Trans-Scale Insights into Variability in Radiation Cancer Risk Across Tissues, Individuals, and Species
Simple Summary
Abstract
1. Introduction
2. Mechanism and Risk of Radiation Carcinogenesis
2.1. Early Radiation Actions, DNA Damage, and Repair
2.2. Mutagenesis and Other Cellular Consequences
2.3. Carcinogenesis and the Role of the Tissue Microenvironment
2.4. Mathematical Models of Carcinogenesis and Risk Expression
3. Diversity at the Cell/Tissue Scale
3.1. Diversity in the Magnitude of Radiation Cancer Risk Among Tissues
3.2. Diversity in Relative Biological Effectiveness (RBE) Among Tissues
3.3. Mechanisms of Diversity in Baseline Cancer Risk
3.3.1. Tissue Stem Cell Activity
3.3.2. Repertoire of Cancer Driver Genes/Mutations
3.3.3. Exposure
3.4. Mechanisms of Diversity in Radiation Effects
3.4.1. Radiation-Induced Mutagenesis
3.4.2. Radiation-Induced Microenvironmental Changes
3.4.3. Epigenetic Diversity
4. Diversity at the Individual Scale
4.1. Physiological Modifiers of Radiation Cancer Risk
4.1.1. Sex
4.1.2. Age at the Time of Exposure
4.1.3. Reproductive Status/History
4.1.4. Chronic Inflammation
4.2. Environmental Modifiers of Radiation Cancer Risk
4.2.1. Physical Environment
4.2.2. Chemical Environment
4.2.3. Biological Environment
4.3. Genetic Modifiers of Radiation Cancer Risk
4.3.1. Ancestry and Genetic Polymorphism
4.3.2. Animal Strain
4.3.3. Specific Genetic Variations
4.4. Mechanisms of Diversity
4.4.1. Physiological Diversity
4.4.2. Environmental Diversity
4.4.3. Genetic Diversity
5. Diversity at the Animal Species Scale
5.1. Cancer in Non-Human Animals
5.2. Diversity in Baseline Cancer Risk Among Animal Species
5.3. Diversity in Radiation Cancer Risk Among Mammals
5.4. Mechanism of Diversity
6. Perspectives
7. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
CI | Confidence interval |
DSB | Double-strand break |
EAR | Excess absolute risk |
ERR | Excess relative risk |
LET | Linear energy transfer |
RBE | Relative biological effectiveness |
RR | Relative risk |
SOBP | Spread-out Bragg peak |
References
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation: UNSCEAR 2012 Report; United Nations: New York, NY, USA, 2012.
- Harrison, J.D.; Balonov, M.; Bochud, F.; Martin, C.; Menzel, H.G.; Ortiz-Lopez, P.; Smith-Bindman, R.; Simmonds, J.R.; Wakeford, R. ICRP Publication 147: Use of Dose Quantities in Radiological Protection. Ann. ICRP 2021, 50, 9–82. [Google Scholar] [CrossRef] [PubMed]
- Mladenov, E.; Mladenova, V.; Stuschke, M.; Iliakis, G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int. J. Mol. Sci. 2023, 24, 14956. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, H.; Uehara, S.; Wilson, W.E.; Hoshi, M.; Goodhead, D.T. Track structure in radiation biology: Theory and applications. Int. J. Radiat. Biol. 1998, 73, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef]
- Murray, V.; Hardie, M.E.; Gautam, S.D. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes. 2019, 11, 8. [Google Scholar] [CrossRef]
- Satoh, Y.; Asakawa, J.I.; Nishimura, M.; Kuo, T.; Shinkai, N.; Cullings, H.M.; Minakuchi, Y.; Sese, J.; Toyoda, A.; Shimada, Y.; et al. Characteristics of induced mutations in offspring derived from irradiated mouse spermatogonia and mature oocytes. Sci. Rep. 2020, 10, 37. [Google Scholar] [CrossRef]
- Adewoye, A.B.; Lindsay, S.J.; Dubrova, Y.E.; Hurles, M.E. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat. Commun. 2015, 6, 6684. [Google Scholar] [CrossRef]
- Maruyama, T.; Fujita, Y. Cell competition in mammals–novel homeostatic machinery for embryonic development and cancer prevention. Curr. Opin. Cell Biol. 2017, 48, 106–112. [Google Scholar] [CrossRef]
- Yamauchi, S.; Takahashi, A. Cellular senescence: Mechanisms and relevance to cancer and aging. J. Biochem. 2025, 177, 163–169. [Google Scholar] [CrossRef]
- Kadhim, M.; Tuncay Cagatay, S.; Elbakrawy, E.M. Non-targeted effects of radiation: A personal perspective on the role of exosomes in an evolving paradigm. Int. J. Radiat. Biol. 2022, 98, 410–420. [Google Scholar] [CrossRef]
- Lu, Y.R.; Tian, X.; Sinclair, D.A. The Information Theory of Aging. Nat. Aging 2023, 3, 1486–1499. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 2018, 215, 1287–1299. [Google Scholar] [CrossRef]
- Shimura, T. The role of mitochondrial oxidative stress and the tumor microenvironment in radiation-related cancer. J. Radiat. Res. 2021, 62, i36–i43. [Google Scholar] [CrossRef]
- Baulch, J.E. Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: A dysfunctional menage a trois? Int. J. Radiat. Biol. 2019, 95, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Karotki, A.V.; Baverstock, K. What mechanisms/processes underlie radiation-induced genomic instability? Cell Mol. Life Sci. 2012, 69, 3351–3360. [Google Scholar] [CrossRef] [PubMed]
- Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-dose hypersensitivity: Current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [Google Scholar] [CrossRef]
- Tang, F.R.; Loke, W.K. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int. J. Radiat. Biol. 2015, 91, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Koliada, A.; Zabuga, O.; Socol, Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018, 16, 1559325818796331. [Google Scholar] [CrossRef]
- Nowell, P.C. The clonal evolution of tumor cell populations. Science 1976, 194, 23–28. [Google Scholar] [CrossRef]
- NCI. What Is Cancer? Available online: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed on 16 May 2025).
- Yizhak, K.; Aguet, F.; Kim, J.; Hess, J.M.; Kubler, K.; Grimsby, J.; Frazer, R.; Zhang, H.; Haradhvala, N.J.; Rosebrock, D.; et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 2019, 364. [Google Scholar] [CrossRef]
- IARC. World Cancer Report 2014; IARC: Lyon, France, 2014. [Google Scholar]
- He, S.; Sharpless, N.E. Senescence in Health and Disease. Cell 2017, 169, 1000–1011. [Google Scholar] [CrossRef]
- Armitage, P.; Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 1954, 8, 1–12. [Google Scholar] [CrossRef]
- Armitage, P.; Doll, R. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br. J. Cancer 1957, 11, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N. Radiation-induced increases in cancer mortality result from an earlier onset of the disease in mice and atomic bomb survivors. Int. J. Radiat. Biol. 2023, 99, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Fujimichi, Y.; Yoshida, K.; Iwasaki, T. Calculation of an Indicator for Early Death Using Atomic Bomb Survivors’ Data. J. Radiat. Prot. Res. 2022, 47, 22–29. [Google Scholar] [CrossRef]
- Little, M.P.; Deltour, I.; Richardson, S. Projection of cancer risks from the Japanese atomic bomb survivors to the England and Wales population taking into account uncertainty in risk parameters. Radiat. Environ. Biophys. 2000, 39, 241–252. [Google Scholar] [CrossRef]
- Preston, D.L.; Ron, E.; Tokuoka, S.; Funamoto, S.; Nishi, N.; Soda, M.; Mabuchi, K.; Kodama, K. Solid. cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 2007, 168, 1–64. [Google Scholar] [CrossRef]
- Sakata, R.; Preston, D.L.; Brenner, A.V.; Sugiyama, H.; Grant, E.J.; Rajaraman, P.; Sadakane, A.; Utada, M.; French, B.; Cahoon, E.K.; et al. Radiation-Related Risk of Cancers of the Upper Digestive Tract among Japanese Atomic Bomb Survivors. Radiat. Res. 2019, 192, 331–344. [Google Scholar] [CrossRef]
- Sugiyama, H.; Misumi, M.; Brenner, A.; Grant, E.J.; Sakata, R.; Sadakane, A.; Utada, M.; Preston, D.L.; Mabuchi, K.; Ozasa, K. Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958–2009. Int. J. Cancer 2020, 146, 635–645. [Google Scholar] [CrossRef]
- Sadakane, A.; French, B.; Brenner, A.V.; Preston, D.L.; Sugiyama, H.; Grant, E.J.; Sakata, R.; Utada, M.; Cahoon, E.K.; Mabuchi, K.; et al. Radiation and Risk of Liver, Biliary Tract, and Pancreatic Cancers among Atomic Bomb Survivors in Hiroshima and Nagasaki: 1958–2009. Radiat. Res. 2019, 192, 299–310. [Google Scholar] [CrossRef]
- Cahoon, E.K.; Preston, D.L.; Pierce, D.A.; Grant, E.; Brenner, A.V.; Mabuchi, K.; Utada, M.; Ozasa, K. Lung, Laryngeal and Other Respiratory Cancer Incidence among Japanese Atomic Bomb Survivors: An Updated Analysis from 1958 through 2009. Radiat. Res. 2017, 187, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, H.; Misumi, M.; Kishikawa, M.; Iseki, M.; Yonehara, S.; Hayashi, T.; Soda, M.; Tokuoka, S.; Shimizu, Y.; Sakata, R.; et al. Skin cancer incidence among atomic bomb survivors from 1958 to 1996. Radiat. Res. 2014, 181, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Brenner, A.V.; Preston, D.L.; Sakata, R.; Sugiyama, H.; de Gonzalez, A.B.; French, B.; Utada, M.; Cahoon, E.K.; Sadakane, A.; Ozasa, K.; et al. Incidence of breast cancer in the life span study of atomic bomb survivors: 1958–2009. Radiat. Res. 2018, 190, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Utada, M.; Brenner, A.V.; Preston, D.L.; Cologne, J.B.; Sakata, R.; Sugiyama, H.; Sadakane, A.; Grant, E.J.; Cahoon, E.K.; Ozasa, K.; et al. Radiation Risks of Uterine Cancer in Atomic Bomb Survivors: 1958–2009. JNCI Cancer Spectr. 2018, 2, pky081. [Google Scholar] [CrossRef]
- Utada, M.; Brenner, A.V.; Preston, D.L.; Cologne, J.B.; Sakata, R.; Sugiyama, H.; Kato, N.; Grant, E.J.; Cahoon, E.K.; Mabuchi, K.; et al. Radiation Risk of Ovarian Cancer in Atomic Bomb Survivors: 1958–2009. Radiat. Res. 2021, 195, 60–65. [Google Scholar] [CrossRef]
- Mabuchi, K.; Preston, D.L.; Brenner, A.V.; Sugiyama, H.; Utada, M.; Sakata, R.; Sadakane, A.; Grant, E.J.; French, B.; Cahoon, E.K.; et al. Risk of Prostate Cancer Incidence among Atomic Bomb Survivors: 1958–2009. Radiat. Res. 2021, 195, 66–76. [Google Scholar] [CrossRef]
- Grant, E.J.; Yamamura, M.; Brenner, A.V.; Preston, D.L.; Utada, M.; Sugiyama, H.; Sakata, R.; Mabuchi, K.; Ozasa, K. Radiation Risks for the Incidence of Kidney, Bladder and Other Urinary Tract Cancers: 1958–2009. Radiat. Res. 2021, 195, 140–148. [Google Scholar] [CrossRef]
- Brenner, A.V.; Sugiyama, H.; Preston, D.L.; Sakata, R.; French, B.; Sadakane, A.; Cahoon, E.K.; Utada, M.; Mabuchi, K.; Ozasa, K. Radiation risk of central nervous system tumors in the Life Span Study of atomic bomb survivors, 1958–2009. Eur. J. Epidemiol. 2020, 35, 591–600. [Google Scholar] [CrossRef]
- Furukawa, K.; Preston, D.; Funamoto, S.; Yonehara, S.; Ito, M.; Tokuoka, S.; Sugiyama, H.; Soda, M.; Ozasa, K.; Mabuchi, K. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int. J. Cancer 2013, 132, 1222–1226. [Google Scholar] [CrossRef]
- Hsu, W.L.; Preston, D.L.; Soda, M.; Sugiyama, H.; Funamoto, S.; Kodama, K.; Kimura, A.; Kamada, N.; Dohy, H.; Tomonaga, M.; et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat. Res. 2013, 179, 361–382. [Google Scholar] [CrossRef]
- Cancer Information Service. Cancer Statistics (Monitoring of Cancer Incidence in Japan (MCIJ)). Available online: https://ganjoho.jp/reg_stat/statistics/data/dl/index.html (accessed on 22 March 2025).
- Hori, M.; Matsuda, T.; Shibata, A.; Katanoda, K.; Sobue, T.; Nishimoto, H. Japan Cancer Surveillance Research, G. Cancer incidence and incidence rates in Japan in 2009: A study of 32 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn. J. Clin. Oncol. 2015, 45, 884–891. [Google Scholar] [CrossRef]
- Sasaki, S.; Fukuda, N. Dose-response relationship for induction of solid tumors in female B6C3F1 mice irradiated neonatally with a single dose of gamma rays. J. Radiat. Res. 1999, 40, 229–241. [Google Scholar] [CrossRef]
- Sato, T.; Matsuya, Y.; Hamada, N. Microdosimetric Modeling of Relative Biological Effectiveness for Skin Reactions: Possible Linkage Between In Vitro and In Vivo Data. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 153–162. [Google Scholar] [CrossRef]
- IARC Ionizing Radiation, Part 1: X- and Gamma (γ)-Radiation, and Neutrons; International Agency for Research on Cancer: Lyon, France, 2000.
- Trott, K.R. Special radiobiological features of second cancer risk after particle radiotherapy. Phys. Med. 2017, 42, 221–227. [Google Scholar] [CrossRef]
- Cordova, K.A.; Cullings, H.M. Assessing the Relative Biological Effectiveness of Neutrons across Organs of Varying Depth among the Atomic Bomb Survivors. Radiat. Res. 2019, 192, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Sato, T.; Funamoto, S.; Sposto, R.; Cullings, H.M.; Endo, A.; Egbert, S.D.; Kai, M. Calculations of Mean Quality Factors and Their Implications for Organ-specific Relative Biological Effectiveness (RBE) in Analysis of Radiation-related Risk in the Atomic Bomb Survivors. Radiat. Res. 2025, 203, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Koba, Y.; Hashimoto, S.; Chang, W.; Yonai, S.; Matsumoto, S.; Ishikawa, A.; Sato, T. Development of the DICOM-based Monte Carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy. Phys. Med. Biol. 2022, 67, 145002. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Ogiu, T.; Nishimura, M.; Masaoka, Y.; Kurosumi, M.; Takahashi, T.; Oguri, T.; Shoji, S.; Katoh, O. Comparison of tumorigenesis between accelerated heavy ion and X-ray in B6C3F1 mice. J. Radiat. Res. 1998, 39, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Tsuruoka, C.; Kaminishi, M.; Shinagawa, M.; Shang, Y.; Amasaki, Y.; Shimada, Y.; Kakinuma, S. High Relative Biological Effectiveness of 2 MeV Fast Neutrons for Induction of Medulloblastoma in Ptch1+/− Mice with Radiation-specific Deletion on Chromosome 13. Radiat. Res. 2021, 196, 225–234. [Google Scholar] [CrossRef]
- Tsuruoka, C.; Shinagawa, M.; Shang, Y.; Amasaki, Y.; Sunaoshi, M.; Imaoka, T.; Morioka, T.; Shimada, Y.; Kakinuma, S. Relative Biological Effectiveness of Carbon Ion Beams for Induction of Medulloblastoma with Radiation-specific Chromosome 13 Deletion in Ptch1+/− Mice. Radiat. Res. 2024, 202, 503–509. [Google Scholar] [CrossRef]
- Imaoka, T.; Nishimura, M.; Kakinuma, S.; Hatano, Y.; Ohmachi, Y.; Yoshinaga, S.; Kawano, A.; Maekawa, A.; Shimada, Y. High relative biologic effectiveness of carbon ion radiation on induction of rat mammary carcinoma and its lack of H-ras and Tp53 mutations. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 194–203. [Google Scholar] [CrossRef]
- Imaoka, T.; Nishimura, M.; Daino, K.; Kokubo, T.; Doi, K.; Iizuka, D.; Nishimura, Y.; Okutani, T.; Takabatake, M.; Kakinuma, S.; et al. Influence of age on the relative biological effectiveness of carbon ion radiation for induction of rat mammary carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, T.; Nishimura, M.; Daino, K.; Hosoki, A.; Takabatake, M.; Kokubo, T.; Doi, K.; Showler, K.; Nishimura, Y.; Moriyama, H.; et al. Age modifies the effect of 2-MeV fast neutrons on rat mammary carcinogenesis. Radiat. Res. 2017, 188, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Yamazaki, S.; Iwata, K.I.; Yamada, Y.; Morioka, T.; Daino, K.; Kaminishi, M.; Ogawa, M.; Shimada, Y.; Kakinuma, S. Lung-Cancer Risk in Mice after Exposure to Gamma Rays, Carbon Ions or Neutrons: Egfr Pathway Activation and Frequent Nuclear Abnormality. Radiat. Res. 2022, 198, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Ellender, M.; Harrison, J.D.; Meijne, E.; Huiskamp, R.; Kozlowski, R.E.; Haines, J.W.; Edwards, A.A.; Ainsbury, E.A.; Moody, J.C.; Bouffler, S.D.; et al. Intestinal tumours induced in Apc(Min/+) mice by X-rays and neutrons. Int. J. Radiat. Biol. 2011, 87, 385–399. [Google Scholar] [CrossRef]
- Suman, S.; Kumar, S.; Moon, B.H.; Strawn, S.J.; Thakor, H.; Fan, Z.; Shay, J.W.; Fornace, A.J., Jr.; Datta, K. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC(1638N/+) Mice. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 131–138. [Google Scholar] [CrossRef]
- Nakadai, T.; Nojima, K.; Kobayashi, I.; Sato, K.; Yasuda, N.; Mitani, H.; Hino, O. HZE radiation effects for hereditary renal carcinomas. Biol. Sci. Space 2004, 18, 177–178. [Google Scholar]
- Ando, K.; Koike, S.; Oohira, C.; Ogiu, T.; Yatagai, F. Tumor induction in mice locally irradiated with carbon ions: A retrospective analysis. J. Radiat. Res. 2005, 46, 185–190. [Google Scholar] [CrossRef]
- Ariyoshi, K.; Imaoka, T.; Ohmachi, Y.; Ishida, Y.; Uda, M.; Nishimura, M.; Shinagawa, M.; Yoshida, M.; Ogiu, T.; Kaminishi, M.; et al. Influence of Age on Leukemia Mortality Associated with Exposure to gamma rays and 2-MeV Fast Neutrons in Male C3H Mice. Radiat. Res. 2024, 202, 685–696. [Google Scholar] [CrossRef]
- Tomasetti, C.; Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015, 347, 78–81. [Google Scholar] [CrossRef]
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef]
- Zhu, L.; Finkelstein, D.; Gao, C.; Shi, L.; Wang, Y.; Lopez-Terrada, D.; Wang, K.; Utley, S.; Pounds, S.; Neale, G.; et al. Multi-organ Mapping of Cancer Risk. Cell 2016, 166, 1132–1146 e1137. [Google Scholar] [CrossRef]
- Martinez-Jimenez, F.; Muinos, F.; Sentis, I.; Deu-Pons, J.; Reyes-Salazar, I.; Arnedo-Pac, C.; Mularoni, L.; Pich, O.; Bonet, J.; Kranas, H.; et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 2020, 20, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Sinkala, M. Mutational landscape of cancer-driver genes across human cancers. Sci. Rep. 2023, 13, 12742. [Google Scholar] [CrossRef] [PubMed]
- Lahouel, K.; Younes, L.; Danilova, L.; Giardiello, F.M.; Hruban, R.H.; Groopman, J.; Kinzler, K.W.; Vogelstein, B.; Geman, D.; Tomasetti, C. Revisiting the tumorigenesis timeline with a data-driven generative model. Proc. Natl. Acad. Sci. USA 2020, 117, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, K. Ionizing radiation and genetic risks. II. Nature of radiation-induced mutations in experimental mammalian in vivo systems. Mutat. Res. 1991, 258, 51–73. [Google Scholar] [CrossRef]
- Youk, J.; Kwon, H.W.; Lim, J.; Kim, E.; Kim, T.; Kim, R.; Park, S.; Yi, K.; Nam, C.H.; Jeon, S.; et al. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. Cell Genom. 2024, 4, 100499. [Google Scholar] [CrossRef]
- Miyoshi-Imamura, T.; Kakinuma, S.; Kaminishi, M.; Okamoto, M.; Takabatake, T.; Nishimura, Y.; Imaoka, T.; Nishimura, M.; Murakami-Murofushi, K.; Shimada, Y. Unique characteristics of radiation-induced apoptosis in the postnatally developing small intestine and colon of mice. Radiat. Res. 2010, 173, 310–318. [Google Scholar] [CrossRef]
- Shang, Y.; Sawa, Y.; Blyth, B.J.; Tsuruoka, C.; Nogawa, H.; Shimada, Y.; Kakinuma, S. Radiation Exposure Enhances Hepatocyte Proliferation in Neonatal Mice but not in Adult Mice. Radiat. Res. 2017, 188, 235–241. [Google Scholar] [CrossRef]
- Hattori, Y.; Nagata, K.; Watanabe, R.; Yokoya, A.; Imaoka, T. Super-competition as a Novel Mechanism of the Dose-rate Effect in Radiation Carcinogenesis: A Mathematical Model Study. Radiat. Res. 2025, 203, 61–72. [Google Scholar] [CrossRef]
- Kudo, K.I.; Takabatake, M.; Nagata, K.; Nishimura, Y.; Daino, K.; Iizuka, D.; Nishimura, M.; Suzuki, K.; Kakinuma, S.; Imaoka, T. Flow Cytometry Definition of Rat Mammary Epithelial Cell Populations and Their Distinct Radiation Responses. Radiat. Res. 2020, 194, 22–37. [Google Scholar] [CrossRef]
- Nagata, K.; Nishimura, M.; Daino, K.; Nishimura, Y.; Hattori, Y.; Watanabe, R.; Iizuka, D.; Yokoya, A.; Suzuki, K.; Kakinuma, S.; et al. Luminal progenitor and mature cells are more susceptible than basal cells to radiation-induced DNA double-strand breaks in rat mammary tissue. J. Radiat. Res. 2024, 65, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Tsukada, K.; Kagawa, N.; Matsumoto, Y. Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells. J. Radiat. Res. 2019, 60, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.D.; Carlson, D.J.; Butkus, M.P.; Hawkins, R.; Friedrich, T.; Scholz, M. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med. Phys. 2018, 45, e925–e952. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, A.; Scholz, M.; Friedrich, T. Modeling Radiation-Induced Neoplastic Cell Transformation In Vitro and Tumor Induction In Vivo with the Local Effect Model. Radiat. Res. 2021, 195, 427–440. [Google Scholar] [CrossRef]
- Deng, S.; Feng, Y.; Pauklin, S. 3D chromatin architecture and transcription regulation in cancer. J. Hematol. Oncol. 2022, 15, 49. [Google Scholar] [CrossRef]
- Chan, B.; Rubinstein, M. Theory of chromatin organization maintained by active loop extrusion. Proc. Natl. Acad. Sci. USA 2023, 120, e2222078120. [Google Scholar] [CrossRef]
- Mokhtaridoost, M.; Chalmers, J.J.; Soleimanpoor, M.; McMurray, B.J.; Lato, D.F.; Nguyen, S.C.; Musienko, V.; Nash, J.O.; Espeso-Gil, S.; Ahmed, S.; et al. Inter-chromosomal contacts demarcate genome topology along a spatial gradient. Nat. Commun. 2024, 15, 9813. [Google Scholar] [CrossRef]
- Applegate, K.E.; Ruhm, W.; Wojcik, A.; Bourguignon, M.; Brenner, A.; Hamasaki, K.; Imai, T.; Imaizumi, M.; Imaoka, T.; Kakinuma, S.; et al. Individual response of humans to ionising radiation: Governing factors and importance for radiological protection. Radiat. Environ. Biophys. 2020, 59, 185–209. [Google Scholar] [CrossRef]
- Imaoka, T. Individualizing Radiation Cancer Risk: Insights from Animal Studies. Ann. ICRP 2025. accepted. [Google Scholar]
- Rajaraman, P.; Hauptmann, M.; Bouffler, S.; Wojcik, A. Human individual radiation sensitivity and prospects for prediction. Ann. ICRP 2018, 47, 126–141. [Google Scholar] [CrossRef]
- Grant, E.J.; Brenner, A.; Sugiyama, H.; Sakata, R.; Sadakane, A.; Utada, M.; Cahoon, E.K.; Milder, C.M.; Soda, M.; Cullings, H.M.; et al. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat. Res. 2017, 187, 513–537. [Google Scholar] [CrossRef]
- Chernyavskiy, P.; Edmondson, E.F.; Weil, M.M.; Little, M.P. High-energy particle beam and gamma radiation exposure, familial relatedness and cancer in mice. Br. J. Cancer 2017, 117, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, T.; Tanaka, S.; Tomita, M.; Doi, K.; Sasatani, M.; Suzuki, K.; Yamada, Y.; Kakinuma, S.; Kai, M. Human-mouse comparison of the multistage nature of radiation carcinogenesis in a mathematical model. Int. J. Cancer 2024, 155, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S. Influence of the age of mice at exposure to radiation on life-shortening and carcinogenesis. J. Radiat. Res. 1991, 32 (Suppl. S2), 73–85. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, S.A.; Saunders, W.J.; Lee, A.C.; Angleton, G.M.; Stephens, L.C.; Mallinckrodt, C.H. Non-neoplastic and neoplastic thyroid disease in beagles irradiated during prenatal and postnatal development. Radiat. Res. 1997, 147, 422–430. [Google Scholar] [CrossRef]
- Yamada, Y.; Iwata, K.I.; Blyth, B.J.; Doi, K.; Morioka, T.; Daino, K.; Nishimura, M.; Kakinuma, S.; Shimada, Y. Effect of Age at Exposure on the Incidence of Lung and Mammary Cancer after Thoracic X-Ray Irradiation in Wistar Rats. Radiat. Res. 2017, 187, 210–220. [Google Scholar] [CrossRef]
- Imaoka, T.; Nishimura, M.; Daino, K.; Kakinuma, S. Modifiers of radiation effects on breast cancer incidence revealed by a reanalysis of archival data of rat experiments. J. Radiat. Res. 2023, 64, 273–283. [Google Scholar] [CrossRef]
- Takabatake, M.; Daino, K.; Imaoka, T.; Blyth, B.J.; Kokubo, T.; Nishimura, Y.; Showler, K.; Hosoki, A.; Moriyama, H.; Nishimura, M.; et al. Differential effect of parity on rat mammary carcinogenesis after pre- or post-pubertal exposure to radiation. Sci. Rep. 2018, 8, 14325. [Google Scholar] [CrossRef]
- Bartstra, R.W.; Bentvelzen, P.A.; Zoetelief, J.; Mulder, A.H.; Broerse, J.J.; van Bekkum, D.W. Induction of mammary tumors in rats by single-dose gamma irradiation at different ages. Radiat. Res. 1998, 150, 442–450. [Google Scholar] [CrossRef]
- Bartstra, R.W.; Bentvelzen, P.A.; Zoetelief, J.; Mulder, A.H.; Broerse, J.J.; van Bekkum, D.W. The influence of estrogen treatment on induction of mammary carcinoma in rats by single-dose gamma irradiation at different ages. Radiat. Res. 1998, 150, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Lemon, H.M.; Kumar, P.F.; Peterson, C.; Rodriguez-Sierra, J.F.; Abbo, K.M. Inhibition of radiogenic mammary carcinoma in rats by estriol or tamoxifen. Cancer 1989, 63, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.B.; Mizuno, T.; Cologne, J.B.; Fukuhara, T.; Fujiwara, S.; Tokuoka, S.; Mabuchi, K. Hepatocellular carcinoma among atomic bomb survivors: Significant interaction of radiation with hepatitis C virus infections. Int. J. Cancer 2003, 103, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Eulderink, F.; van Rijssel, T.G. Cocarcinogenic action of mechanical damage and x-ray irradiation on intramandibular tissue of mice. J. Natl. Cancer Inst. 1972, 49, 821–827. [Google Scholar]
- Hirose, F.; Watanabe, H.; Takeichi, N.; Naito, Y.; Inoue, S. Effect of experimental immune atrophic gastritis on the induction of gastric carcinoma by X-irradiation in ICR mice. Gan 1976, 67, 355–364. [Google Scholar]
- Yoshida, K.; Nemoto, K.; Nishimura, M.; Seki, M. Exacerbating factors of radiation-induced myeloid leukemogenesis. Leuk. Res. 1993, 17, 437–440. [Google Scholar] [CrossRef]
- Morioka, T.; Miyoshi-Imamura, T.; Blyth, B.J.; Kaminishi, M.; Kokubo, T.; Nishimura, M.; Kito, S.; Tokairin, Y.; Tani, S.; Murakami-Murofushi, K.; et al. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice. Cancer Sci. 2014, 106, 217–226. [Google Scholar] [CrossRef]
- Shore, R.E.; Moseson, M.; Xue, X.; Tse, Y.; Harley, N.; Pasternack, B.S. Skin cancer after X-ray treatment for scalp ringworm. Radiat. Res. 2002, 157, 410–418. [Google Scholar] [CrossRef]
- Lerche, C.M.; Philipsen, P.A.; Wulf, H.C. X-rays and photocarcinogenesis in hairless mice. Arch. Dermatol. Res. 2013, 305, 529–533. [Google Scholar] [CrossRef]
- Mravec, B.; Tibensky, M. Increased cancer incidence in “cold” countries: An (un)sympathetic connection? J. Therm. Biol. 2020, 89, 102538. [Google Scholar] [CrossRef]
- Bandyopadhayaya, S.; Ford, B.; Mandal, C.C. Cold-hearted: A case for cold stress in cancer risk. J. Therm. Biol. 2020, 91, 102608. [Google Scholar] [CrossRef]
- Mello, F.W.; Scotti, F.M.; Melo, G.; Warnakulasuriya, S.; Guerra, E.N.S.; Rivero, E.R.C. Mate consumption association with upper aerodigestive tract cancers: A systematic review and meta-analysis. Oral Oncol. 2018, 82, 37–47. [Google Scholar] [CrossRef]
- Seki, T.; Yang, Y.; Sun, X.; Lim, S.; Xie, S.; Guo, Z.; Xiong, W.; Kuroda, M.; Sakaue, H.; Hosaka, K.; et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 2022, 608, 421–428. [Google Scholar] [CrossRef]
- Urano, M.; Kenton, L.A.; Kahn, J. The effect of hyperthermia on the early- and late-appearing mouse foot reactions and on radiation carcinogenesis: Part II. Effect on radiation carcinogenesis (thermal enhancement and oxygen enhancement). Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Sminia, P.; Jansen, W.; Haveman, J.; Van Dijk, J.D. Incidence of tumours in the cervical region of the rat after treatment with radiation and hyperthermia. Int. J. Radiat. Biol. 1990, 57, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Sminia, P.; van der Kracht, A.H.; Frederiks, W.M.; Jansen, W. Hyperthermia, radiation carcinogenesis and the protective potential of vitamin A and N-acetylcysteine. J. Cancer Res. Clin. Oncol. 1996, 122, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Lopez Garzon, N.A.; Pinzon-Fernandez, M.V.; Saavedra, T.J.; Nati-Castillo, H.A.; Arias-Intriago, M.; Salazar-Santoliva, C.; Izquierdo-Condoy, J.S. Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health. Int. J. Mol. Sci. 2025, 26, 3058. [Google Scholar] [CrossRef]
- Suzuki, K.; Tsuruoka, C.; Morioka, T.; Seo, H.; Ogawa, M.; Kambe, R.; Imaoka, T.; Kakinuma, S.; Takahashi, A. Combined effects of radiation and simulated microgravity on intestinal tumorigenesis in C3B6F1 Apc(Min)(/+) mice. Life Sci Space Res 2024, 41, 202–209. [Google Scholar] [CrossRef]
- Hu, A.E.; French, B.; Sakata, R.; Bhatti, P.; Bockwoldt, B.; Grant, E.J.; Phipps, A.I. The possible impact of passive smoke exposure on radiation-related risk estimates for lung cancer among women: The life span study of atomic bomb survivors. Int. J. Radiat. Biol. 2021, 97, 1548–1554. [Google Scholar] [CrossRef]
- Mauderly, J.L.; Seilkop, S.K.; Barr, E.B.; Gigliotti, A.P.; Hahn, F.F.; Hobbs, C.H.; Finch, G.L. Carcinogenic interactions between a single inhalation of 239PuO2 and chronic exposure to cigarette smoke in rats. Radiat. Res. 2010, 173, 665–676. [Google Scholar] [CrossRef]
- Skog, K.I.; Johansson, M.A.; Jagerstad, M.I. Carcinogenic heterocyclic amines in model systems and cooked foods: A review on formation, occurrence and intake. Food Chem. Toxicol. 1998, 36, 879–896. [Google Scholar] [CrossRef]
- Deng, D.; Xin, H. Formation of N-(Nitrosomethyl)urea in stomachs of experimental pigs and human volunteers given fish sauce in vivo. J. Agric. Food Chem. 2000, 48, 2495–2498. [Google Scholar] [CrossRef] [PubMed]
- Kakinuma, S.; Nishimura, M.; Amasaki, Y.; Takada, M.; Yamauchi, K.; Sudo, S.; Shang, Y.; Doi, K.; Yoshinaga, S.; Shimada, Y. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma. Mutat. Res. 2012, 737, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Habs, H.; Kunstler, K.; Schmahl, D.; Tomatis, L. Combined effects of fast-neutron irradiation and subcutaneously applied carbon tetrachloride or chloroform in C57Bl6 mice. Cancer Lett. 1983, 20, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Mitchel, R.E.; Trivedi, A. Chronic exposure to ionizing radiation as a tumor promoter in mouse skin. Radiat. Res. 1992, 129, 192–201. [Google Scholar] [CrossRef]
- Sauvaget, C.; Kasagi, F.; Waldren, C.A. Dietary factors and cancer mortality among atomic-bomb survivors. Mutat. Res. 2004, 551, 145–152. [Google Scholar] [CrossRef]
- Yoshida, K.; Inoue, T.; Nojima, K.; Hirabayashi, Y.; Sado, T. Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc. Natl. Acad. Sci. USA 1997, 94, 2615–2619. [Google Scholar] [CrossRef]
- Shang, Y.; Kakinuma, S.; Yamauchi, K.; Morioka, T.; Kokubo, T.; Tani, S.; Takabatake, T.; Kataoka, Y.; Shimada, Y. Cancer prevention by adult-onset calorie restriction after infant exposure to ionizing radiation in B6C3F1 male mice. Int. J. Cancer 2014, 135, 1038–1047. [Google Scholar] [CrossRef]
- Morioka, T.; Yamazaki, S.; Yanagihara, H.; Sunaoshi, M.; Kaminishi, M.; Kakinuma, S. Calorie Restriction Suppresses the Progression of Radiation-Induced Intestinal Tumours in C3B6F1 Apc (Min/+) Mice. Anticancer Res. 2021, 41, 1365–1375. [Google Scholar] [CrossRef]
- Inano, H.; Onoda, M.; Inafuku, N.; Kubota, M.; Kamada, Y.; Osawa, T.; Kobayashi, H.; Wakabayashi, K. Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 1999, 20, 1011–1018. [Google Scholar] [CrossRef]
- Kennedy, A.R.; Davis, J.G.; Carlton, W.; Ware, J.H. Effects of dietary antioxidant supplementation on the development of malignant lymphoma and other neoplastic lesions in mice exposed to proton or iron-ion radiation. Radiat. Res. 2008, 169, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Mian, T.A.; Theiss, J.C.; Gesell, T.F. Effect of vitamin A on lung tumorigenesis in irradiated and unirradiated strain A mice. Cancer Lett. 1984, 22, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Boltze, C.; Brabant, G.; Dralle, H.; Gerlach, R.; Roessner, A.; Hoang-Vu, C. Radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: An in vivo model of tumorigenesis in the rat. Endocrinology 2002, 143, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Squartini, F.; Bolis, G.B. Increase of radiation induced leukaemia in C57B1 female mice by infection with mammary tumour virus. Nature 1970, 227, 400–401. [Google Scholar] [CrossRef]
- Walburg, H.E., Jr.; Cosgrove, G.E.; Upton, A.C. Influence of microbial environment on development of myeloid leukemia in x-irradiated RFM mice. Int. J. Cancer 1968, 3, 150–154. [Google Scholar] [CrossRef]
- Cook, J.A.; Sowers, A.L.; Choudhuri, R.; Gadisetti, C.; Edmondson, E.F.; Gohain, S.; Krishna, M.C.; Mitchell, J.B. The effect of modulation of gut microbiome profile on radiation-induced carcinogenesis and survival. J. Radiat. Res. 2023, 64, 24–32. [Google Scholar] [CrossRef]
- Ozdemir, B.C.; Dotto, G.P. Racial Differences in Cancer Susceptibility and Survival: More Than the Color of the Skin? Trends Cancer 2017, 3, 181–197. [Google Scholar] [CrossRef]
- Best, T.; Li, D.; Skol, A.D.; Kirchhoff, T.; Jackson, S.A.; Yasui, Y.; Bhatia, S.; Strong, L.C.; Domchek, S.M.; Nathanson, K.L.; et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nat. Med. 2011, 17, 941–943. [Google Scholar] [CrossRef]
- Morton, L.M.; Sampson, J.N.; Armstrong, G.T.; Chen, T.H.; Hudson, M.M.; Karlins, E.; Dagnall, C.L.; Li, S.A.; Wilson, C.L.; Srivastava, D.K.; et al. Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer After Childhood Cancer. J. Natl. Cancer Inst. 2017, 109, djx058. [Google Scholar] [CrossRef]
- Hunter, K.W. Mouse models of cancer: Does the strain matter? Nat. Rev. Cancer 2012, 12, 144–149. [Google Scholar] [CrossRef]
- Boulton, E.; Cleary, H.; Papworth, D.; Plumb, M. Susceptibility to radiation-induced leukaemia/lymphoma is genetically separable from sensitivity to radiation-induced genomic instability. Int. J. Radiat. Biol. 2001, 77, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Imaoka, T.; Daino, K.; Nishimura, Y.; Kokubo, T.; Takabatake, M.; Kakinuma, S.; Shimada, Y. Copenhagen Rats Display Dominantly Inherited Yet Non-uniform Resistance to Spontaneous, Radiation-induced, and Chemically-induced Mammary Carcinogenesis. Anticancer Res. 2022, 42, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P.; Schaeffer, M.L.; Reulen, R.C.; Abramson, D.H.; Stovall, M.; Weathers, R.; de Vathaire, F.; Diallo, I.; Seddon, J.M.; Hawkins, M.M.; et al. Breast cancer risk after radiotherapy for heritable and non-heritable retinoblastoma: A US-UK study. Br. J. Cancer 2014, 110, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.L.; WECARE Study Collaborative Group; Concannon, P. ATM, radiation, and the risk of second primary breast cancer. Int. J. Radiat. Biol. 2017, 93, 1121–1127. [Google Scholar] [CrossRef]
- Chaussade, A.; Millot, G.; Wells, C.; Brisse, H.; Lae, M.; Savignoni, A.; Desjardins, L.; Dendale, R.; Doz, F.; Aerts, I.; et al. Correlation between RB1germline mutations and second primary malignancies in hereditary retinoblastoma patients treated with external beam radiotherapy. Eur. J. Med. Genet. 2019, 62, 217–223. [Google Scholar] [CrossRef]
- van Barele, M.; Akdeniz, D.; Heemskerk-Gerritsen, B.A.M.; Genepso; Andrieu, N.; Nogues, C.; Hebon; van Asperen, C.J.; Wevers, M.; Ausems, M.; et al. Contralateral breast cancer risk in patients with breast cancer and a germline-BRCA1/2 pathogenic variant undergoing radiation. J. Natl. Cancer Inst. 2023, 115, 1318–1328. [Google Scholar] [CrossRef]
- Carlisle, S.M.; Burchart, P.A.; Mitchel, R.E. Cancer and non-cancer risks in normal and cancer-prone Trp53 heterozygous mice exposed to high-dose radiation. Radiat. Res. 2010, 173, 40–48. [Google Scholar] [CrossRef]
- Choi, G.; Huang, B.; Pinarbasi, E.; Braunstein, S.E.; Horvai, A.E.; Kogan, S.; Bhatia, S.; Faddegon, B.; Nakamura, J.L. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms. Cancer Res. 2012, 72, 6425–6434. [Google Scholar] [CrossRef]
- Pazzaglia, S.; Mancuso, M.; Atkinson, M.J.; Tanori, M.; Rebessi, S.; Majo, V.D.; Covelli, V.; Hahn, H.; Saran, A. High incidence of medulloblastoma following X-ray-irradiation of newborn Ptc1 heterozygous mice. Oncogene 2002, 21, 7580–7584. [Google Scholar] [CrossRef]
- van der Houven van Oordt, C.W.; Smits, R.; Williamson, S.L.; Luz, A.; Khan, P.M.; Fodde, R.; van der Eb, A.J.; Breuer, M.L. Intestinal and extra-intestinal tumor multiplicities in the Apc1638N mouse model after exposure to X-rays. Carcinogenesis 1997, 18, 2197–2203. [Google Scholar] [CrossRef]
- Imaoka, T.; Okamoto, M.; Nishimura, M.; Nishimura, Y.; Ootawara, M.; Kakinuma, S.; Tokairin, Y.; Shimada, Y. Mammary tumorigenesis in ApcMin/+ mice is enhanced by X-irradiation with a characteristic age dependence. Radiat. Res. 2006, 165, 165–173. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kubota, J.; Nishimura, Y.; Nagata, K.; Nishimura, M.; Daino, K.; Ishikawa, A.; Kaneko, T.; Mashimo, T.; Kokubo, T.; et al. Brca1L63X/+ rat is a novel model of human BRCA1 deficiency displaying susceptibility to radiation-induced mammary cancer. Cancer Sci. 2022, 113, 3362–3373. [Google Scholar] [CrossRef]
- Jeng, Y.M.; Cai-Ng, S.; Li, A.; Furuta, S.; Chew, H.; Chen, P.L.; Lee, E.Y.; Lee, W.H. Brca1 heterozygous mice have shortened life span and are prone to ovarian tumorigenesis with haploinsufficiency upon ionizing irradiation. Oncogene 2007, 26, 6160–6166. [Google Scholar] [CrossRef]
- Umesako, S.; Fujisawa, K.; Iiga, S.; Mori, N.; Takahashi, M.; Hong, D.P.; Song, C.W.; Haga, S.; Imai, S.; Niwa, O.; et al. Atm heterozygous deficiency enhances development of mammary carcinomas in p53 heterozygous knockout mice. Breast Cancer Res. 2005, 7, R164–R170. [Google Scholar] [CrossRef]
- Yamamoto, M.L.; Hafer, K.; Reliene, R.; Fleming, S.; Kelly, O.; Hacke, K.; Schiestl, R.H. Effects of 1 GeV/nucleon (5)(6)Fe particles on longevity, carcinogenesis and neuromotor ability in Atm-deficient mice. Radiat. Res. 2011, 175, 231–239. [Google Scholar] [CrossRef]
- Dall, G.V.; Vieusseux, J.; Seyed-Razavi, Y.; Godde, N.; Ludford-Menting, M.; Russell, S.M.; Ashworth, A.; Anderson, R.L.; Risbridger, G.P.; Shackleton, M.; et al. Parity reduces mammary repopulating activity but does not affect mammary stem cells defined as CD24 + CD29/CD49fhi in mice. Breast Cancer Res. Treat. 2020, 183, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Prokopec, S.D.; Sun, R.X.; Yousif, F.; Schmitz, N.; Subtypes, P.T.; Clinical, T.; Boutros, P.C.; Consortium, P. Sex differences in oncogenic mutational processes. Nat. Commun. 2020, 11, 4330. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.W.; Pena-Garcia, Y.; Wang, R.J. The ‘faulty male’ hypothesis for sex-biased mutation and disease. Curr. Biol. 2023, 33, R1166–R1172. [Google Scholar] [CrossRef]
- Pazzaglia, S.; Tanori, M.; Mancuso, M.; Gessi, M.; Pasquali, E.; Leonardi, S.; Oliva, M.A.; Rebessi, S.; Di Majo, V.; Covelli, V.; et al. Two-hit model for progression of medulloblastoma preneoplasia in Patched heterozygous mice. Oncogene 2006, 25, 5575–5580. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Kakinuma, S.; Kobayashi, T.; Watanabe, F.; Iritani, R.; Tateno, K.; Nishimura, M.; Nishikawa, T.; Hino, O.; Shimada, Y. Age dependence of radiation-induced renal cell carcinomas in an Eker rat model. Cancer Sci. 2010, 101, 616–623. [Google Scholar] [CrossRef]
- Ariyoshi, K.; Takabatake, T.; Shinagawa, M.; Kadono, K.; Daino, K.; Imaoka, T.; Kakinuma, S.; Nishimura, M.; Shimada, Y. Age dependence of hematopoietic progenitor survival and chemokine family gene induction after gamma irradiation in bone marrow tissue in C3H/He mice. Radiat. Res. 2014, 181, 302–313. [Google Scholar] [CrossRef]
- Sasatani, M.; Shimura, T.; Doi, K.; Zaharieva, E.K.; Li, J.; Iizuka, D.; Etoh, S.; Sotomaru, Y.; Kamiya, K. Morphology dynamics in intestinal crypt during postnatal development affect age-dependent susceptibility to radiation-induced intestinal tumorigenesis in ApcMin/+ mice: Possible mechanisms of radiation tumorigenesis. Carcinogenesis 2023, 44, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Yasukawa-Barnes, J.; Kim, R.Y.; Gould, M.N.; Clifton, K.H. Age and radiation sensitivity of rat mammary clonogenic cells. Radiat. Res. 1994, 137, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Sunaoshi, M.; Blyth, B.J.; Shang, Y.; Tsuruoka, C.; Morioka, T.; Shinagawa, M.; Ogawa, M.; Shimada, Y.; Tachibana, A.; Iizuka, D.; et al. Post-Irradiation Thymic Regeneration in B6C3F1 Mice Is Age Dependent and Modulated by Activation of the PI3K-AKT-mTOR Pathway. Biology 2022, 11, 449. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Inoue, T.; Hirabayashi, Y.; Matsumura, T.; Nemoto, K.; Sado, T. Radiation-induced myeloid leukemia in mice under calorie restriction. Leukemia 1997, 11 (Suppl. S3), 410–412. [Google Scholar]
- Gibb, H.J.; Chen, C.W. Multistage model interpretation of additive and multiplicative carcinogenic effects. Risk Anal. 1986, 6, 167–170. [Google Scholar] [CrossRef]
- Brown, C.C.; Chu, K.C. Additive and multiplicative models and multistage carcinogenesis theory. Risk Anal. 1989, 9, 99–105. [Google Scholar] [CrossRef]
- Kodell, R.L.; Krewski, D.; Zielinski, J.M. Additive and multiplicative relative risk in the two-stage clonal expansion model of carcinogenesis. Risk Anal. 1991, 11, 483–490. [Google Scholar] [CrossRef]
- Shang, Y.; Morioka, T.; Daino, K.; Nakayama, T.; Nishimura, M.; Kakinuma, S. Ionizing radiation promotes, whereas calorie restriction suppresses, NASH and hepatocellular carcinoma in mice. Int. J. Cancer 2023, 153, 1529–1542. [Google Scholar] [CrossRef]
- Yamauchi, K.; Kakinuma, S.; Sudo, S.; Kito, S.; Ohta, Y.; Nohmi, T.; Masumura, K.; Nishimura, M.; Shimada, Y. Differential effects of low- and high-dose X-rays on N-ethyl-N-nitrosourea-induced mutagenesis in thymocytes of B6C3F1 gpt-delta mice. Mutat. Res. 2008, 640, 27–37. [Google Scholar] [CrossRef]
- Imaoka, T.; Nishimura, M.; Doi, K.; Tani, S.; Ishikawa, K.; Yamashita, S.; Ushijima, T.; Imai, T.; Shimada, Y. Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis. Int. J. Cancer 2014, 134, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Iizuka, D.; Takabatake, M.; Daino, K.; Nishimura, M.; Morioka, T.; Shimada, Y.; Kakinuma, S.; Imaoka, T. Characterization of Molecular Subtypes of Rat Mammary Cancer and Their Association With Environmental Exposures. Anticancer Res. 2024, 44, 4261–4272. [Google Scholar] [CrossRef] [PubMed]
- Daino, K.; Tsuruoka, C.; Ishikawa, A.; Kakinuma, S.; Imaoka, T. Mutational Signatures in Radiation-Induced Cancer: Review of Experimental Animal and Human Studies. Biology 2025, 11, 394. [Google Scholar]
- Ochola, D.O.; Sharif, R.; Bedford, J.S.; Keefe, T.J.; Kato, T.A.; Fallgren, C.M.; Demant, P.; Costes, S.V.; Weil, M.M. Persistence of Gamma-H2AX Foci in Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice. Radiat. Res. 2019, 191, 67–75. [Google Scholar] [CrossRef]
- Szymanska, H.; Sitarz, M.; Krysiak, E.; Piskorowska, J.; Czarnomska, A.; Skurzak, H.; Hart, A.A.; de Jong, D.; Demant, P. Genetics of susceptibility to radiation-induced lymphomas, leukemias and lung tumors studied in recombinant congenic strains. Int. J. Cancer 1999, 83, 674–678. [Google Scholar] [CrossRef]
- Sitarz, M.; Wirth-Dzieciolowska, E.; Demant, P. Loss of heterozygosity on chromosome 5 in vicinity of the telomere in gamma-radiation-induced thymic lymphomas in mice. Neoplasma 2000, 47, 148–150. [Google Scholar]
- Piskorowska, J.; Gajewska, M.; Szymanska, H.; Krysiak, E.; Quan, L.; Grygalewicz, B.; Skurzak, H.M.; Czarnomska, A.; Pienkowska-Grela, B.; Demant, P. Susceptibility loci and chromosomal abnormalities in radiation induced hematopoietic neoplasms in mice. J. Radiat. Res. 2011, 52, 147–158. [Google Scholar] [CrossRef]
- Pentreath, R.J.; Applegate, K.E.; Higley, K.A.; Peremans, K.; Natsuhori, M.; Randall, E.; Gambino, J. Radiological protection of the patient in veterinary medicine and the role of ICRP. Ann. ICRP 2020, 49, 169–181. [Google Scholar] [CrossRef]
- McAloose, D.; Newton, A.L. Wildlife cancer: A conservation perspective. Nat. Rev. Cancer 2009, 9, 517–526. [Google Scholar] [CrossRef]
- Dujon, A.M.; Ujvari, B.; Tissot, S.; Meliani, J.; Rieu, O.; Stepanskyy, N.; Hamede, R.; Tokolyi, J.; Nedelcu, A.; Thomas, F. The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species. Evol. Appl. 2024, 17, e13763. [Google Scholar] [CrossRef]
- Compton, Z.T.; Mellon, W.; Harris, V.K.; Rupp, S.; Mallo, D.; Kapsetaki, S.E.; Wilmot, M.; Kennington, R.; Noble, K.; Baciu, C.; et al. Cancer Prevalence across Vertebrates. Cancer Discov. 2025, 15, 227–244. [Google Scholar] [CrossRef]
- Higley, K.; Real, A.; Chambers, D. ICRP Publication 148: Radiation Weighting for Reference Animals and Plants. Ann. ICRP 2021, 50, 9–133. [Google Scholar] [CrossRef]
- Vincze, O.; Colchero, F.; Lemaitre, J.F.; Conde, D.A.; Pavard, S.; Bieuville, M.; Urrutia, A.O.; Ujvari, B.; Boddy, A.M.; Maley, C.C.; et al. Cancer risk across mammals. Nature 2022, 601, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Abegglen, L.M.; Caulin, A.F.; Chan, A.; Lee, K.; Robinson, R.; Campbell, M.S.; Kiso, W.K.; Schmitt, D.L.; Waddell, P.J.; Bhaskara, S.; et al. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans. JAMA 2015, 314, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Seluanov, A.; Hine, C.; Azpurua, J.; Feigenson, M.; Bozzella, M.; Mao, Z.; Catania, K.C.; Gorbunova, V. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc. Natl. Acad. Sci. USA 2009, 106, 19352–19357. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, S.; Kawamura, Y.; Oiwa, Y.; Shimizu, A.; Hachiya, T.; Bono, H.; Koya, I.; Okada, Y.; Kimura, T.; Tsuchiya, Y.; et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat. Commun. 2016, 7, 11471. [Google Scholar] [CrossRef]
- Dang, C.V. A metabolic perspective of Peto’s paradox and cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140223. [Google Scholar] [CrossRef]
- Butler, G.; Baker, J.; Amend, S.R.; Pienta, K.J.; Venditti, C. No evidence for Peto’s paradox in terrestrial vertebrates. Proc. Natl. Acad. Sci. USA 2025, 122, e2422861122. [Google Scholar] [CrossRef]
- Zander, A.; Paunesku, T.; Woloschak, G. Radiation databases and archives–examples and comparisons. Int. J. Radiat. Biol. 2019, 95, 1378–1389. [Google Scholar] [CrossRef]
- Schofield, P.N.; Kulka, U.; Tapio, S.; Grosche, B. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int. J. Radiat. Biol. 2019, 95, 861–878. [Google Scholar] [CrossRef]
- Morioka, T.; Blyth, B.J.; Imaoka, T.; Nishimura, M.; Takeshita, H.; Shimomura, T.; Ohtake, J.; Ishida, A.; Schofield, P.; Grosche, B.; et al. Establishing the Japan-StoreHouse of Animal Radiobiology Experiments (J-SHARE), a large-scale necropsy and histopathology archive providing international access to important radiobiology data. Int. J. Radiat. Biol. 2019, 95, 1372–1377. [Google Scholar] [CrossRef]
- Hulse, E.V. Tumour incidence and longevity in neutron and gammairradiated rabbits, with an assessment of r.b.e. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1980, 37, 633–652. [Google Scholar] [CrossRef] [PubMed]
- Hollander, C.F.; Zurcher, C.; Broerse, J.J. Tumorigenesis in high-dose total body irradiated rhesus monkeys—A life span study. Toxicol. Pathol. 2003, 31, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Trentin, J.J. Spontaneous and radiation-induced oncogenesis in hamsters. Fed. Proc. 1978, 37, 2084–2086. [Google Scholar] [PubMed]
- Stearner, S.P.; Christian, E.J. Late effects of ionizing radiations in the chicken: Survival, body weight, and pathology. Radiat. Res. 1972, 52, 179–196. [Google Scholar] [CrossRef]
- Dutta, B.; Asami, T.; Imatomi, T.; Igarashi, K.; Nagata, K.; Watanabe-Asaka, T.; Yasuda, T.; Oda, S.; Shartl, M.; Mitani, H. Strain difference in transgene-induced tumorigenesis and suppressive effect of ionizing radiation. J. Radiat. Res. 2021, 62, 12–24. [Google Scholar] [CrossRef]
- Bickleman, T.G. Radiation-induced melanoma in Drosophila. Proc. Penn. Acad. Sci. 1978, 52, 31–33. [Google Scholar]
- Storer, J.B.; Mitchell, T.J.; Fry, R.J. Extrapolation of the relative risk of radiogenic neoplasms across mouse strains and to man. Radiat. Res. 1988, 114, 331–353. [Google Scholar] [CrossRef]
- Carnes, B.A.; Grahn, D.; Hoel, D. Mortality of atomic bomb survivors predicted from laboratory animals. Radiat. Res. 2003, 160, 159–167. [Google Scholar] [CrossRef]
- Ozasa, K.; Shimizu, Y.; Suyama, A.; Kasagi, F.; Soda, M.; Grant, E.J.; Sakata, R.; Sugiyama, H.; Kodama, K. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: An overview of cancer and noncancer diseases. Radiat. Res. 2012, 177, 229–243. [Google Scholar] [CrossRef]
- Matsuda, Y.; Uchimura, A.; Satoh, Y.; Kato, N.; Toshishige, M.; Kajimura, J.; Hamasaki, K.; Yoshida, K.; Hayashi, T.; Noda, A.; et al. Spectra and characteristics of somatic mutations induced by ionizing radiation in hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 2023, 120, e2216550120. [Google Scholar] [CrossRef]
- Imaoka, T.; Ishii, N.; Kawaguchi, I.; Homma-Takeda, S.; Doi, K.; Daino, K.; Nakanishi, I.; Tagami, K.; Kokubo, T.; Morioka, T.; et al. Biological measures to minimize the risk of radiotherapy-associated second cancer: A research perspective. Int. J. Radiat. Biol. 2016, 92, 289–301. [Google Scholar] [CrossRef]
- Macdonald, C.R.; Laverock, M.J. Radiation exposure and dose to small mammals in radon-rich soils. Arch. Environ. Contam. Toxicol. 1998, 35, 109–120. [Google Scholar] [CrossRef]
Tissue | Neutrons a | Carbon Ions | ||||
---|---|---|---|---|---|---|
Energy (MeV) | Dose (Gy) | RBE | Beam type | Dose (Gy) | RBE | |
All solid | 3.1 | 0.13–1 | 5–8 | SOBP | 0.43 | 1–12 [53] |
1 and 2.5 | 1.8–5.5 | 3–4 | ||||
Brain | 2 | 0.024–0.49 | 7.1–21.5 b [54] | Plateau | 0–0.5 | 4.1–4.3 b [55] |
Breast | — | 0.001 | 33 | SOBP Plateau | 0–2.0 0–2.0 | 2–10 [56] 0.2–2.8 b [57] |
0.5 | 0.001 | 15 | ||||
2.43 | 0.001 | 100 | ||||
2 | 0.049–0.97 | 7.5–26.3 b [58] | ||||
Lung | — | 0.001 | 19, 23–24 | Plateau | 0–4.0 | 1.1, 2.6 c [59] |
1.6–2.1 | 0.016–0.1 | 30–50 | ||||
— | 0.1–0.25 | 25–40 | ||||
7.5 | <1 | 4.5, 7.4 c | ||||
2 | 0–0.97 | 4.8, 4.6 c [59] | ||||
Liver | 0.4 | 0.09–0.17 | 13–28 b | — | — | — |
2.13 | 0–2.0 | 15, 2.5 c | ||||
Small intestine | — | 0.5–1.0 | 2–8 [60] | Plateau | 0.1–2.0 | 1.4–3.7 [61] |
Colon | — | — | — | Plateau | 0.1–2.0 | 3.3–8 [61] |
Kidney | — | — | — | Plateau | 0.4 | 1.1 [62] |
Soft tissue | — | — | — | SOBP | 5–65 d | 2.2 [63] |
Bone marrow | 1 and 5 | 0.001 | 1.8 | |||
— | 0.001 | 2.8, 13 | ||||
0.4 | 0–0.4 | 2.3 | ||||
2 | 0–0.97 | 2.1 [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imaoka, T. Trans-Scale Insights into Variability in Radiation Cancer Risk Across Tissues, Individuals, and Species. Biology 2025, 14, 1025. https://doi.org/10.3390/biology14081025
Imaoka T. Trans-Scale Insights into Variability in Radiation Cancer Risk Across Tissues, Individuals, and Species. Biology. 2025; 14(8):1025. https://doi.org/10.3390/biology14081025
Chicago/Turabian StyleImaoka, Tatsuhiko. 2025. "Trans-Scale Insights into Variability in Radiation Cancer Risk Across Tissues, Individuals, and Species" Biology 14, no. 8: 1025. https://doi.org/10.3390/biology14081025
APA StyleImaoka, T. (2025). Trans-Scale Insights into Variability in Radiation Cancer Risk Across Tissues, Individuals, and Species. Biology, 14(8), 1025. https://doi.org/10.3390/biology14081025