Effects of Inorganic Phosphorus-Solubilizing Bacteria on Rhizosphere Phosphorus Forms and Steroid Saponin Content of Paris polyphylla var. yunnanensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Objects and Experimental Design
2.2. Sampling
2.3. Determination of Steroid Saponins by UPLC
2.3.1. Preparation of Standard Reference Solutions
2.3.2. Preparation of Sample Solutions
2.3.3. Chromatographic Conditions
2.3.4. Sample Determination
2.4. Phosphorus Determination
2.5. Data Analysis
3. Results
3.1. Effect of Inorganic Phosphorus-Solubilizing Bacteria on Phosphorus Fractions in the Rhizosphere Soil of Paris polyphylla var. yunnanensis
3.2. Effect of Inorganic Phosphorus-Solubilizing Bacteria on Steroidal Saponin Content in Paris polyphylla var. yunnanensis
3.3. Principal Component Analysis (PCA) of Six Steroidal Saponins in Paris polyphylla var. yunnanensis Plants
3.4. Correlation Analysis Between Saponin Contents in Plants and Phosphorus in Rhizosphere Soils
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Liang, H.; Zhang, Y.Y. Response of root morphogenesis of medicinal plants to low phosphorus stress and molecular mechanism. China J. Chin. Mater. Med. 2022, 47, 6573–6580. [Google Scholar] [CrossRef]
- Koistinen, J.; Sjöblom, M.; Spilling, K. Determining inorganic and organic phosphorus. Methods Mol. Biol. 2020, 1890, 87–94. [Google Scholar] [CrossRef]
- Li, H.Y.; Ren, R.; Zhang, H.Y.; Zhang, G.X.; He, Q.S.; Han, Z.W.; Meng, S.H.; Zhang, Y.L.; Zhang, X.H. Factors regulating interaction among inorganic nitrogen and phosphorus species, plant uptake, and relevant cycling genes in a weakly alkaline soil treated with biochar and inorganic fertilizer. Sci. Total Environ. 2023, 905, 167280. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.; Zhang, R.; Ma, J.; Guo, Z.; Zhao, J.; Weng, L.; Li, Y. Retardation factors in controlling the transport of inorganic, organic, and particulate phosphorus in fluvo-aquic soil. Ecotoxicol. Environ. Saf. 2023, 249, 114402. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Castro, P.M.L. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol. Eng. 2014, 73, 526–535. [Google Scholar] [CrossRef]
- Carver, R.E.; Nelson, N.O.; Roozeboom, K.L.; Kluitenberg, G.J.; Tomlinson, P.J.; Kang, Q.; Abel, D.S. Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. J. Environ. Manag. 2022, 301, 113818. [Google Scholar] [CrossRef] [PubMed]
- Chikuvire, T.J.; Muchaonyerwa, P.; Zengeni, R. Decomposition of Wolffia arrhiza residues rapidly increases mineral nitrogen and decreases extractable phosphorus in acidic soils. Environ. Monit. Assess. 2018, 190, 510. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2020, 21, 49–68. [Google Scholar] [CrossRef]
- Bai, K.; Wang, W.; Zhang, J.; Yao, P.; Cai, C.; Xie, Z.; Luo, L.; Li, T.; Wang, Z. Effects of phosphorus-solubilizing bacteria and biochar application on phosphorus availability and tomato growth under phosphorus stress. BMC Biol. 2024, 22, 211. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Liu, L.; Li, S.; Xie, J.; Xue, X.; Jiang, Y. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Biol. 2022, 22, 296. [Google Scholar] [CrossRef]
- National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 1st ed.; China Medical Science and Technology Press: Beijing, China, 2020; pp. 271–272. [Google Scholar]
- Chen, M.H.; Liang, M.Y.; Wen, X.D.; Yang, J. Research progress in chemical constituents in the aerial parts of Paris L. and their pharmacological effects. Chin. Wild Plant Res. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Cheng, W.; Di, F.; Wang, C.; An, Q. Saponins of Paris polyphylla for the improvement of acne: Anti-inflammatory, antibacterial, antioxidant and immunomodulatory effects. Molecules 2024, 29, 1793. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Xu, F.R.; Wang, Y.Z.; Zhang, J.Y. Rapid and simple determination of polyphyllin I, II, VI, and VII in different harvest times of cultivated Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz by UPLC-MS/MS and FT-IR. J. Nat. Med. 2017, 71, 139–147. [Google Scholar] [CrossRef]
- Thapa, C.B.; Paudel, M.R.; Bhattarai, H.D.; Pant, K.K.; Devkota, H.P.; Adhikari, Y.P.; Pant, B. Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: A review. Heliyon 2022, 17, e08982. [Google Scholar] [CrossRef]
- Xu, L.F.; Gu, W.C.; Li, Z.W.; Du, H.H.; Guo, D.Q.; Zhou, N. Comparative study on the contents of 15 amino acids in wild and cultivated Paris polyphylla var. yunnanensis from different producing areas. Tradit. Chin. Drug Res. Clin. Pharmacol. 2022, 33, 235–241. [Google Scholar] [CrossRef]
- Chen, T.Z.; Wen, F.Y.; Zhang, T.; Yang, Y.X.; Fang, Q.M.; Zhang, H.; Xue, D. Evaluation of saponins in Paris polyphylla var. chinensis from twenty-one growing areas. Chin. Tradit. Pat. Med. 2017, 39, 2345–2350. [Google Scholar] [CrossRef]
- Yang, Y.H.; Dai, L.J.; He, K.H.; Wei, J.R.; Zhao, T.Z.; Su, B.; Wang, M.H. Relation between soil nutrient of artificially cultivated area and rhizome quality of Paris polyphylla var. yunnanensis. J. Chin. Med. Mater. 2012, 35, 1557–1561. [Google Scholar] [CrossRef]
- Xia, Y.; Yuan, Y.; Li, C.; Sun, Z. Phosphorus-solubilizing bacteria improve the growth of Nicotiana benthamiana on lunar regolith simulant by dissociating insoluble inorganic phosphorus. Commun. Biol. 2023, 6, 1039. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Sun, Y.; Wei, Y.F.; Li, H.; Yang, S.N. Different rhizosphere soil microbes are recruited by tomatoes with different fruit color phenotypes. BMC Microbiol. 2022, 22, 210. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.Y.; Wang, J.Q.; Yu, H.; Jiao, X.G.; Wang, Y.; Xu, X.; Chen, Y.M.; Sui, Y.Y. Effects of reducing irrigation and chemical fertilizers on forms and distribution of inorganic phosphorus in facility vegetable field of black soil. Chin. Agric. Sci. Bull. 2021, 37, 89–93. [Google Scholar] [CrossRef]
- Alemneh, A.A.; Zhou, Y.; Ryder, M.H.; Denton, M.D. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J. Appl. Microbiol. 2020, 129, 1133–1156. [Google Scholar] [CrossRef]
- Agnieszka, S.; Ewelina, P.; Justyna, D.-I. Phosphorus solubilization by Bacillus species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef]
- Abraham, L.-M.; María, G.C.-C.; Thelma, C.; Angélica, L.-C.; Trinidad, A.-D.; Aarón, B. Growth effects in oregano plants (Origanum vulgare L.) assessment through inoculation of bacteria isolated from crop fields located on desert soils. Can. J. Microbiol. 2021, 67, 381–395. [Google Scholar] [CrossRef]
- Wang, J.N.; Shi, Y.Y.; Zheng, L.Y.; Wang, Z.; Cai, Z.; Liu, J. Isolation and identification of petroleum degradation bacteria and interspecific interactions among four Bacillus strains. Environ. Sci. 2015, 36, 2245–2251. [Google Scholar] [CrossRef]
- Ku, Y.; Xu, G.; Tian, X.; Xie, H.; Yang, X.; Cao, C. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS ONE. 2018, 13, e0200181. [Google Scholar] [CrossRef]
- Du, E.; Chen, Y.; Li, Y.; Li, Y.; Sun, Z.; Hao, R.; Gui, F. Effects of Septoglomus constrictum and Bacillus cereus on the competitive growth of Ageratina adenophora. Front. Microbiol. 2023, 2, 1131797. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, N.; Liang, X.; Huang, T.; Li, B. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. J. Sci. Food Agric. 2022, 102, 6650–6657. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lin, Y.; Zhang, L.; Wu, F.; Zhang, Y.; Huang, S. Effects of interaction between Claroideogolmus etuicatum and Bacillus aryabhattai on the utilization of organic phosphorus in Camellia oleifera Abel. J. Fungi 2023, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, L.; He, Z.; Zhang, Z.; Xu, Y.; Li, Z.; Peng, Y.; Deng, N.; Chen, Y. Integration and potential application ability of culturable functional microorganism in oil tea Camellia. Indian J. Microbiol. 2021, 61, 1–9. [Google Scholar] [CrossRef]
- Man, S.; Gao, W.; Zhang, Y.; Ma, C.; Yang, L.; Li, Y. Paridis saponins inhibiting carcinoma growth and metastasis in vitro and in vivo. Arch. Pharm. Res. 2011, 34, 43–50. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Zheng, F.; Tang, Q.; Wu, W.; Hann, S.S. Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I. J. Exp. Clin. Cancer Res. 2016, 35, 112. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, X.; Bao, J.; Chen, S.; Wang, K.; Zhang, Y.; Li, P.; Wan, J.-B.; Su, H.; Wang, Y.; et al. Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediated mitochondrial dysfunction and MAPK pathways. BMC Complement. Altern. Med. 2016, 16, 58. [Google Scholar] [CrossRef]
- Pu, X.; Liu, Y.; Li, Y.; Zhang, W.; Wang, H. Preparation of polyphylla saponins and their antiviral effect on influenza A virus. Chin. J. Pharmacol. Toxicol. 2013, 27, 187–192. [Google Scholar] [CrossRef]
- Bi, L.; Liu, Y.; Yang, Q.; Zhou, X.; Li, H.; Liu, Y.; Li, J.; Lu, Y.; Tang, H. Paris saponin H inhibits the proliferation of glioma cells through the A1 and A3 adenosine receptor-mediated pathway. Int. J. Mol. Med. 2021, 47, 30. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhou, X.; Tang, D.X.; Zhang, Y.; Lin, J.; Chen, T.Z. Analgesic and anti-inflammatory eeffects of Chonglou saponin VII, H and total saponins. J. Sichuan Tradit. Chin. Med. 2021, 39, 57–60. [Google Scholar]
- Guan, L.; Mao, Z.; Yang, S.; Wu, G.; Chen, Y.; Yin, L.; Qi, Y.; Han, L.; Xu, L. Dioscin alleviates Alzheimer’s disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed. Pharmacother. 2022, 152, 113248. [Google Scholar] [CrossRef]
- Hu, H.X.; Gao, R.R.; Gao, Z.H.; Qiao, Y.; Dong, X.R.; Ding, G.; Sun, D.A. Microbial transformation of pseudoprotodioscin by Gibberella fujikuroi. J. Asian Nat. Prod. Res. 2018, 20, 624–632. [Google Scholar] [CrossRef]
- Gai, Y.N.; Li, Y.S.; Xu, Z.L.; Chen, J. Pseudoprotodioscin inhibits SREBPs and microRNA 33a/b levels and reduces the gene expression regarding the synthesis of cholesterol and triglycerides. Fitoterapia 2019, 139, 104393. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Yang, D.; Yin, Y.Z.; Xiao, J. Estrogenic and anti-inflammatory effects of pseudoprotodioscin in atherosclerosis-prone mice: Insights into endothelial cells and perivascular adipose tissues. Eur. J. Pharmacol. 2020, 869, 172887. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Bae, K.H.; Choi, Y.E.; Shin, C.G.; Kim, Y.Y.; Kim, Y.S. Enhanced ginsenoside productivity by combination of ethephon and methyl jasmoante in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures. Biotechnol. Lett. 2006, 28, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Hu, X.Y.; Neill, S.J.; Fang, J.Y.; Cai, W.M. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng CA Meyer. Plant Cell Physiol. 2005, 46, 947–954. [Google Scholar] [CrossRef] [PubMed]
Group | Inoculated Strain |
---|---|
S1 | Bacillus cereus Y1-1, 300 mL |
S2 | Bacillus aryabhattai Z6-1, 300 mL |
S3 | Bacillus aryabhattai Z3-4, 300 mL |
S4 | Bacillus cereus Y1-1, 150 mL + Bacillus aryabhattai Z6-1, 150 mL |
S5 | Bacillus cereus Y1-1, 150 mL + Bacillus aryabhattai Z3-4, 150 mL |
S6 | Bacillus aryabhattai Z6-1, 150 mL + Bacillus aryabhattai Z3-4, 150 mL |
S7 | Bacillus cereus Y1-1, 100 mL + Bacillus aryabhattai Z6-1, 100 mL + Bacillus aryabhattai Z3-4, 100 mL |
CK | saline solution, 300 mL |
Group | Soil Inorganic Phosphorus | Soil Total Phosphorus | Plant Total Phosphorus | Soil Inorganic Phosphorus Proportion |
---|---|---|---|---|
S1 | 767.718 ± 22.493 ab | 1061.850 ± 31.111 b | 1261.850 ± 31.111 a | 72.30% |
S2 | 780.070 ± 21.394 a | 1125.642 ± 30.872 a | 1340.642 ± 30.872 a | 69.30% |
S3 | 689.514 ± 3.252 d | 953.685 ± 4.498 d | 1073.685 ± 4.498 b | 72.30% |
S4 | 562.889 ± 9.947 f | 768.974 ± 13.588 g | 1028.974 ± 13.588 d | 72.20% |
S5 | 680.814 ± 11.337 d | 838.441 ± 13.962 f | 1089.441 ± 13.962 c | 81.20% |
S6 | 715.742 ± 12.980 c | 1000.617 ± 18.147 c | 1231.617 ± 18.146 b | 71.53% |
S7 | 754.234 ± 7.359 b | 916.445 ± 8.942 e | 1152.445 ± 8.942 b | 82.30% |
CK | 589.085 ± 12.162 e | 933.574 ± 19.274 de | 1171.574 ± 19.274 b | 63.10% |
Principal Component 1 | Principal Component 2 | Principal Component 3 | ||
---|---|---|---|---|
Steroidal saponin | polyphyllin VII | 0.919 | −0.283 | 0.006 |
polyphyllin I | 0.911 | 0.342 | −0.132 | |
polyphyllin II | 0.14 | 0.83 | 0.43 | |
polyphyllin H | −0.095 | 0.778 | −0.286 | |
dioscin | 0.014 | 0.181 | 0.861 | |
pseudoprotodioscin | −0.125 | −0.19 | 0.708 | |
Eigenvalue | 1.791 | 1.649 | 1.363 | |
Variance contribution rate (%) | 29.848 | 27.487 | 22.724 | |
Cumulative variance contribution rate (%) | 29.848 | 57.335 | 80.058 |
Group | F1 | Sort | F2 | Sort | F3 | Sort | Fcomprehensive | Sort |
---|---|---|---|---|---|---|---|---|
S1 | −1.044 | 7 | −0.024 | 4 | 0.343 | 3 | −0.300 | 6 |
S2 | 0.929 | 2 | −0.777 | 6 | 0.794 | 2 | 0.306 | 3 |
S3 | 0.517 | 4 | −0.118 | 5 | 1.673 | 1 | 0.627 | 2 |
S4 | −0.380 | 5 | 0.743 | 2 | −0.818 | 7 | −0.119 | 4 |
S5 | −0.901 | 6 | 0.186 | 3 | −0.675 | 6 | −0.464 | 7 |
S6 | 0.553 | 3 | 1.952 | 1 | 0.179 | 4 | 0.927 | 1 |
S7 | 1.479 | 1 | −0.811 | 7 | −1.515 | 8 | −0.157 | 5 |
CK | −1.153 | 8 | −1.152 | 8 | 0.020 | 5 | −0.820 | 8 |
Ca2-P | Ca8-P | Ca10-P | Al-P | Fe-P | O-P | Soil Inorganic Phosphorus | Soil Total Phosphorus | Plant Phosphorus | |
---|---|---|---|---|---|---|---|---|---|
Polyphyllin I | −0.144 | −0.092 | 0.527 ** | 0.388 | 0.105 | 0.593 ** | 0.286 | 0.016 | 0.083 |
Polyphyllin II | −0.270 | −0.314 | −0.296 | 0.154 | −0.096 | 0.480 * | −0.330 | −0.142 | −0.088 |
Polyphyllin VII | 0.198 | 0.394 | 0.605 ** | 0.297 | 0.236 | 0.067 | 0.668 ** | 0.490 * | 0.440 * |
Polyphyllin H | 0.017 | 0.024 | 0.218 | 0.145 | 0.015 | 0.005 | 0.135 | 0.071 | 0.406 * |
Dioscin | 0.420 * | 0.562 ** | −0.648 ** | −0.179 | −0.302 | −0.058 | 0.178 | 0.462 * | 0.234 |
Pseudoprotodioscin | 0.177 | 0.266 | −0.026 | 0.579 ** | 0.158 | −0.247 | 0.264 | 0.680 ** | 0.527 ** |
Total saponin | 0.062 | 0.210 | 0.309 | 0.574 ** | 0.124 | 0.365 | 0.447 * | 0.510 * | 0.505 ** |
Plant phosphorus | 0.328 | 0.604 ** | 0.317 | 0.345 | 0.230 | −0.405 * | 0.653 ** | 0.866 ** | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, Y.; Xu, L.; Lan, G.; Guo, D.; Zhang, H.; Zhou, N. Effects of Inorganic Phosphorus-Solubilizing Bacteria on Rhizosphere Phosphorus Forms and Steroid Saponin Content of Paris polyphylla var. yunnanensis. Biology 2025, 14, 1284. https://doi.org/10.3390/biology14091284
Zhou Y, Wang Y, Xu L, Lan G, Guo D, Zhang H, Zhou N. Effects of Inorganic Phosphorus-Solubilizing Bacteria on Rhizosphere Phosphorus Forms and Steroid Saponin Content of Paris polyphylla var. yunnanensis. Biology. 2025; 14(9):1284. https://doi.org/10.3390/biology14091284
Chicago/Turabian StyleZhou, You, Yueheng Wang, Lingfeng Xu, Guoxin Lan, Dongqin Guo, Haizhu Zhang, and Nong Zhou. 2025. "Effects of Inorganic Phosphorus-Solubilizing Bacteria on Rhizosphere Phosphorus Forms and Steroid Saponin Content of Paris polyphylla var. yunnanensis" Biology 14, no. 9: 1284. https://doi.org/10.3390/biology14091284
APA StyleZhou, Y., Wang, Y., Xu, L., Lan, G., Guo, D., Zhang, H., & Zhou, N. (2025). Effects of Inorganic Phosphorus-Solubilizing Bacteria on Rhizosphere Phosphorus Forms and Steroid Saponin Content of Paris polyphylla var. yunnanensis. Biology, 14(9), 1284. https://doi.org/10.3390/biology14091284