Bioinformatic Identification and Expression Profiling of Heptahelical Transmembrane Protein Genes in Soybean Under Phytohormone and Nematode Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of HHP Genes in Soybean Genome
2.2. Conserved Domain, Motif Identification, Gene Structure, and Chromosomal Distribution Analysis
2.3. Phylogenetic Evolution, Physicochemical Properties, and Subcellular Localization of GmHHPs
2.4. Duplication and Collinearity Analysis of HHP Genes
2.5. Prediction of cis-Elements, Interacting Proteins, and Regulating miRNA
2.6. Plant Material and Phytohormone Treatments
2.7. GmHHP Gene Expression Analysis Under Nematode Infection
2.8. RNA Extraction and qRT-PCR Analysis
3. Results
3.1. Identification of GmHHP Genes in Soybean Genome
3.2. Gene Structure, Chromosomal Distribution, and Phylogenetic Analysis
3.3. Gene Duplication and Collinearity
3.4. cis-Regulating Element Analysis and Phytohormone Response of GmHHP Genes
3.5. GmHHP Genes Were Responsive to Nematode Infection
3.6. GmHHP Genes Influence Several Biological Processes
3.7. Regulation of GmHHP Genes and Their Potential Interactors by Conserved and Legume-Specific miRNA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Memo, M.; Mastinu, A. Plant behaviour: An evolutionary response to the environment? Plant Biol. 2020, 22, 961–970. [Google Scholar] [CrossRef]
- Chen, M.; Chory, J.; Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 2004, 38, 87–117. [Google Scholar] [CrossRef]
- Kiba, T.; Kudo, T.; Kojima, M.; Sakakibara, H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. J. Exp. Bot. 2011, 62, 1399–1409. [Google Scholar] [CrossRef]
- Zipfel, C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35, 345–351. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Thomas, P. Membrane progesterone receptors (mPRs, PAQRs): Review of structural and signaling characteristics. Cells 2022, 11, 1785. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.T.; Hu, T.; Arterburn, M.; Boyle, B.; Bright, J.M.; Emtage, P.C.; Funk, W.D. PAQR proteins: A novel membrane receptor family defined by an ancient7-transmembrane pass motif. J. Mol. Evol. 2005, 61, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Urano, D.; Jones, A.M. Heterotrimeric G protein–coupled signaling in plants. Annu. Rev. Plant Biol. 2014, 65, 365–384. [Google Scholar] [CrossRef]
- Baena-González, E.; Hanson, J. Shaping plant development through the SnRK1–TOR metabolic regulators. Curr. Opin. Plant Biol. 2017, 35, 152–157. [Google Scholar] [CrossRef]
- Mair, A.; Pedrotti, L.; Wurzinger, B.; Anrather, D.; Simeunovic, A.; Weiste, C.; Valerio, C.; Dietrich, K.; Kirchler, T.; Nägele, T.; et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 2015, 4, e05828. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-H.; Goodman, H.M. A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. J. Exp. Bot. 2005, 56, 3137–3147. [Google Scholar] [CrossRef]
- Chen, C.; Liang, C.; Kao, A.; Yang, C. HHP1 is involved in osmotic stress sensitivity in Arabidopsis. J. Exp. Bot. 2009, 60, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, S.; Johanndrees, O.; Nürnberger, T.; Zipfel, C. Plant pattern recognition receptors: From evolutionary insight to engineering. Nat. Rev. Genet. 2025, 26, 268–278. [Google Scholar] [CrossRef]
- Wendimu, G.Y. Cyst nematode (Heterodera glycines) problems in soybean (Glycine max L.) crops and its management. Adv. Agric. 2022, 2022, 7816951. [Google Scholar] [CrossRef]
- Arjoune, Y.; Sugunaraj, N.; Peri, S.; Nair, S.V.; Skurdal, A.; Ranganathan, P.; Johnson, B. Soybean cyst nematode detection and management: A review. Plant Methods 2022, 18, 110. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Zhu, X.; Wang, Y.; Chen, L.; Duan, Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC Plant Biol. 2018, 18, 86. [Google Scholar] [CrossRef]
- Qi, N.; Yan, J.; Lei, P.; Kang, W.; Liu, X.; Xuan, Y.; Fan, H.; Wang, Y.; Yang, N.; Chen, L.; et al. Transcriptome Analysis of GmPUB20A Overexpressing and RNA-Interferencing Transgenic Hairy Roots Reveals Underlying Negative Role in Soybean Resistance to Cyst Nematode. J. Agric. Food Chem. 2023, 71, 18059–18073. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Li, Q.; Hao, F.; Stacey, G.; Chen, D. Plant PAQR-like sensors activate heterotrimeric G proteins to confer resistance against multiple pathogens. Mol. Plant 2025, 18, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Isner, J.C.; Begum, A.; Nuehse, T.; Hetherington, A.M.; Maathuis, F.J. KIN7 kinase regulates the vacuolar TPK1 K+ channel during stomatal closure. Curr. Biol. 2018, 28, 466–472.e464. [Google Scholar] [CrossRef] [PubMed]
- Lamers, J.; Zhang, Y.; van Zelm, E.; Leong, C.K.; Meyer, A.J.; de Zeeuw, T.; Verstappen, F.; Veen, M.; Deolu-Ajayi, A.O.; Gommers, C.M.; et al. Abscisic acid signaling gates salt-induced responses of plant roots. Proc. Natl. Acad. Sci. USA 2025, 122, e2406373122. [Google Scholar] [CrossRef]
- Bjursell, M.; Ahnmark, A.; Bohlooly-Y, M.; William-Olsson, L.; Rhedin, M.; Peng, X.-R.; Ploj, K.; Gerdin, A.-K.; Arnerup, G.; Elmgren, A. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 2007, 56, 583–593. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, Z.; Chan, M.T.; Wu, W.K.K. PAQR3: A novel tumor suppressor gene. Am. J. Cancer Res. 2015, 5, 2562. [Google Scholar]
- Hawk, T.E.; Piya, S.; Zadegan, S.B.; Li, P.; Rice, J.H.; Hewezi, T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. New Phytol. 2023, 239, 2335–2352. [Google Scholar] [CrossRef]
- Wang, R.; Deng, M.; Yang, C.; Yu, Q.; Zhang, L.; Zhu, Q.; Guo, X. A Qa-SNARE complex contributes to soybean cyst nematode resistance via regulation of mitochondria-mediated cell death. J. Exp. Bot. 2021, 72, 7145–7162. [Google Scholar] [CrossRef]
- Kim, T.-H.; Böhmer, M.; Hu, H.; Nishimura, N.; Schroeder, J.I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 2010, 61, 561–591. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Palta, J.A.; Liu, H.-Y.; Chen, Z.; Li, F.-M. Exogenous ABA induces osmotic adjustment, improves leaf water relations and water use efficiency, but not yield in soybean under water stress. Agronomy 2019, 9, 395. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Wang, L.; Yang, L.; Wang, R.; Li, X. miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis. PLoS ONE 2013, 8, e64770. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, T.; Zhang, Y.; Li, Y. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 175–194. [Google Scholar] [CrossRef]
- Díaz-Manzano, F.E.; Cabrera, J.; Ripoll, J.-J.; del Olmo, I.; Andrés, M.F.; Silva, A.C.; Barcala, M.; Sánchez, M.; Ruíz-Ferrer, V.; de Almeida-Engler, J.; et al. A role for the gene regulatory module miRNA172/TOE1/FT in the feeding sites induced by Meloidogyne javanica in Arabidopsis. New Phytol. 2017, 217, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, Z.; Fan, J.; Hu, C.; Yang, R.; Qi, X.; Chen, H.; Zhao, F.; Wang, S. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J. Exp. Bot. 2015, 66, 4653–4667. [Google Scholar] [CrossRef]
- Thiebaut, F.; Rojas, C.A.; Almeida, K.L.; Grativol, C.; Domiciano, G.C.; Lamb, C.R.C.; de Almeida Engler, J.; Hemerly, A.S.; Ferreira, P.C. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ. 2012, 35, 502–512. [Google Scholar] [CrossRef]
Gene ID | Rename | Number of Amino Acid | Molecular Weight (Da) | Theoretical pI | Subcellular Localization |
---|---|---|---|---|---|
Glyma.01G194900 | GmHHP1 | 380 | 43,666 | 8.62 | Plasma Membrane |
Glyma.02G207000 | GmHHP2 | 341 | 37,901 | 8.87 | Plasma Membrane |
Glyma.04G046500 | GmHHP3 | 402 | 46,154 | 8.04 | Plasma Membrane |
Glyma.04G156100 | GmHHP4 | 336 | 38,225 | 9.24 | Plasma Membrane |
Glyma.06G047200 | GmHHP5 | 402 | 46,245 | 8.26 | Plasma Membrane |
Glyma.06G223600 | GmHHP6 | 334 | 37,957 | 8.62 | Plasma Membrane |
Glyma.11G046900 | GmHHP7 | 374 | 42,825 | 8.59 | Plasma Membrane |
Glyma.13G161500 | GmHHP8 | 368 | 42,675 | 8.77 | Plasma Membrane |
Glyma.17G070900 | GmHHP9 | 340 | 37,970 | 8.5 | Plasma Membrane |
Glyma.17G109800 | GmHHP10 | 367 | 42,460 | 8.7 | Plasma Membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Qi, N.; Lei, P. Bioinformatic Identification and Expression Profiling of Heptahelical Transmembrane Protein Genes in Soybean Under Phytohormone and Nematode Stress. Biology 2025, 14, 1223. https://doi.org/10.3390/biology14091223
Kang W, Qi N, Lei P. Bioinformatic Identification and Expression Profiling of Heptahelical Transmembrane Protein Genes in Soybean Under Phytohormone and Nematode Stress. Biology. 2025; 14(9):1223. https://doi.org/10.3390/biology14091223
Chicago/Turabian StyleKang, Wenshu, Nawei Qi, and Piao Lei. 2025. "Bioinformatic Identification and Expression Profiling of Heptahelical Transmembrane Protein Genes in Soybean Under Phytohormone and Nematode Stress" Biology 14, no. 9: 1223. https://doi.org/10.3390/biology14091223
APA StyleKang, W., Qi, N., & Lei, P. (2025). Bioinformatic Identification and Expression Profiling of Heptahelical Transmembrane Protein Genes in Soybean Under Phytohormone and Nematode Stress. Biology, 14(9), 1223. https://doi.org/10.3390/biology14091223