Effects of Probiotic-Fermented Corn Wet Distillers Grains on the Growth Performance, Carcass Characteristics, and Heavy Metal Residue Levels of Finishing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Processing of Fermented Alcohol Byproducts for Incorporation in Animal Diets
2.2. Feed and Animals
2.3. Growth Performance
2.4. Measurements of Serum Hormone Levels
2.5. Carcass Traits
2.6. Determination of Heavy-Metal Residues
2.7. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Slaughter Performance
3.3. Serum Biochemical Parameters
3.4. Heavy Metal Residue
4. Discussion
5. Conclusions
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FCWDGs | Fermented corn wet distillers grains. |
ADG | Average daily gain. |
DP | Dressing percentage. |
BF | Backfat thickness. |
LMD | Loin muscle depth. |
LMP | Lean meat percentage. |
MDA | Malonaldehyde. |
T-AOC | Total antioxidative capacity. |
SOD | Superoxide dismutase. |
GSH-Px | Glutathione peroxidase. |
CKK | Cholecystokinin. |
SCT | Secretin. |
MTL | Motilin. |
As | Arsenic. |
Pb | Lead. |
Cu | Copper. |
Cd | Cadmium. |
References
- Pexas, G.; Doherty, B.; Kyriazakis, I. The future of protein sources in livestock feeds: Implications for sustainability and food safety. Front. Sustain. Food Syst. 2023, 7, 1188467. [Google Scholar] [CrossRef]
- Cromwell, G.L.; Herkelman, K.L.; Stahly, T.S. Physical, chemical, and nutritional characteristics of distillers dried grains with solubles for chicks and pigs. J. Anim. Sci. 1993, 71, 679–686. [Google Scholar] [CrossRef]
- Ding, X.M.; Qi, Y.Y.; Zhang, K.Y.; Tian, G.; Bai, S.P.; Wang, J.P.; Peng, H.W.; Lv, L.; Xuan, Y.; Zeng, Q.F. Corn distiller’s dried grains with solubles as an alternative ingredient to corn and soybean meal in Pekin duck diets based on its predicted AME and the evaluated standardized ileal digestibility of amino acids. Poult. Sci. 2022, 101, 101974. [Google Scholar] [CrossRef]
- Buttrey, E.K.; Jenkins, K.H.; Lewis, J.B.; Smith, S.B.; Miller, R.K.; Lawrence, T.E.; McCollum, F.T.; Pinedo, P.J.; Cole, N.A.; Macdonald, J.C. Effects of 35% corn wet distillers grains plus solubles in steam-flaked and dry-rolled corn-based finishing diets on animal performance, carcass characteristics, beef fatty acid composition, and sensory attributes. J. Anim. Sci. 2013, 91, 1850–1865. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Distillers’ dried grains with solubles (DDGS) and its potential as fermentation feedstock. Appl. Microbiol. Biotechnol. 2020, 104, 6115–6128. [Google Scholar] [CrossRef]
- Kim, S.W.; Duarte, M.E. Understanding intestinal health in nursery pigs and the relevant nutritional strategies. Anim. Biosci. 2021, 34, 338–344. [Google Scholar] [CrossRef]
- Reddy, N.R.; Pierson, M.D. Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res. Int. 1994, 27, 281–290. [Google Scholar] [CrossRef]
- Shi, C.Y.; Zhang, Y.J.; Yin, Y.L.; Wang, C.C.; Lu, Z.Q.; Wang, F.Q.; Feng, J.; Wang, Y.Z. Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium fed to pigs. J. Anim. Sci. 2017, 95, 3996–4004. [Google Scholar] [CrossRef]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of Bacillus subtilis DSM 28343 for pigs for fattening. EFSA J. 2019, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Zhang, Y.J.; Lu, Z.Q.; Wang, Y.Z. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, T.; Xu, D.; Zhu, M.; Zhang, J.; Zhang, R.; Hu, Q.; Wang, Y.; He, G.; Chen, Z.; et al. The effect of feeding fermented distillers’ grains diet on the intestinal metabolic profile of Guanling crossbred cattle. Front. Vet. Sci. 2023, 10, 1238064. [Google Scholar] [CrossRef]
- Yang, R.; Khalid, A.; Khalid, F.; Ye, M.; Li, Y.; Zhan, K.; Li, Y.; Liu, W.; Wang, Z. Effect of fermented corn by-products on production performance, blood biochemistry, and egg quality indices of laying hens. J. Anim. Sci. 2022, 100, skac130. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, M.; McBride, B.; Li, J.; Wey, D.; Zhu, J.; de Lange, C.F.M. Effects of steeped or fermented distillers dried grains with solubles on growth performance in weanling pigs. J. Anim. Sci. 2017, 95, 3563–3578. [Google Scholar] [CrossRef]
- Li, H.; Duan, Y.; Yin, F.; Zhu, Q.; Hu, C.; Wu, L.; Xie, P.; Li, F.; Cheng, R.; Kong, X. Dietary addition of fermented sorghum distiller’s dried grains with soluble improves carcass traits and meat quality in growing-finishing pigs. Trop. Anim. Health Prod. 2022, 54, 97. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.M.; Ji, X.; Zhang, Y.Y.; Liu, X.L.; Ding, L.G.; Li, J.D.; Ren, S.F.; Liu, F.; Chen, Z.; Zhang, L.; et al. Important role of Bacillus subtilis as a probiotic and vaccine carrier in animal health maintenance. World J. Microb. Biot. 2024, 40, 268. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Hassan, H.M.A.; Samy, A.; Youssef, A.W. Using different feed additives as alternative to antibiotic growth promoter to improve growth performance and carcass traits of broilers. Int. J. Poult. Sci. 2018, 17, 255–261. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, C.; Xuan, Y.; Zhou, P.; Fang, Z.; Che, L.; Xu, S.; Feng, B.; Li, J.; Jiang, X.; et al. Effect of maternal or post-weaning methyl donor supplementation on growth performance, carcass traits, and meat quality of pig offspring. J. Sci. Food Agric. 2019, 99, 2096–2107. [Google Scholar] [CrossRef]
- Alonso, M.L.; Miranda, M.; Castillo, C.; Hernández, J.; García, M.; Benedito, J.L. Toxic and essential metals in liver, kidney and muscle of pigs at slaughter in Galicia (NW Spain). Food Addit. Contam. 2007, 24, 943–954. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Res. Int. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Zhang, K. Effects of microbial fermented feed on serum biochemical profile, carcass traits, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs. Front. Vet. Sci. 2021, 8, 744630. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Yang, Y.H. Microbial production of volatile fatty acids: Current status and future perspectives. Rev. Environ. Sci. Bio/Technol. 2017, 16, 327–345. [Google Scholar] [CrossRef]
- Fan, Q.; Long, B.; Yan, G.; Wang, Z.; Shi, M.; Bao, X.; Hu, J.; Li, X.; Chen, C.; Zheng, Z.; et al. Dietary leucine supplementation alters energy metabolism and induces slow-to-fast transitions in longissimus dorsi muscle of weanling piglets. Br. J. Nutr. 2017, 117, 1222–1234. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Li, K.; Zhao, X.; Liu, S.; Wang, L.; Yang, X.; Jiang, Z. Fermented feed modulates meat quality and promotes the growth of longissimus thoracis of late-finishing pigs. Animals 2020, 10, 1682. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Mun, H.S.; Islam, M.M.; Ko, S.Y.; Yang, C.J. Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci. 2016, 122, 7–15. [Google Scholar] [CrossRef]
- Kumar, K.M.K.; Nagesh, R.; Kumar, M.N.; Prashanth, S.J.; Babu, R.L. Oxidative stress in modulation of immune function in livestock. In Emerging Issues in Climate Smart Livestock Production; Mondal, S., Singh, R.L., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 225–245. [Google Scholar]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Wang, A.N.; Yi, X.W.; Yu, H.F.; Dong, B.; Qiao, S.Y. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J. Appl. Microbiol. 2009, 107, 1140–1148. [Google Scholar] [CrossRef]
- Beglari, S.; Fereshteh, S.; Milani, M.; Rezaie, N.; Rohani, M. Lactoremediation: Heavy metals elimination from the gastrointestinal tract by lactic acid bacteria. Food Biosci. 2023, 56, 103202. [Google Scholar] [CrossRef]
- Giri, S.S.; Kim, H.J.; Jung, W.J.; Bin Lee, S.; Joo, S.J.; Gupta, S.K.; Park, S.C. Probiotics in addressing heavy metal toxicities in fish farming: Current progress and perspective. Ecotoxicol. Environ. Saf. 2024, 282, 116755. [Google Scholar] [CrossRef]
Item | Group | |
---|---|---|
Control | Treatments | |
Corn | 62.00 | 59.95 |
Soybean meal | 5.00 | 4.00 |
Wheat | 19.00 | 18.50 |
Sunflower meal | 7.00 | 5.20 |
Palm kernel meal | 4.50 | 3.85 |
FCWDGs | 0 | 6.00 |
Premix 1 | 2.50 | 2.50 |
Total | 100.00 | 100.00 |
Nutrient level (as-fed basis) | ||
Crude protein | 12.82 | 12.81 |
Digestible energy (MJ/kg) | 12.97 | 12.97 |
Lysine | 0.48 | 0.46 |
Methionine | 0.23 | 0.24 |
Threonine | 0.46 | 0.45 |
Methionine + Cystine | 0.47 | 0.50 |
Calcium | 0.56 | 0.57 |
Phosphorus | 0.18 | 0.19 |
Items | Groups 1 | |||
---|---|---|---|---|
Control | T1 | T2 | T3 | |
Initial weight (kg) | 54.60 ± 2.51 | 54.54 ± 2.72 | 54.61 ± 2.33 | 54.58 ± 2.49 |
Final weight (kg) | 95.71 ± 3.87 b | 101.23 ± 3.83 a | 97.56 ± 3.77 b | 100.67 ± 3.96 a |
Average daily gain (kg/day) | 0.69 ± 0.02 b | 0.78 ± 0.03 a | 0.72 ± 0.03 b | 0.77 ± 0.03 a |
Average daily feed intake (kg/day) | 2.65 ± 0.05 b | 2.58 ± 0.04 c | 2.62 ± 0.04 b,c | 2.72 ± 0.05 a |
F/G ratio 2 | 3.84 ± 0.14 a | 3.31 ± 0.08 d | 3.63 ± 0.10 b | 3.53 ± 0.12 c |
Group 1 | Carcass Trait 2 | |||
---|---|---|---|---|
DP (%) | BF (mm) | LMD (mm) | LMP (%) | |
Control | 73.78 ± 1.77 | 33.07 ± 1.12 | 44.78 ± 2.29 b | 43.02 ± 1.10 b |
T1 | 74.91 ± 2.31 | 31.31 ± 1.08 | 47.21 ± 2.37 a | 44.57 ± 1.17 a |
T2 | 75.14 ± 2.19 | 32.55 ± 1.19 | 48.33 ± 2.64 a | 44.13 ± 1.23 a,b |
T3 | 75.02 ± 2.08 | 32.14 ± 1.14 | 49.06 ± 2.71 a | 44.09 ± 1.19 a,b |
Item 1 | Group 2 | |||
---|---|---|---|---|
Control | T1 | T2 | T3 | |
MDA (nmol/mL) | 2.96 ± 0.37 a | 2.31 ± 0.32 b | 2.70 ± 0.29 a | 2.84 ± 0.23 a |
T-AOC (μmol/L) | 152.81 ± 11.22 b | 216.25 ± 17.80 a | 159.32 ± 12.95 b | 162.47 ± 11.57 b |
SOD (U/mL) | 46.83 ± 3.61 c | 64.25 ± 4.37 a | 56.68 ± 3.43 b | 57.78 ± 4.05 b |
GSH-px (U/mL) | 1229.81 ± 119.81 c | 1710.52 ± 129.40 a | 1472.55 ± 125.74 b | 1509.27 ± 130.61 b |
CKK (pg/mL) | 0.38 ± 0.03 | 0.38 ± 0.04 | 0.38 ± 0.03 | 0.38 ± 0.03 |
SCT (pg/mL) | 0.37 ± 0.03 | 0.39 ± 0.03 | 0.38 ± 0.03 | 0.38 ± 0.03 |
MTL (pg/mL) | 0.32 ± 0.02 | 0.32 ± 0.02 | 0.32 ± 0.02 | 0.32 ± 0.03 |
Organs | Item 1 | Group 2 | |||
---|---|---|---|---|---|
Control | T1 | T2 | T3 | ||
Muscle | As | 0.07 ± 0.02 | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.06 ± 0.02 |
Pb | 507.34 ± 36.41 a | 356.45 ± 22.35 c | 446.67 ± 31.50 b | 455.28 ± 29.87 b | |
Cd | 308.13 ± 26.86 a | 207.61 ± 15.43 b | 277.43 ± 19.16 a | 271.48 ± 21.52 a | |
Cu | 2178.62 ± 156.37 a | 1424.57 ± 112.10 c | 1806.45 ± 128.95 b | 1906.55 ± 125.41 b | |
Liver | As | 0.46 ± 0.04 | 0.42 ± 0.03 | 0.43 ± 0.03 | 0.43 ± 0.03 |
Pb | 687.56 ± 52.43 a | 471.32 ± 29.78 c | 554.67 ± 34.60 b | 567.36 ± 37.22 b | |
Cd | 777.56 ± 56.61 a | 587.23 ± 38.94 b | 774.17 ± 60.11 a | 769.45 ± 55.19 a | |
Cu | 2037.43 ± 136.35 a | 1636.67 ± 98.52 b | 1904.76 ± 121.56 a | 1932.35 ± 125.68 a | |
Kidney | As | 0.75 ± 0.09 a | 0.40 ± 0.02 b | 0.73 ± 0.05 a | 0.70 ± 0.03 a |
Pb | 514.23 ± 26.56 a | 353.23 ± 16.15 c | 487.41 ± 21.87 b | 479.43 ± 22.34 b | |
Cd | 2534.16 ± 173.62 a | 1556.35 ± 122.40 b | 2234.67 ± 169.44 a | 2389.56 ± 173.31 a | |
Cu | 2356.07 ± 185.32 a | 1334.56 ± 112.97 b | 2113.12 ± 179.35 a | 2235.56 ± 172.51 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Wu, X.; Wang, Z.; Fan, S. Effects of Probiotic-Fermented Corn Wet Distillers Grains on the Growth Performance, Carcass Characteristics, and Heavy Metal Residue Levels of Finishing Pigs. Biology 2025, 14, 1021. https://doi.org/10.3390/biology14081021
Liao W, Wu X, Wang Z, Fan S. Effects of Probiotic-Fermented Corn Wet Distillers Grains on the Growth Performance, Carcass Characteristics, and Heavy Metal Residue Levels of Finishing Pigs. Biology. 2025; 14(8):1021. https://doi.org/10.3390/biology14081021
Chicago/Turabian StyleLiao, Wang, Xudong Wu, Zaigui Wang, and Shuhao Fan. 2025. "Effects of Probiotic-Fermented Corn Wet Distillers Grains on the Growth Performance, Carcass Characteristics, and Heavy Metal Residue Levels of Finishing Pigs" Biology 14, no. 8: 1021. https://doi.org/10.3390/biology14081021
APA StyleLiao, W., Wu, X., Wang, Z., & Fan, S. (2025). Effects of Probiotic-Fermented Corn Wet Distillers Grains on the Growth Performance, Carcass Characteristics, and Heavy Metal Residue Levels of Finishing Pigs. Biology, 14(8), 1021. https://doi.org/10.3390/biology14081021