Quantile Regression Models for Two Species in Turkey. For. Ecol. Manag. 2018, 419–420, 240–248. [Google Scholar] [CrossRef]
- Temesgen, H.; Gadow, K. Generalized Height-Diameter Models-an Application for Major Tree Species in Complex Stands of Interior British Columbia. Eur. J. For. Res. 2004, 123, 45–51. [Google Scholar] [CrossRef]
- Tian, D.; Jiang, L.; Shahzad, M.K.; He, P.; Wang, J.; Yan, Y. Climate-Sensitive Tree Height-Diameter Models for Mixed Forests in Northeastern China. Agric. For. Meteorol. 2022, 326, 109182. [Google Scholar] [CrossRef]
- Zhang, X.; Chhin, S.; Fu, L.; Lu, L.; Duan, A.; Zhang, J. Climate-Sensitive Tree Height-Diameter Allometry for Chinese Fir in Southern China. For. Int. J. For. Res. 2019, 92, 167–176. [Google Scholar] [CrossRef]
- Hao, X.; Mu, C.; Cui, Y.; Ji, W.; Xu, W.; Zhao, H. Prediction of Liberation Cutting Intensity Effect on the Growth of Korean pine in Secondary Forest Based on Double Dummy Variable Model. J. Appl. Ecol. 2024, 35, 1463–1473. [Google Scholar]
- Ciceu, A.; Leca, S.; Badea, O.; Mehtätalo, L. Nonlinear Multilevel Seemingly Unrelated Height-Diameter and Crown Length Mixed-Effects Models for the Southern Transylvanian Forests, Romania. For. Ecosyst. 2025, 13, 100322. [Google Scholar] [CrossRef]
- Sağlam, F.; Sakici, O.E. Ecoregional Height-Diameter Models for Scots pine in Turkiye. J. For. Res. 2024, 35, 103. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, X.; Zhao, Z.; Xiang, W.; Yan, W.; Ouyang, S.; Lei, P. Monthly Radial Growth Model of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.), and the Relationships between Radial Increment and Climate Factors. Forests 2019, 10, 757. [Google Scholar] [CrossRef]
- Lu, L.; Chhin, S.; Zhang, J.; Zhang, X. Modelling Tree Height-Diameter Allometry of Chinese Fir in Relation to Stand and Climate Variables through Bayesian Model Averaging Approach. Silva Fenn. 2021, 55, 10415. [Google Scholar] [CrossRef]
- Zhang, B.; Sajjad, S.; Chen, K.; Zhou, L.; Zhang, Y.; Yong, K.K.; Sun, Y. Predicting Tree Height-Diameter Relationship from Relative Competition Levels Using Quantile Regression Models for Chinese Fir (Cunninghamia lanceolata) in Fujian Province, China. Forests 2020, 11, 183. [Google Scholar] [CrossRef]
- Buford, M.A.; Burkhart, H.E. Genetic Improvement Effects on Growth and Yield of Loblolly Pine Plantations. For. Sci. 1987, 3, 707–724. [Google Scholar] [CrossRef]
- Sharma, M. Modelling Climate Effects on Diameter Growth of Red pine Trees in Boreal Ontario, Canada. Trees For. People 2021, 4, 100064. [Google Scholar] [CrossRef]
- Wu, H.; Lei, J.; Li, X.; Wang, H.; Duan, A.; Zhang, J. Aggregation Distributions Across Stand Age in Provenances of Cunninghamia lanceolata (Lamb.) Hook. For. Ecol. Manag. 2021, 494, 119317. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, A.; Duan, A.; Wu, H.; Zhang, J. Responses to Subtropical Climate in Radial Growth and Wood Density of Chinese Fir Provenances, Southern China. For. Ecol. Manag. 2022, 521, 120428. [Google Scholar] [CrossRef]
- Gompertz, B. XXIV. On the Nature of The Function Expressive of The Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. Philos. Trans. R. Soc. Lond. 1825, 115, 513–583. [Google Scholar] [CrossRef]
- Curtis, R.O. Height-Diameter and Height-Diameter-Age Equations for Second-Growth Douglas-Fir. For. Sci. 1967, 13, 365–375. [Google Scholar]
- Robinson, A.P.; Wykoff, W.R. Imputing Missing Height Measures using a Mixed-Effects Modeling Strategy. Can. J. For. Res. 2004, 34, 2492–2500. [Google Scholar] [CrossRef]
- Mensah, S.; Pienaar, O.L.; Kunneke, A.; Toit, B.; Seydack, A.; Uhl, E.; Pretzsch, H.; Seifert, T. Height-Diameter Allometry in South Africa’s Indigenous High Forests: Assessing Generic Models Performance and Function Forms. For. Ecol. Manag. 2018, 410, 1–11. [Google Scholar] [CrossRef]
- Lumbres, R.L.C.; Lee, Y.J.; Calora, F.G., Jr.; Parao, M.R. Model Fitting and Validation of Six Height–DBH Equations for Pinus kesiya Royle ex Gordon in Benguet Province, Philippines. For. Sci. Technol. 2013, 9, 45–50. [Google Scholar] [CrossRef]
- Ng’andwe, P.; Chungu, D.; Yambayamba, A.M.; Chilambwe, A. Modeling the Height-Diameter Relationship of Planted Pinus kesiya in Zambia. For. Ecol. Manag. 2019, 447, 1–11. [Google Scholar] [CrossRef]
- Patrício, M.S.; Dias, C.R.G.; Nunes, L. Mixed-effects Generalized Height-Diameter Model: A Tool for Forestry Management of Young Sweet Chestnut Stands. For. Ecol. Manag. 2022, 514, 120209. [Google Scholar] [CrossRef]
- Wu, H.; Duan, A.; Zhang, J. Long-Term Growth Variation and Selection of Geographical Provenances of Cunninghamia lanceolata (Lamb.) Hook. Forests 2019, 10, 876. [Google Scholar] [CrossRef]
- Noordermeer, L.; Bollandsås, O.M.; Gobakken, T.; Næsset, E. Direct and Indirect Site Index Determination for Norway Spruce and Scots pine using Bitemporal Airborne Laser Scanner Data. For. Ecol. Manag. 2018, 428, 104–114. [Google Scholar] [CrossRef]
- Sharma, M.; Parton, J. Height-Diameter Equations for Boreal Tree Species in Ontario using a Mixed-Effects Modeling Approach. For. Ecol. Manag. 2007, 249, 187–198. [Google Scholar] [CrossRef]
- Wu, H.; Duan, A.; Zhang, J. Growth Variation and Selection Effect of Cunninghamia lanceolata Provenances at Different Stand Ages. For. Sci. 2019, 55, 181–192. (In Chinese) [Google Scholar]
- Wang, H.; Duan, A.; Zhang, J. Intraspecific Responses to Climate Change in Cunninghamia lanceolata (Lamb.) Hook.: Local May Not be the Best. For. Ecol. Manag. 2025, 590, 122784. [Google Scholar] [CrossRef]
- Köhler, P.; Huth, A. The Effects of Tree Species Grouping in Tropical Rainforest Modelling: Simulations with The Individual-Based Model FORMIND. Ecol. Model. 1998, 109, 301–321. [Google Scholar] [CrossRef]
- Phillips, P.D.; Yasman, I.; Brash, T.E.; Gardingen, P.R. Grouping Tree Species for Analysis of Forest Data in Kalimantan (Indonesian Borneo). For. Ecol. Manag. 2022, 157, 205–216. [Google Scholar] [CrossRef]
- Özçelik, R.; Diamantopoulou, M.J.; Crecente-Campo, F.; Eler, U. Estimating Crimean Juniper Tree Height Using Nonlinear Regression and Artificial Neural Network Models. For. Ecol. Manag. 2013, 306, 52–60. [Google Scholar] [CrossRef]
- Ou, Y.; Quiñónez-Barraza, G. Modeling Height–Diameter Relationship Using Artificial Neural Networks for Durango Pine (Pinus durangensis Martínez) Species in Mexico. Forests 2023, 14, 1544. [Google Scholar] [CrossRef]
Model | Model Equation |
---|---|
Logistic | |
Richards | |
Gompertz | |
Curtis | |
Meyer | |
Wykoff |
Model | Parameter Estimation | Fitting Statistic | ||||
---|---|---|---|---|---|---|
a | b | c | AIC | BIC | −2LogL | |
Logistic | 15.9630 *** | 8.3112 *** | 0.1979 *** | 1616.889 | 1633.642 | 1608.889 |
Richards | 18.4873 *** | 0.0810 *** | 1.3807 *** | 1679.122 | 1695.875 | 1671.122 |
Gompertz | 17.1237 *** | 2.7269 *** | 0.1250 *** | 1644.014 | 1660.767 | 1636.014 |
Curtis | 21.1884 *** | 9.0065 *** | 1734.280 | 1746.844 | 1728.280 | |
Meyer | 26.8212 *** | 0.0348 *** | 1705.752 | 1718.317 | 1699.752 | |
Wykoff | 3.0956 *** | −10.1254 *** | 1718.197 | 1730.762 | 1712.197 |
No. | Model | Random Parameters | Fixed Parameter | Fitting Statistic | ||||
---|---|---|---|---|---|---|---|---|
a | b | c | AIC | BIC | −2LogL | |||
M1 | Base model | None | 15.9630 | 8.3112 | 0.1979 | 1616.889 | 1633.642 | 1608.889 |
M2 | DBH-clustering mixed model | b, c | 15.8490 | 8.5890 | 0.2040 | 1605.670 | 1634.987 | 1591.670 |
M3 | Height-clustering mixed model | a, b | 14.6866 | 9.9388 | 0.2554 | 1490.429 | 1519.747 | 1476.429 |
M4 | Combined clustering mixed model | a, b | 15.1953 | 9.2321 | 0.2242 | 1568.430 | 1597.748 | 1554.430 |
No. | Model | Fixed Parameter | Fitting Statistic | |||||
---|---|---|---|---|---|---|---|---|
a | b | c | c0 | AIC | BIC | −2LogL | ||
M5 | Incorporating age | 13.7433 | 17.3032 | −1.0867 | 0.2700 | 1315.050 | 1335.992 | 1305.050 |
M6 | Incorporating age and DBH-clustering | 13.8381 | 15.5125 | −1.0694 | 0.2618 | 1107.400 | 1140.906 | 1091.400 |
M7 | Incorporating age and height-clustering | 13.7759 | 12.7433 | −1.0737 | 0.2557 | 643.648 | 677.154 | 627.648 |
M8 | Incorporating age and combined clustering | 13.6529 | 17.3881 | −1.1169 | 0.2760 | 818.134 | 851.640 | 802.134 |
No. | Model | Validation Criterion | Ranking | |||
---|---|---|---|---|---|---|
RMSE | MAE | MAPE/% | R2 | |||
M1 | Base model | 1.2654 | 1.0833 | 17.8629 | 0.9404 | 8 |
M2 | DBH-clustering mixed model | 1.2426 | 1.0531 | 17.1787 | 0.9425 | 7 |
M3 | Height-clustering mixed model | 1.0936 | 0.8696 | 15.4075 | 0.9555 | 5 |
M4 | Combined clustering mixed model | 1.1996 | 0.9807 | 15.7297 | 0.9464 | 6 |
M5 | Base model incorporating age | 0.9246 | 0.5852 | 5.0478 | 0.9682 | 4 |
M6 | Incorporating age and DBH-clustering | 0.7403 | 0.4708 | 4.2767 | 0.9796 | 3 |
M7 | Incorporating age and height-clustering | 0.4582 | 0.3145 | 3.2707 | 0.9922 | 1 |
M8 | Incorporating age and combined clustering | 0.5510 | 0.3683 | 3.5648 | 0.9887 | 2 |
Parameter | Estimated Value |
---|---|
13.7760 | |
12.7461 | |
−1.0737 | |
0.2557 | |
Random effect variance–covariance structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, Y.; Lyu, Y.; Chen, W.; Li, M.; Sun, S. Provenance-Specific Height–Diameter Modeling for Chinese Fir: A Clustered Mixed-Effects Approach. Biology 2025, 14, 1301. https://doi.org/10.3390/biology14091301
Wu X, Wang Y, Lyu Y, Chen W, Li M, Sun S. Provenance-Specific Height–Diameter Modeling for Chinese Fir: A Clustered Mixed-Effects Approach. Biology. 2025; 14(9):1301. https://doi.org/10.3390/biology14091301
Chicago/Turabian StyleWu, Xiangrong, Yuhan Wang, Yanjuan Lyu, Wanrong Chen, Ming Li, and Shuaichao Sun. 2025. "Provenance-Specific Height–Diameter Modeling for Chinese Fir: A Clustered Mixed-Effects Approach" Biology 14, no. 9: 1301. https://doi.org/10.3390/biology14091301
APA StyleWu, X., Wang, Y., Lyu, Y., Chen, W., Li, M., & Sun, S. (2025). Provenance-Specific Height–Diameter Modeling for Chinese Fir: A Clustered Mixed-Effects Approach. Biology, 14(9), 1301. https://doi.org/10.3390/biology14091301