Cross-Contamination of Foodborne Pathogens During Juice Processing
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Bacterial Suspensions
2.2. Sample Preparation
2.3. Experimental Design
2.3.1. Transfer of Foodborne Pathogens from Surfaces to Juice
2.3.2. Transfer of Foodborne Pathogens from Contaminated Fruit or Vegetable to Subsequent Batches of Juice
2.4. Data Analysis
3. Results
3.1. Transfer of Foodborne Pathogens from Surfaces to Juice
3.2. Transfer of Foodborne Pathogens from Juice Elaborated with Contaminated Produce to Subsequent Batches of Juice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today’s World. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef] [PubMed]
- Neggazi, I.; Colás-Medà, P.; Viñas, I.; Alegre, I. Microbiological Quality and Safety of Non-Treated Fresh and Squeezed Juices from Supermarkets in Lleida, Spain. Int. J. Food Sci. Technol. 2024, 59, 4716–4722. [Google Scholar] [CrossRef]
- Possas, A.; Pérez-Rodríguez, F. New Insights into Cross-Contamination of Fresh-Produce. Curr. Opin. Food Sci. 2023, 49, 100954. [Google Scholar] [CrossRef]
- Vikraman, K.S.; Muralidharan, N.P.; Kavitha, S. Fruit Juices as A Source of Infection. A Review. J. Contemp. Issues Bus. Gov. 2021, 26, 1539–1545. [Google Scholar] [CrossRef]
- Cook, K.A.; Dobbs, T.E.; Hlady, W.G.; Wells, J.G.; Barrett, T.J.; Puhr, N.D.; Lancette, G.A.; Bodager, D.W.; Toth, B.L.; Genese, C.A.; et al. Outbreak of Salmonella Serotype Hartford Infections with Unpasteurized Orange Juice. JAMA 1998, 280, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Cody, S.H.; Glynn, M.K.; Farrar, J.A.; Cairns, K.L.; Griffin, P.M.; Kobayashi, J.; Fyfe, M.; Hoffman, R.; King, A.S.; Lewis, J.H.; et al. An Outbreak of Escherichia coli O157:H7 Infection from Unpasteurized Commercial Apple Juice. Ann. Intern. Med. 1999, 130, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, E.D.; Mshar, P.A.; Fiorentino, T.R.; Dembek, Z.F.; Barrett, T.J.; Howard, R.T.; Cartter, M.L. An Outbreak of Escherichia coli O157:H7 Infections and Haemolytic Uraemic Syndrome Associated with Consumption of Unpasteurized Apple Cider. Epidemiol. Infect. 2000, 124, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Bidol, S.A.; Austin, J.L.; Berl, E.; Elson, F.; Lemaile-Williams, M.; Deasy, M.; Moll, M.E.; Rea, V.; Vojdani, J.D.; et al. Multistate Outbreak of Salmonella typhimurium and Saintpaul Infections Associated with Unpasteurized Orange Juice-United States, 2005. Clin. Infect. Dis. 2009, 48, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes Associated with Freshly Prepared Juices of Citrus and Carrots. Int. J. Food Sci. 2014, 2014, 408085. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce From 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed]
- Krug, M.; Chapin, T.; Danyluk, M.; Goodrich-Schneider, R.; Schneider, K.; Harris, L.; Worobo, R. Outbreaks of Foodborne Disease Associated with Fruit and Vegetable Juices, 1922–2019; University of Florida George A Smathers Libraries: Gainesville, FL, USA, 2020; Volume 2020. [Google Scholar]
- Olaimat, A.N.; Holley, R.A. Factors Influencing the Microbial Safety of Fresh Produce: A Review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.N.; Sodha, S.V.; Shaw, R.K.; Griffin, P.M.; Pink, D.; Hand, P.; Frankel, G. Fresh Fruit and Vegetables as Vehicles for the Transmission of Human Pathogens. Environ. Microbiol. 2010, 12, 2385–2397. [Google Scholar] [CrossRef] [PubMed]
- Iwu, C.D.; Okoh, A.I. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4407. [Google Scholar] [CrossRef] [PubMed]
- Esmael, A.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Filimban, A.A.R.; Alseghayer, M.S.; Almaneea, A.M.; Alhadlaq, M.A.; Ayubu, J.; Teklemariam, A.D. Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms 2023, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Melo, J.; Quintas, C. Minimally Processed Fruits as Vehicles for Foodborne Pathogens. AIMS Microbiol. 2023, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A Review of Recent Trends in the Development of the Microbial Safety of Fruits and Vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Jung, J.; Friedrich, L.M.; Danyluk, M.D.; Schaffner, D.W. Quantification of Transfer of Salmonella from Citrus Fruits to Peel, Edible Portion, and Gloved Hands during Hand Peeling. J. Food Prot. 2017, 80, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; He, Y.; Beuchat, L.R.; Zhang, W.; Deng, X. Glove-Mediated Transfer of Listeria monocytogenes on Fresh-Cut Cantaloupe. Food Microbiol. 2020, 88, 103396. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Han, A.; Yoon, J.H.; Lee, S.Y. Growth Evaluation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in Fresh Fruit and Vegetable Juices via Predictive Modeling. LWT 2022, 162, 113485. [Google Scholar] [CrossRef]
- Gutiérrez-del-Río, I.; Fernández, J.; Lombó, F. Plant Nutraceuticals as Antimicrobial Agents in Food Preservation: Terpenoids, Polyphenols and Thiols. Int. J. Antimicrob. Agents 2018, 52, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Linton, R.H. Fate of Escherichia coli O157: H7 and Listeria monocytogenes in Strawberry Juice and Acidified Media at Different PH Values and Temperatures. J. Food Prot. 2004, 67, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Racovita, R.C.; Stan, L.; Belc, N.; Jakasa, I.; Demirok, N.T.; Yıkmıs, S. Combined Effect of Ultrasound and Microwave Power in Tangerine Juice Processing: Bioactive Compounds, Amino Acids, Minerals, and Pathogens. Processes 2022, 10, 2100. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Valero, A.; Carrasco, E.; García, R.M.; Zurera, G. Understanding and Modelling Bacterial Transfer to Foods: A Review. Trends Food Sci. Technol. 2008, 19, 131–144. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a Freeware Tool to Assess Non-Log-Linear Microbial Survivor Curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Albert, I.; Mafart, P. A Modified Weibull Model for Bacterial Inactivation. Int. J. Food Microbiol. 2005, 100, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Muzammil, K.; Nasir, N.; Khan, M.S.; Ahmad, M.F.; Khalid, M.; Ahmad, W.; Dawria, A.; Reddy, L.K.V.; Busayli, A.M. Advancement and New Trends in Analysis of Pesticide Residues in Food: A Comprehensive Review. Plants 2022, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface Characteristics Influencing Bacterial Adhesion to Polymeric Substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef]
- Carvalho, D.; Chitolina, G.Z.; Wilsmann, D.E.; Lucca, V.; de Emery, B.D.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; de Souza Moraes, H.L.; do Nascimento, V.P. Adhesion Capacity of Salmonella Enteritidis, Escherichia coli and Campylobacter jejuni on Polystyrene, Stainless Steel, and Polyethylene Surfaces. Food Microbiol. 2023, 114, 104280. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, S.; Zhu, L.; Jaroni, D. Assessing the Cross Contamination and Transfer Rates of Salmonella enterica from Chicken to Lettuce under Different Food-Handling Scenarios. Food Microbiol. 2010, 27, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.A.; Friedrich, L.M.; Harris, L.J.; Danyluk, M.D.; Schaffner, D.W. Quantifying Transfer Rates of Salmonella and Escherichia coli O157:H7 between Fresh-Cut Produce and Common Kitchen Surfaces. J. Food Prot. 2013, 76, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Mafu, A.A.; Plumety, C.; Deschênes, L.; Goulet, J. Adhesion of Pathogenic Bacteria to Food Contact Surfaces: Influence of PH of Culture. Int. J. Microbiol. 2010, 2011, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Flessa, S.; Lusk, D.M.; Harris, L.J. Survival of Listeria monocytogenes on Fresh and Frozen Strawberries. Int. J. Food Microbiol. 2005, 101, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Chocoza, M.A.; López-Romero, J.C.; García-Galaz, A.; González-Ríos, H.; Peña-Ramos, A.; Juneja, V.K.; Pérez-Báez, A.J.; Valenzuela-Melendres, M. Modeling the Effects of Temperature and PH on Listeria monocytogenes Growth in Mexican-Style Pork Chorizo. Appl. Food Res. 2023, 3, 100336. [Google Scholar] [CrossRef]
- Bainotti, M.B.; Colás-Medà, P.; Viñas, I.; Garza, S.; Alegre, I. The Survival of Salmonella enterica Strains in Ready-to-Eat Fruit Purees under Different Storage Temperatures. Beverages 2024, 10, 17. [Google Scholar] [CrossRef]
- Nwankwo, C.C.; Bamidele, D.T. Antimicrobial and Antihelminthic Activities of Beetroot Plant. GSC Biol. Pharm. Sci. 2021, 15, 093–101. [Google Scholar] [CrossRef]
- Kumar, S.; Brooks, M.S.L. Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—A Critical Review. Food Bioprocess Technol. 2017, 11, 17–42. [Google Scholar] [CrossRef]
- Bainotti, M.B.; Colás-Medà, P.; Viñas, I.; Neggazi, I.; Alegre, I. Impact of Intrinsic Factors and Storage Temperature on Escherichia coli O157:H7, Salmonella enterica Subsp. enterica and Listeria monocytogenes Survival in Fruit Juices. Int. J. Food Microbiol. 2025, 432, 111109. [Google Scholar] [CrossRef]
- EFSA. European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef] [PubMed]
- AESAN Scientific Committee; Valero Díaz, A.; Alonso Calleja, C.; Fernández Escámez, P.; Franco Abuín, C.M.; Marín Sillué, S.; Sánchez Moragas, G. Report of the scientific Commitee of the Spanish Agency for Food Safety and Nutrition (AESAN) on the storage conditions of fruits halved at retail establishments. Rev. Del Com. Científico AESAN 2022, 35, 115–118. Available online: https://www.aesan.gob.es/AECOSAN/web/noticias_y_actualizaciones/noticias/2022/dos_nuevos_informes.htm (accessed on 7 February 2025).
- Montville, R.; Schaffner, D.W. Inoculum Size Influences Bacterial Cross Contamination between Surfaces. Appl. Env. Microbiol. 2003, 69, 7188–7193. [Google Scholar] [CrossRef] [PubMed]
- Kusumaningrum, H.D.; Riboldi, G.; Hazeleger, W.C.; Beumer, R.R. Survival of Foodborne Pathogens on Stainless Steel Surfaces and Cross-Contamination to Foods. Int. J. Food Microbiol. 2003, 85, 227–236. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Matrix | Cutting Board | Knife | Gloves |
---|---|---|---|---|
S. enterica | Strawberry | 24.17 ± 17.31 Bx | 6.24 ± 2.84 Ay | 24.68 ± 3.54 Bx |
Apple | 43.33 ± 14.85 ABx | 6.88 ± 6.98 Ay | 30.29 ± 31.91 Bxy | |
Beetroot | 70.69 ± 23.58 Ax | 7.17 ± 6.17 Ay | 70.61 ± 23.51 Ax | |
E. coli O157:H7 | Strawberry | 23.58 ± 12.90 Ax | 4.17 ± 2.92 Ay | 14.17 ± 3.74 Bxy |
Apple | 58.07 ± 59.40 Ax | 7.48 ± 3.58 Ax | 28.17 ± 19.97 Bx | |
Beetroot | 69.08 ± 32.29 Ax | 7.69 ± 2.50 Ay | 57.98 ± 16.17 Ax | |
L. monocytogenes | Strawberry | 2.03 ± 4.36 Bx | 1.27 ± 1.35 Bx | 0.04 ± 0.05 Bx |
Apple | 16.21 ± 13.68 Bx | 5.64 ± 4.04 ABxy | 2.80 ± 1.67 By | |
Beetroot | 48.85 ± 21.66 Ax | 7.87 ± 5.33 Ay | 48.85 ± 21.66 Ax |
Microorganism | Matrix | Cutting Board | Knife | Gloves |
---|---|---|---|---|
S. enterica | Strawberry | 2.51 ± 2.42 Bx | 3.86 ± 5.13 Ax | 5.22 ± 1.89 Ax |
Apple | 7.48 ± 4.32 Ax | 1.75 ± 1.73 Ax | 31.42 ± 50.90 Ax | |
Beetroot | 3.80 ± 1.85 ABx | 2.33 ± 1.55 Ax | 2.04 ± 1.35 Ax | |
E. coli O157:H7 | Strawberry | 4.16 ± 4.55 Ax | 2.32 ± 2.65 Ax | 8.88 ± 5.97 Ax |
Apple | 9.24 ± 7.83 Ax | 1.03 ± 0.71 Ax | 8.18 ± 8.49 Ax | |
Beetroot | 4.29 ± 0.56 Ax | 2.03 ± 1.17 Ay | 1.24 ± 0.49 Ay | |
L. monocytogenes | Strawberry | 0.08 ± 0.06 Bx | 0.20 ± 0.34 Bx | 4.50 ± 8.98 Ax |
Apple | 10.45 ± 8.80 Ax | 0.55 ± 0.25 ABy | 4.77 ± 2.81 Axy | |
Beetroot | 4.56 ± 1.54 ABx | 5.65 ± 6.08 Ax | 17.01 ± 28.23 Ax |
Microorganism | Matrix | Weibull Plus Tail Model | Biphasic Model |
---|---|---|---|
S. enterica | Strawberry | R2-adj = 0.709 RMSE = 0.495 | R2-adj = 0.710 RMSE = 0.495 |
Apple | R2-adj = 0.803 RMSE = 0.459 | R2-adj = 0.801 RMSE = 0.462 | |
Beetroot | R2-adj = 0.852 RMSE = 0.387 | R2-adj = 0.862 RMSE = 0.374 | |
E. coli 0157:H7 | Strawberry | R2-adj = 0.817 RMSE = 0.486 | R2-adj = 0.820 RMSE = 0.483 |
Apple | - | - | |
Beetroot | R2-adj = 0.917 RMSE = 0.333 | R2-adj = 0.922 RMSE = 0.324 | |
L. monocytogenes | Strawberry | - | - |
Apple | R2-adj = 0.649 RMSE = 0.639 | R2-adj = 0.649 RMSE = 0.638 | |
Beetroot | R2-adj = 0.904 RMSE = 0.318 | R2-adj = 0.904 RMSE = 0.318 |
Microorganism | Matrix | Weibull Plus Tail Model | Biphasic Model | |||
---|---|---|---|---|---|---|
δ | p | f | kmax1 | kmax2 | ||
S. enterica | Strawberry | 1.18 ± 0.27 | 1.32 ± 0.51 | 0.99 ± 0.01 | 2.28 ± 0.56 | 0.13 ± 0.24 |
Apple | 0.75 ± 0.25 | 0.80 ± 0.25 | 0.99 ± 0.00 | 2.61 ± 0.44 | 0.05 ± 0.22 | |
Beetroot | 0.53 ± 0.26 | 0.46 ± 0.13 | 0.98 ± 0.02 | 3.09 ± 0.63 | 0.49 ± 0.14 | |
E. coli O157:H7 | Strawberry | 1.26 ± 0.30 | 1.06 ± 0.28 | 0.99 ± 0.00 | 2.08 ± 0.39 | 0.27 ± 0.34 |
Apple | - | - | - | - | - | |
Beetroot | 0.56 ± 0.16 | 0.66 ± 0.12 | 0.99 ± 0.00 | 3.20 ± 0.39 | 0.41 ± 0.13 | |
L. monocytogenes | Strawberry | - | - | - | - | - |
Apple | 1.10 ± 0.38 | 1.03 ± 0.45 | 0.99 ± 0.01 | 2.20 ± 0.58 | 0.09 ± 0.35 | |
Beetroot | 0.55 ± 0.18 | 0.58 ± 0.12 | 0.99 ± 0.01 | 3.20 ± 0.46 | 0.37 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neggazi, I.; Colás-Medà, P.; Viñas, I.; Alegre, I. Cross-Contamination of Foodborne Pathogens During Juice Processing. Biology 2025, 14, 932. https://doi.org/10.3390/biology14080932
Neggazi I, Colás-Medà P, Viñas I, Alegre I. Cross-Contamination of Foodborne Pathogens During Juice Processing. Biology. 2025; 14(8):932. https://doi.org/10.3390/biology14080932
Chicago/Turabian StyleNeggazi, Isma, Pilar Colás-Medà, Inmaculada Viñas, and Isabel Alegre. 2025. "Cross-Contamination of Foodborne Pathogens During Juice Processing" Biology 14, no. 8: 932. https://doi.org/10.3390/biology14080932
APA StyleNeggazi, I., Colás-Medà, P., Viñas, I., & Alegre, I. (2025). Cross-Contamination of Foodborne Pathogens During Juice Processing. Biology, 14(8), 932. https://doi.org/10.3390/biology14080932