Phenotypic, Chemotaxonomic, and Genome-Based Classification of Phyllobacterium Strains: Two Proposed Novel Species, Phyllobacterium chamaecytisi sp. nov. and Phyllobacterium lublinensis sp. nov
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains Isolation
2.2. Whole-Genome Sequencing
2.3. Genome Annotation
2.4. Phylogenomic Analyses
2.5. Phenotypic Analyses
2.6. Preparation of Fatty Acid Methyl Esters (FAME)
3. Results
3.1. The Origination of Strains
3.2. Genetic Analyses
3.3. Phenotypic Analyses
3.4. Fatty Acid Porofiles of KW56T and 2063T Strains
4. Discussion
5. Conclusions
- Phyllobacterium chamaecytisi sp. nov.
- Phyllobacterium lublinensis sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knösel, D. Prüfung von bakterien auf fähigkeit zur sternbildung. Zentralblatt Bakteriol. Parasitenkd. Infekt. Hyg. II Abt. 1962, 116, 79–100. [Google Scholar]
- Knösel, D. Genus IV Phyllobacterium (Ex Knösel 1962) nom. rev. (Phyllobacterium Knösel 1962, 96). Bergey’s Man. Syst. Bacteriol. 1984, 1, 254–256. [Google Scholar]
- Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int. J. Syst. Evol. Microbiol. 2001, 51, 1619–1620. [CrossRef]
- Mergaert, J. Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int. J. Syst. Evol. Microbriol. 2002, 52, 1821–1823. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Velázquez, E.; Fernández-Santos, F.; Vizcaíno, N.; Rivas, R.; Mateos, P.F.; Martínez-Molina, E.; Igual, J.M.; Willems, A. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int. J. Syst. Evol. Microbiol. 2005, 55, 1985–1989. [Google Scholar] [CrossRef] [PubMed]
- Mantelin, S.; Fischer-Le Saux, M.; Zakhia, F.; Béna, G.; Bonneau, S.; Jeder, H.; de Lajudie, P.; Cleyet-Marel, J.-C. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Flores-Félix, J.D.; Carro, L.; Velázquez, E.; Valverde, Á.; Cerda-Castillo, E.; García-Fraile, P.; Rivas, R. Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 2013, 63, 821–826. [Google Scholar] [CrossRef]
- Sánchez, M.; Ramírez-Bahena, M.H.; Peix, A.; Lorite, M.J.; Sanjuán, J.; Velázquez, E.; Monza, J. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int. J. Syst. Evol. Microbiol. 2014, 64, 781–786. [Google Scholar] [CrossRef]
- Jiao, Y.S.; Yan, H.; Ji, Z.J.; Liu, Y.H.; Sui, X.H.; Zhang, X.X.; Wang, E.T.; Chen, W.F. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int. J. Syst. Evol. Microbiol. 2015, 65, 399–406. [Google Scholar] [PubMed]
- León-Barrios, M.; Ramírez-Bahena, M.H.; Igual, J.M.; Peix, Á.; Velázquez, E. Phyllobacterium salinisoli sp. nov., isolated from a Lotus lancerottensis root nodule in saline soil from Lanzarote. Int. J. Syst. Evol. Microbiol. 2018, 68, 1085–1089. [Google Scholar] [CrossRef]
- Safronova, V.I.; Sazanova, A.L.; Kuznetsova, I.G.; Belimov, A.A.; Andronov, E.E.; Chirak, E.R.; Popova, J.P.; Verkhozina, A.V.; Willems, A.; Tikhonovich, L.A. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. Int. J. Syst. Evol. Microbiol. 2018, 68, 1644–1651. [Google Scholar] [CrossRef]
- Liang, L.X.; Sun, Q.W.; Hui, N.; Zhang, X.X.; Li, L.B.; Liu, L. Phyllobacterium phragmitis sp. nov., an endophytic bacterium isolated from Phragmites australis rhizome in Kumtag desert. Antonie Leeuwenhoek 2019, 112, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ten, L.N.; Maeng, S.; Chang, Y.; Jung, H.Y.; Kim, M.K. Phyllobacterium pellucidum sp. nov., isolated from soil. Arch. Microbiol. 2021, 203, 2647–2652. [Google Scholar] [CrossRef] [PubMed]
- Jurado, V.; Laiz, L.; Gonzalez, J.M.; Hernandez-Marine, M.; Valens, M.; Saiz-Jimenez, C. Phyllobacterium catacumbae sp. nov., a member of the order “Rhizobiales” isolated from Roman catacombs. Int. J. Syst. Evol. Microbiol. 2005, 55, 1487–1490. [Google Scholar] [CrossRef]
- Mergaert, J.; Boley, A.; Cnockaert, M.C.; Müller, W.R.; Swings, J. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst. Appl. Microbiol. 2001, 24, 303–310. [Google Scholar] [CrossRef]
- Gonzalez-Bashan, L.E.; Lebsky, V.K.; Hernandez, J.P.; Bustillos, J.J.; Bashan, Y. Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can. J. Microbiol. 2000, 46, 653–659. [Google Scholar] [CrossRef]
- Alavi, M.; Miller, T.; Erlandson, K.; Schneider, R.; Belas, R. Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ. Microbiol. 2001, 3, 380–396. [Google Scholar] [CrossRef]
- Kaźmierczakowa, R.; Bloch-Orłowska, J.; Celka, Z.; Cwener, A.; Dajdok, Z.; Michalska-Hejduk, D.; Pawlikowski, P.; Szczęśniak, E.; Ziarnek, K. Polish Red List of Pteridophytes and Flowering Plants; Instytut Ochrony Przyrody Polskiej Akademii Nauk: Kraków, Poland, 2016. [Google Scholar]
- Włodarczyk, K.; Wdowiak-Wróbel, S.; Marek-Kozaczuk, M.; Wielbo, J. Genetic and physiological diversity of white Spanish broom (Chamaecytisus albus) endophytes. Acta Biochim. Pol. 2021, 68, 419–426. [Google Scholar] [CrossRef]
- Vincent, J. International Biological Programme. Burgess and Son, Berkshire. In A manual for the Practical Study of Root Nodule Bacteria; Blackwell Scientific Publications: Oxford, UK, 1970. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Parrello, B.; Butler, R.; Chlenski, P.; Olson, R.; Overbeek, J.; Pusch, G.D.; Vonstein, V.; Overbeek, R. A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinform. 2019, 20, 486. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genom. Sci. 2014, 9, 2. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Goloboff, P.A.; Farris, J.S.; Nixon, K.C. TNT, a free program for phylogenetic analysis. Cladistics 2008, 24, 774–786. [Google Scholar] [CrossRef]
- Pattengale, N.D.; Alipour, M.; Bininda-Emonds, O.R.P.; Moret, B.M.E.; Stamatakis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 2010, 17, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods); Version 4.0 Beta; Sinauer Associates: Sunderland, UK, 2001. [Google Scholar]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Glöckner, F.O.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Hayashi Sant’Anna, F.; Bach, E.; Porto, R.Z.; Guella, F.; Hayashi Sant’Anna, E.; Passaglia, L.M.P. Genomic metrics made easy: What to do and where to go in the new era of bacterial taxonomy. Crit. Rev. Microbiol. 2019, 45, 182–200. [Google Scholar] [CrossRef] [PubMed]
Strain | 16S rRNA Gene Sequence Similarity (%) | |
---|---|---|
2063T | KW56T | |
P. bourgognense 31-25 aT | 98.5 | 99.2 |
P. bourgognense STM 201T | 98.4 | 99.1 |
P. brassicacearum 29-15 | 99.6 | 98.8 |
P. brassicacearum STM 196T | 99.6 | 98.7 |
P. catacumbae CSC 19T | 96.7 | 98.4 |
P. endophyticum PEPV 15T | 98.8 | 98.7 |
P. ifiqiyense STM 370T | 97.4 | 99.0 |
P. leguminum ORS 1419T | 97.1 | 96.1 |
P. loti S 658T | 98.4 | 100.0 |
P. myrsinacearum IAM 13584T | 98.2 | 98.3 |
P. myrsinacearum IAM 13587T | 98.2 | 98.2 |
P. pellucidum BT 25T | 97.7 | 96.9 |
P. phragmitis 1N-3T | 97.1 | 96.9 |
P. myrsinacearum DSM 5893T | 98.3 | 98.3 |
P. salinisoli LLAN 61T | 97.2 | 97.2 |
P. sophorae CCBAU 03422T | 99.0 | 98.2 |
P. trifolii CECT 7015T | 98.4 | 100.0 |
P. trifolii PETP 02T | 98.3 | 99.9 |
P. zundukense Tri-48T | 98.9 | 99.0 |
2063T | 100.0 | 98.4 |
KW56T | 98.4 | 100.0 |
Genomic Data | Phyllobacterium chamaecytisi KW56T | Phyllobacterium lublinensis 2063T |
---|---|---|
DDBJ/EMBL/GenBank accesion number | GCA_020164455.1 | GCA_020164435.1 |
Sequence size (bp) | 6.4 Mb | 4.5 Mb |
Numer of contigs | 93 | 45 |
GC content (%) | 56 | 57.5 |
Contig N50 | 226.4 kb | 188.4 kb |
Contig L50 | 9 | 7 |
Genes | 6222 | 4399 |
Protein-coding | 5857 | 4231 |
Number of RNAs (tRNAs, rRNAs, others RNAs) | 54 | 52 |
Strain | dDDH (d4, in %) | C.I. (d4, in %) | ANIb (%) | Aligned (%) | Aligned (bp) |
---|---|---|---|---|---|
KW56 | |||||
P. bourgognense 31-25aT | 48.1 | 53.8–61.0 | 91.09 | 68.66 | 4,368,116 |
P. brassicacearum 29-15 | 23.3 | 21.0–25.7 | 79.05 | 54.96 | 3,496,502 |
P. brassicacearum STM 196T | 23.3 | 21.0–25.7 | 79.06 | 55.04 | 3,502,100 |
P. endophyticum PEPV 15T | 25.1 | 22.7–27.5 | 80.89 | 59.67 | 3,796,325 |
P. leguminum ORS 1419T | 20.5 | 18.3–22.9 | 71.72 | 25.48 | 1,621,165 |
P. pellucidum BT 25T | 20.7 | 18.5–23.1 | 76.58 | 51.76 | 3,292,876 |
P. phragmitis 1N-3T | 19.7 | 17.5–22.1 | 72.10 | 33.47 | 2,129,418 |
P. myrsinacearum DSM 5893T | 20.7 | 18.5–23.2 | 76.22 | 48.26 | 3,070,563 |
P. salinisoli LLAN 61T | 20.0 | 17.8–22.4 | 71.75 | 33.60 | 2,137,656 |
P. sophorae CCBAU 03422T | 23.1 | 20.8–25.6 | 78.91 | 59.18 | 3,765,107 |
P. trifolii CECT 7015T | 58.6 | 55.8–61.3 | 93.52 | 73.69 | 4,688,571 |
P. zundukense Tri-48T | 24.3 | 22.0–26.8 | 80.07 | 57.70 | 3,670,953 |
2063T | 21.6 | 19.3–24.0 | 77.66 | 49.23 | 3,132,251 |
2063 | |||||
P. bourgognense 31-25aT | 21.7 | 19.4–24.1 | 78.15 | 66.61 | 3,022,602 |
P. brassicacearum 29-15 | 28.3 | 25.9–30.8 | 84.08 | 75.22 | 3,413,166 |
P. brassicacearum STM 196T | 28.3 | 25.9–30.8 | 84.07 | 75.27 | 3,415,597 |
P. endophyticum PEPV 15T | 20.4 | 18.2–22.8 | 76.93 | 63.35 | 2,874,562 |
P. leguminum ORS 1419T | 20.9 | 18.6–23.3 | 72.41 | 32.16 | 1,459,421 |
P. pellucidum BT 25T | 20.9 | 18.7–23.3 | 77.39 | 66.18 | 3,002,954 |
P. phragmitis 1N-3T | 19.6 | 17.4–22.0 | 72.66 | 40.61 | 1,842,651 |
P. myrsinacearum DSM 5893T | 20.8 | 18.5–23.2 | 77.10 | 59.92 | 2,718,871 |
P. salinisoli LLAN 61T | 19.5 | 17.3–21.9 | 72.31 | 40.71 | 1,847,234 |
P. sophorae CCBAU 03422T | 22.9 | 20.6–25.4 | 79.62 | 70.79 | 3,212,284 |
P. trifolii CECT 7015T | 21.6 | 19.3–24.0 | 78.18 | 66.57 | 3,020,677 |
P. zundukense Tri-48T | 23.8 | 21.5–26.3 | 80.81 | 73.44 | 3,332,456 |
KW56T | 21.6 | 19.3–24.0 | 78.17 | 67.30 | 3,053,947 |
KW56T | 2063T | P. br. * | P. tr. * | |
---|---|---|---|---|
pH 5 | - | - | + | - |
4% NaCl | + | + | - | + |
37 °C | + | + | - | + |
α ketoglutarate | - | + | + | - |
arabitol | + | - | - | + |
DL-α-amino-n-butyrate | - | - | + | + |
L-serine | + | - | + | - |
succinate | + | - | + | + |
L-aspartate | + | - | + | + |
L-alanine | + | - | + | - |
propionate | + | + | - | - |
D-glucuronate | + | + | - | + |
D-galacturonate | + | - | - | + |
urease | + | - | + | - |
trehalose | - | + | + | + |
D-saccharic acid | + | - | - | + |
α-hydroxybutyric acid | + | - | + | + |
Methyl β-d-glucoside | - | - | + | + |
D-gluconic acid | - | - | - | + |
D-lactic acid methyl ester | - | - | + | + |
beta-ketobutyric acid | + | - | - | + |
acetic acid | + | + | - | - |
Tween 40 | + | - | - | - |
methyl pyruvate | - | - | + | + |
lactose | - | - | + | - |
dextrin | - | - | + | + |
enzyme activities | ||||
trypsin | - | + | + | - |
α-glucosidase | - | + | - | - |
Retention Time | Fatty Acid | Relative Content (%) | |
---|---|---|---|
KW56 | 2063 | ||
10.73 | 14:0 | 1 ± 0.5 | 0.5 |
12.89 | 15:0 | tr | 0 |
14.55 | 16:1 | 2 ± 1 | 1.5 ± 0.5 |
15.00 | 16:0 | 13 ± 3 | 11 ± 1 |
15.17 | 3-OH 14:0 | 5 ± 1.5 | 4 |
16.14 | 17:1 | 1 ± 0.5 | 0 |
16.67 | cyclopropyl17:0 | 2 ± 0.5 | tr |
16.94 | 17:0 | 1 | tr |
17.07 | 3-OH 15:0 | tr | tr |
18.47 | 18:1 | 6 ± 2 | 16 ± 2 |
18.84 | 18:0 | 1 | 3 ± 1.5 |
18.95 | 3-OH 16:0 | 14 ± 1 | 9 ± 0.5 |
19.01 | cyclopropyl 19:0 | 36 ± 3 | 42 ± 2 |
19.20 | unknown | 0 | 1 ± 0.5 |
19.92 | i19:1 | 3 ± 0.5 | 1 |
20.40 | a19:1 | 4 ± 0.5 | 3 ± 0.5 |
20.63 | 3-OH 17:0 | 0 | 1 |
22.31 | 3-OH 18:0 | 1 | 1 |
23.40 | 18:1Me | 7 ± 1 | 6 ± 1 |
23.76 | 2-OH 19:1 | 1 ± 0.5 | 0 |
23.91 | 11-OH 19:0 | tr | 0 |
24.15 | 21:0 | 3 ± 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wdowiak-Wróbel, S.; Włodarczyk-Ciekańska, K.; Marek-Kozaczuk, M.; Palusińska-Szysz, M.; Koper, P.; Wielbo, J. Phenotypic, Chemotaxonomic, and Genome-Based Classification of Phyllobacterium Strains: Two Proposed Novel Species, Phyllobacterium chamaecytisi sp. nov. and Phyllobacterium lublinensis sp. nov. Biology 2025, 14, 1024. https://doi.org/10.3390/biology14081024
Wdowiak-Wróbel S, Włodarczyk-Ciekańska K, Marek-Kozaczuk M, Palusińska-Szysz M, Koper P, Wielbo J. Phenotypic, Chemotaxonomic, and Genome-Based Classification of Phyllobacterium Strains: Two Proposed Novel Species, Phyllobacterium chamaecytisi sp. nov. and Phyllobacterium lublinensis sp. nov. Biology. 2025; 14(8):1024. https://doi.org/10.3390/biology14081024
Chicago/Turabian StyleWdowiak-Wróbel, Sylwia, Karolina Włodarczyk-Ciekańska, Monika Marek-Kozaczuk, Marta Palusińska-Szysz, Piotr Koper, and Jerzy Wielbo. 2025. "Phenotypic, Chemotaxonomic, and Genome-Based Classification of Phyllobacterium Strains: Two Proposed Novel Species, Phyllobacterium chamaecytisi sp. nov. and Phyllobacterium lublinensis sp. nov" Biology 14, no. 8: 1024. https://doi.org/10.3390/biology14081024
APA StyleWdowiak-Wróbel, S., Włodarczyk-Ciekańska, K., Marek-Kozaczuk, M., Palusińska-Szysz, M., Koper, P., & Wielbo, J. (2025). Phenotypic, Chemotaxonomic, and Genome-Based Classification of Phyllobacterium Strains: Two Proposed Novel Species, Phyllobacterium chamaecytisi sp. nov. and Phyllobacterium lublinensis sp. nov. Biology, 14(8), 1024. https://doi.org/10.3390/biology14081024