Bacterial Community Changes in Early-Stage Engineering Simulation of Red Mud/Phosphogypsum-Based Artificial Soil Vegetation Restoration
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Engineering Simulation of Artificial Soil Vegetation Restoration
2.2. Sample Collection and Determination
2.3. Data Analysis
3. Results
3.1. Changes in Composition of Bacterial Communities in the Artificial Soil Plots
3.2. Changes in Bacterial α-Diversity in the Artificial Soil Plots
3.3. Changes in Bacterial β-Diversity in the Artificial Soil Plots
3.4. Correlation Between Bacterial Communities and Environmental Factors in the Artificial Soil Plots
3.5. Changes in Bacterial Functional Abundance in the Artificial Soil Plots
4. Discussion
4.1. Development of Red Mud/Phosphogypsum-Based Artificial Soils in Vegetation Restoration
4.2. Changes in Bacterial Communities in Early-Stage Artificial Soil Vegetation Restoration
4.3. Changing Relationships Between Bacterial Communities and Environmental Factors in Early-Stage Artificial Soil Vegetation Restoration
4.4. Changes in Bacterial Function in Early-Stage Artificial Soil Vegetation Restoration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anagnostopoulos, A.; Navarro, M.E.; Stefanidou, M.; Ding, Y.; Gaidajis, G. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications. J. Hazard. Mater. 2021, 413, 125407. [Google Scholar] [CrossRef]
- Lv, X.; Xiang, L. Investigating the novel process for thorough removal of eutectic phosphate impurities from phosphogypsum. J. Mater. Res. Technol. 2023, 24, 5980–5990. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, Z.Y.; Huang, D.M.; Huang, Q.C.; Chen, Y.; Zhang, H.; Shui, Z.H. Recovery and recycling core of phosphogypsum: Characteristic hazardous elements risk assessment and analysis. Process Saf. Environ. Prot. 2023, 170, 738–756. [Google Scholar] [CrossRef]
- Cui, W.; Cui, Q.; Dong, X.; Liu, J.; Song, K.; Xie, M.; Yao, X. Current research status and emerging trends in utilization of red mud resources: A study based on bibliometric network analysis. Constr. Build. Mater. 2024, 442, 137605. [Google Scholar] [CrossRef]
- Kutepova, N.A.; Korobanova, T.N. Features of phosphogypsym dump deformation development. Min. Sci. Technol. 2017, 1, 31–39. [Google Scholar] [CrossRef]
- Chang, S.; Dong, X.; Liu, X.; Xu, X.; Zhang, H.; Huang, Y. Study on the characteristics and evolution laws of seepage damage in red mud tailings dams. Water 2024, 16, 1487. [Google Scholar] [CrossRef]
- Paramguru, R.K.; Rath, P.C.; Misra, V.N. Trends in red mud utilization–A review. Miner. Process. Extr. Metall. Rev. 2004, 26, 1–29. [Google Scholar] [CrossRef]
- Akfas, F.; Elghali, A.; Aboulaich, A.; Munoz, M.; Benzaazoua, M.; Bodinier, J.L. Exploring the potential reuse of phosphogypsum: A waste or a resource? Sci. Total Environ. 2024, 908, 168196. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, K.; Chen, J. Research on strength characteristics and mechanism of cement stabilized phosphogypsum materials under dry and wet cycles. Sci. Rep. 2025, 15, 9996. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Chen, L.; Xue, B.; Wang, G.; Zhu, G.; Gou, W.; Yang, D. Potential of artificial soil preparation for vegetation restoration using red mud and phosphogypsum. Sci. Total Environ. 2024, 941, 173553. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Xue, B.; Chen, L.; Wang, G.; Wang, J.; Wan, H.; Lin, X.; Zhu, G. Simulation of red mud/phosphogypsum-based artificial soil engineering applications in vegetation restoration and ecological reconstruction. Sci. Total Environ. 2024, 951, 175656. [Google Scholar] [CrossRef]
- Bouskill, N.J.; Mekonnen, Z.; Zhu, Q.; Grant, R.; Riley, W.J. Microbial contribution to post-fire tundra ecosystem recovery over the 21st century. Commun. Earth Environ. 2022, 3, 26. [Google Scholar] [CrossRef]
- Maurya, N.; Sharma, A.; Sundaram, S. Enhancement of soil fertility utilizing cyanobacteria-bacteria consortia. J. Appl. Phycol. 2025, 37, 1059–1074. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, L.; Wang, Y.; Huang, Z. Impact of ecological restoration on the physicochemical properties and bacterial communities in alpine mining area soils. Microorganisms 2024, 12, 41. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Zhang, L.; Deng, F.; Zhao, Z.; Xue, B.; Wang, J. Characteristics of fungal communities in red mud/phosphogypsum-based artificial soils. Biology 2025, 14, 285. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, F.; Wu, Q.; Fornara, D.A.; Heděnec, P.; Peng, Y.; Zhu, G.; Zhao, Z.; Yue, K. Vegetation restoration effects on soil carbon and nutrient concentrations and enzymatic activities in post-mining lands are mediated by mine type, climate, and former soil properties. Sci. Total Environ. 2023, 879, 163059. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.A.; Pearce, D.A. Bacterial colonisation: From airborne dispersal to integration within the soil community. Front. Microbiol. 2022, 13, 782789. [Google Scholar] [CrossRef]
- Balyan, G.; Pandey, A.K. Root exudates, the warrior of plant life: Revolution below the ground. S. Afr. J. Bot. 2024, 164, 280–287. [Google Scholar] [CrossRef]
- Hermans, S.M.; Buckley, H.L.; Case, B.S.; Curran-Cournane, F.; Taylor, M.; Lear, G. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 2017, 83, e02826-16. [Google Scholar] [CrossRef]
- Maleque, M.A.; Ishii, H.T.; Maeto, K. The use of arthropods as indicators of ecosystem integrity in forest management. J. For. 2006, 104, 113–117. [Google Scholar] [CrossRef]
- Liu, S.; García-Palacios, P.; Tedersoo, L.; Guirado, E.; van der Heijden, M.G.A.; Wagg, C.; Chen, D.; Wang, Q.; Wang, J.; Singh, B.K.; et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 2022, 6, 900–909. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, X.; Ran, W.; Zhao, Z.; Su, D.; Song, Y. The ecological restoration strategies in terrestrial ecosystems were reviewed: A new trend based on soil microbiomics. Ecol. Evol. 2025, 15, e70994. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, S.; Zhong, Q.; Gong, G.; Wang, G.; Guo, X.; Xu, X. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total Environ. 2020, 715, 136904. [Google Scholar] [CrossRef]
- Evans, D.L.; Quinton, J.N.; Tye, A.M.; Rodés, Á.; Rushton, J.C.; Davies, J.A.C.; Mudd, S.M. How the composition of sandstone matrices affects rates of soil formation. Geoderma 2021, 401, 115337. [Google Scholar] [CrossRef]
- Chen, T.; Qu, N.; Wang, J.; Liu, Y.; Feng, J.; Zhang, S.; Xu, C.; Cao, Z.; Pan, J.; Li, C. Effects of different ecological restoration methods on the soil bacterial community structure of a light rare earth tailings pond. Plant Soil 2024, 497, 43–59. [Google Scholar] [CrossRef]
- Singh, B.K.; Dawson, L.A.; Macdonald, C.A.; Buckland, S.M. Impact of biotic and abiotic interaction on soil microbial communities and functions: A field study. Appl. Soil Ecol. 2009, 41, 239–248. [Google Scholar] [CrossRef]
- Ankit; Prakash, D.; Sheoran, S.; Yadav, P.K.; Kumari, M.; Kumar, S.; Prajapat, K.; Alamri, S.; Siddiqui, M.H.; Gupta, R.K. Different cropping systems impact soil health by improving soil biological activities and total organic carbon content. Arch. Agron. Soil Sci. 2024, 70, 1–24. [Google Scholar] [CrossRef]
- Armbruster, M.; Goodall, T.; Hirsch, P.R.; Ostle, N.; Puissant, J.; Fagan, K.C.; Pywell, R.F.; Griffiths, R.I. Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. Eur. J. Soil Sci. 2021, 72, 2430–2444. [Google Scholar] [CrossRef]
- Wang, X.; Pan, S.; Zhang, Z.; Lin, X.; Zhang, Y.; Chen, S. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. Bioresour. Technol. 2017, 224, 397–404. [Google Scholar] [CrossRef]
- Huang, W.Y.; Ngo, H.H.; Lin, C.; Vu, C.T.; Kaewlaoyoong, A.; Boonsong, T.; Tran, H.T.; Bui, X.T.; Vo, T.D.H.; Chen, J.R. Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community. Sci. Total Environ. 2019, 660, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wang, X.; Zhang, N.; Li, B. Biogeographical patterns and assembly of bacterial communities in saline soils of Northeast China. Microorganisms 2022, 10, 1787. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.; Wang, X.; Ge, J.; Cai, B. Elaeagnus angustifolia can improve salt-alkali soil and the health level of soil: Emphasizing the driving role of core microbial communities. J. Environ. Manag. 2022, 305, 114401. [Google Scholar] [CrossRef] [PubMed]
- Emenike, C.U.; Agamuthu, P.; Fauziah, S.H.; Omo-Okoro, P.N.; Jayanthi, B. Enhanced bioremediation of metal-contaminated soil by consortia of Proteobacteria. Water Air Soil Pollut. 2023, 234, 731. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, H.; Sun, X.; Wang, H.; Sun, Y.; Liang, Y.; Wang, D. Biochar and wood vinegar altered the composition of inorganic phosphorus bacteria community in saline-alkali soils and promoted the bioavailability of phosphorus. J. Environ. Manag. 2024, 370, 122501. [Google Scholar] [CrossRef]
- Hou, M.; Yang, F.; Song, L.; Hu, R.; Liu, Q.; Zhang, H.; Qi, Y. Enhanced PE degradation and diversity of bacterial biofilm by applying organic fertilizer inoculated with mixed degrading bacteria. Process Biochem. 2025, 151, 137–145. [Google Scholar] [CrossRef]
- Singh, J.S.; Gupta, V.K. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Sci. Total Environ. 2018, 634, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Hautier, Y.; Pellkofer, S.; Banerjee, S.; Schmid, B.; van der Heijden, M.G.A. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. eLife 2021, 10, e62813. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Z.; Zhang, L.; Wan, H.; Deng, F.; Zhao, Z.; Wang, J. Characteristics of bacterial community structure and function in artificial soil prepared using red mud and phosphogypsum. Microorganisms 2024, 12, 1886. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Han, S.; Wang, A. High-throughput sequencing reveals soil bacterial community structure and their interactions with environmental factors of the grassland fairy ring. Environ. Microbiol. Rep. 2022, 14, 479–493. [Google Scholar] [CrossRef]
- Yang, X.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, C.; Zhang, J.; Wang, Z.; Feng, Y. Changes in nutrient-regulated soil microbial communities in soils concomitant with gGrassland restoration in the alpine mining region of the Qilian Mountains. Agronomy 2023, 13, 3052. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Qi, X.; Zeng, Y.; Guo, X.; Zhuang, G.; Ma, A. Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow. Front. Microbiol. 2023, 14, 1136187. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, G. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai–Tibet Plateau. Sci. Rep. 2022, 12, 3365. [Google Scholar] [CrossRef]
- Pérez-Valera, E.; Goberna, M.; Verdú, M. Phylogenetic structure of soil bacterial communities predicts ecosystem functioning. FEMS Microbiol. Ecol. 2015, 91, fiv031. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Solhtalab, M.; Thongsomboon, W.; Aristilde, L. Strategies of organic phosphorus recycling by soil bacteria: Acquisition, metabolism, and regulation. Environ. Microbiol. Rep. 2022, 14, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Tashkandi, M.A.; Jala, R.S.; Baz, L.; Refai, M.Y.; Shami, A.; Ashy, R.A.; Abuauf, H.W.; Alshehrei, F.M.; Alshubaily, F.A.; Barqawi, A.A.; et al. Functional interpretation of cross-talking pathways with emphasis on amino acid metabolism in rhizosphere microbiome of the wild plant Moringa oleifera. Agriculture 2022, 12, 1814. [Google Scholar] [CrossRef]
- Xue, S.; Li, X.; Fu, Y.; Zhu, P.; Liu, J.; Kou, W.; Huang, D.; Gao, Y.; Wang, X. New insights into organic carbon mineralization: Combining soil organic carbon fractions, soil bacterial composition, microbial metabolic potential, and soil metabolites. Soil Tillage Res. 2024, 244, 106243. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.; Bao, Z.; Zhang, X.; Yao, S.; Li, Y.; Li, G.; Wang, D.; Li, Q.; Yuan, J. Plant-derived biochar amendment for compost maturity improvement and gaseous emission reduction in food waste composting: Insight from bacterial community and functions. Chemosphere 2024, 352, 141457. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Rathikannu, S.; T, J.J.; Bhagat, P.S.; Singh, V.V.; Lakra, A.R. Dynamics of microbial ecology, particulate matter, and bacterial aerosols in agriculture: Implications for health and sustainability. Water Air Soil Pollut. 2024, 235, 763. [Google Scholar] [CrossRef]
- Rui, R.; Hei, J.; Li, Y.; Farraj, D.A.A.; Noor, F.; Wang, S.; He, X. Effects of humic acid fertilizer on the growth and microbial network stability of Panax notoginseng from the forest understorey. Sci. Rep. 2024, 14, 17816. [Google Scholar] [CrossRef]
- Hayatsu, M.; Katsuyama, C.; Tago, K. Overview of recent researches on nitrifying microorganisms in soil. Soil Sci. Plant Nutr. 2021, 67, 619–632. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Z.; Kang, F.; Liu, B.; Xu, J.; Fang, X.; Liu, L.; Fa, K. Noteworthy roles of autotrophic carbon fixation in the soil of a semiarid farmland. Pedosphere 2025, in press. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Hanif, A.; Khan, M.Y.; Waqas, M.R.; Ahmad, Z.; Ashraf, M.R.; Naveed, M. Elemental sulphur with sulphur oxidizing bacteria enhances phosphorus availability and improves growth and yield of wheat in calcareous soil. Arch. Agron. Soil Sci. 2023, 69, 1494–1502. [Google Scholar] [CrossRef]
- Tunay, D.; Ozkaya, B. Biological sulphur production potential of local sulphur oxidising bacteria culture and Thioalkalivibrio versutus AL2 in haloalkaliphilic conditions. Int. J. Glob. Warm. 2024, 32, 309–321. [Google Scholar] [CrossRef]
- Miransari, M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl. Microbiol. Biotechnol. 2011, 89, 917–930. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Zhu, R.; Chen, N.; Ding, L.; Chen, C. Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environ. Microbiol. Rep. 2021, 13, 411–424. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X.; Tian, Z.; Shao, X. Analysis on characteristics of vegetation and soil bacterial community under 20 years’ restoration of different tree species: A case study of the Qinling Mountains. Forests 2021, 12, 562. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Afzal, M.Y.; Das, B.K.; Valappil, V.T.; Scaria, J.; Brözel, V.S. Root exudate compounds change the bacterial community in bulk soil. Rhizosphere 2024, 30, 100885. [Google Scholar] [CrossRef]
- Shehzad, K.; Tu, S.; Majeed, M.Z.; Lei, B.; Zhang, J. Arthropods in soil reclamation and bioremediation: Functional roles, mechanisms and future perspective. J. Environ. Manag. 2024, 370, 122820. [Google Scholar] [CrossRef] [PubMed]
Name | Red Mud (%) | Phosphogypsum (%) | Distillers Grain (%) | Rice Hull (%) | Bentonite (%) | Polyacrylamide (%) |
---|---|---|---|---|---|---|
DK | 53.78 | 35.86 | / | 8.96 | 1.34 | 5.38 × 10−2 |
JZ | 49.36 | 32.91 | 16.45 | / | 1.23 | 4.52 × 10−2 |
Name | Sobs | Shannon (×10−1) | Simpson (×10−3) | Ace | Chao | Pielou_e (×10−2) | Coverage (%) |
---|---|---|---|---|---|---|---|
DK-30d | 1057.6 ± 78.8 c | 50.2 ± 2.6 c | 18.9 ± 5.9 b | 1416.8 ± 81.3 c | 1422.6 ± 95.4 c | 75.7 ± 3.0 c | 98.8 ± 0.0 b |
DK-150d | 2360.2 ± 217.4 a | 63.6 ± 0.3 a | 6.3 ± 0.8 d | 3126.5 ± 507.4 a | 3109.4 ± 483.2 a | 84.2 ± 1.3 a | 97.4 ± 0.7 c |
JZ-30d | 620.6 ± 11.3 d | 43.6 ± 0.7 d | 30.7 ± 3.2 a | 812.5 ± 14.9 d | 801.2 ± 35.0 d | 68.4 ± 1.0 d | 99.4 ± 0.0 a |
JZ-150d | 2052.0 ± 54.9 b | 59.8 ± 0.9 b | 10.9 ± 2.1 c | 2766.9 ± 89.7 b | 2763.4 ± 118.6 b | 77.1 ± 1.0 b | 97.6 ± 0.1 c |
Name | pH | WH2O (%) | OM (%) | CEC (cmol/kg) | TN (mg/kg) |
DK-30d | 9.04 ± 0.02 a | 34.3 ± 1.4 ab | 6.3 ± 0.3 a | 9.2 ± 0.1 a | 337.1 ± 77.6 c |
DK-150d | 8.29 ± 0.04 b | 32.2 ± 0.5 b | 6.0 ± 0.1 b | 8.6 ± 0.7 a | 215.3 ± 17.3 d |
JZ-30d | 8.29 ± 0.01 b | 34.9 ± 1.4 a | 4.8 ± 0.2 c | 7.2 ± 0.2 b | 960.9 ± 44.5 a |
JZ-150d | 7.61 ± 0.02 c | 29.2 ± 1.4 c | 3.4 ± 0.1 d | 8.5 ± 0.5 a | 631.9 ± 66.7 b |
Name | AN (mg/kg) | TP (mg/kg) | AP (mg/kg) | TK (g/kg) | AK (mg/kg) |
DK-30d | 100.9 ± 14.3 b | 2273.1 ± 820.0 a | 259.5 ± 3.7 a | 65.0 ± 17.5 a | 12.0 ± 0.3 a |
DK-150d | 100.9 ± 14.4 b | 1873.9 ± 21.6 ab | 237.7 ± 15.0 a | 35.1 ± 2.9 b | 10.2 ± 0.4 ab |
JZ-30d | 153.7 ± 8.2 a | 2510.5 ± 168.8 a | 232.6 ± 20.9 a | 72.3 ± 7.7 a | 11.1 ± 1.9 a |
JZ-150d | 120.0 ± 8.5 b | 1379.2 ± 43.8 b | 194.3 ± 17.4 b | 34.8 ± 6.1 b | 8.5 ± 0.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xue, B.; Wan, H.; Zhang, L.; Yang, Z.; Wang, J.; Wang, L.; Lin, X. Bacterial Community Changes in Early-Stage Engineering Simulation of Red Mud/Phosphogypsum-Based Artificial Soil Vegetation Restoration. Biology 2025, 14, 1020. https://doi.org/10.3390/biology14081020
Liu Y, Xue B, Wan H, Zhang L, Yang Z, Wang J, Wang L, Lin X. Bacterial Community Changes in Early-Stage Engineering Simulation of Red Mud/Phosphogypsum-Based Artificial Soil Vegetation Restoration. Biology. 2025; 14(8):1020. https://doi.org/10.3390/biology14081020
Chicago/Turabian StyleLiu, Yong, Binbin Xue, Hefeng Wan, Lishuai Zhang, Zhi Yang, Jingfu Wang, Lirong Wang, and Xiaohong Lin. 2025. "Bacterial Community Changes in Early-Stage Engineering Simulation of Red Mud/Phosphogypsum-Based Artificial Soil Vegetation Restoration" Biology 14, no. 8: 1020. https://doi.org/10.3390/biology14081020
APA StyleLiu, Y., Xue, B., Wan, H., Zhang, L., Yang, Z., Wang, J., Wang, L., & Lin, X. (2025). Bacterial Community Changes in Early-Stage Engineering Simulation of Red Mud/Phosphogypsum-Based Artificial Soil Vegetation Restoration. Biology, 14(8), 1020. https://doi.org/10.3390/biology14081020