Transcriptome Sequencing-Based Analysis of Premature Fruiting in Amomum villosum Lour.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. RNA Extraction, Library Construction, and Sequencing
2.3. Gene Expression Analysis
2.4. Real-Time Fluorescence Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis of DEGs
3. Results
3.1. Analysis of RNA-Seq Libraries
3.2. Differential Expression Analysis of Transcripts
3.3. GO Functional Annotation and Enrichment Analysis of DEGs
3.4. KEGG Functional Annotation and Enrichment Analysis of DEGs
3.5. Validation of DEGs Using RT-qPCR
4. Discussion
5. Conclusions
- Identification and functional characterization of key genes: Further investigation will target the discovery of critical genetic determinants and the elucidation of their mechanistic roles in regulating premature fruiting.
- Alternative splicing events need to be included in future experimental research, which is also one of the foundations for developing molecular markers.
- Development of molecular markers for precision breeding: The establishment of molecular marker-assisted selection protocols will enable the efficient screening of premature fruiting individuals, thus accelerating the breeding and dissemination of elite premature fruiting germplasm lines.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A. villosum. | Amomum villosum Lour. |
RNA-seq | Transcriptomic Sequencing |
DEGs | Differentially Expressed Genes |
GB | Gigabases |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
RT-qPCR | Real-Time Fluorescence Quantitative Polymerase Chain Reaction |
IAA | Auxin |
AUX1 | Auxin 1 |
TIR1 | Transport Inhibitor Response 1 |
ARF | Auxin Response Factor |
GH3 | Gretchen Hagen 3 |
SAUR | Small Auxin Up RNA |
CTK | Cytokinin |
CRE1 | Cytokinin Response 1 |
B-ARR | Type-B Arabidopsis Response Regulator |
TF | Transcription Factor |
GA | Gibberellin |
PP2C | Protein Phosphatase 2C |
SnRK2 | Snf1-Related Protein Kinase 2 |
ABF | Aba-Responsive Element Binding Factor |
ABA | Abscisic Acid |
SIMKK | Sativa Stress-Induced Mitogen-Activated Protein Kinase Kinase |
MPK6 | MAP Kinase 6 |
EIN3 | Ethylene Insensitive 3 |
ETH | Ethylene |
ZR | Zeatin Riboside |
BRI1 | Brassinosteroid Insensitive 1 |
BIN2 | Brassinosteroid Insensitive2 |
BR | Brassinosteroid |
SlFRLs | SlFRIGIDA-LIKE |
JAR1 | Jasmonate Resistant 1 |
JAZ | Jasmonate Zim-Domain Proteins |
JA | Jasmonic Acid |
JA-Ile | Jasmonoyl-Isoleucine |
CO | CONSTANS |
NPR1 | NPR1 Regulatory Protein |
TGA | TGACG Motif-Binding Factor |
SA | Salicylic Acid |
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; p. 264. [Google Scholar]
- Zimmerman, R.H. Juvenility and Flowering in Woody Plants: A Review. Hortic. Sci. 1972, 7, 445–447. [Google Scholar] [CrossRef]
- Chalakyhyan, M.K. On the Hormonal Theory of Plant Development. Dokl. Akad. Nauk. 1936, 3, 442. [Google Scholar]
- King, R.W.; Ben-Tal, Y. A Florigenic Effect of Sucrose in Fuchsia hybrida Is Blocked by Gibberellin-Induced Assimilate Competition. Plant Physiol. 2001, 125, 488–496. [Google Scholar] [CrossRef]
- Bernier, G. The Control of Floral Evocation and Morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 175–219. [Google Scholar] [CrossRef]
- Bernier, G.; Havelange, A.; Houssa, C.; Petitjean, A.; Lejeune, P. Physiological Signals That Induce Flowering. Plant Cell 1993, 5, 1147–1155. [Google Scholar] [CrossRef]
- Quiroz, S.; Yustis, J.C.; Chávez-Hernández, E.C.; Martínez, T.; Sanchez, M.P.; Garay-Arroyo, A.; Álvarez-Buylla, E.R.; García-Ponce, B. Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 5716. [Google Scholar] [CrossRef]
- Quan, S.; Niu, J.; Zhou, L.; Xu, H.; Ma, L.; Qin, Y. Stages Identifying and Transcriptome Profiling of the Floral Transition in Juglans regia. Sci. Rep. 2019, 9, 7092. [Google Scholar] [CrossRef]
- Kagaya, H.; Ito, N.; Shibuya, T.; Komori, S.; Kato, K.; Kanayama, Y.; Shibuya, T. Characterization of Flowering locus C Homologs in Apple as a Model for Fruit Trees. Int. J. Mol. Sci. 2020, 21, 4562. [Google Scholar] [CrossRef]
- Sun, L.M.; Ai, X.Y.; Li, W.Y.; Guo, W.W.; Deng, X.X.; Hu, C.G.; Zhang, J.Z. Identification and Comparative Profiling of miRNAs in an Early Flowering Mutant of Trifoliate Orange and Its Wild Type by Genome-Wide Deep Sequencing. PLoS ONE 2012, 7, e43760. [Google Scholar] [CrossRef]
- Bahmani, R.; Prithiviraj, B. A Plant biostimulant prepared from Ascophyllum nodosum Induces Flowering by Regulating the MIR156-mediated Age Pathway in Arabidopsis. Physiol. Plant. 2024, 176, e14531. [Google Scholar] [CrossRef]
- Rahman, T.U.; Shah, S.; Hassan, S.; Fahad, S. Food security challenges and adaptation strategies in China amidst global climate change. J. Umm Al-Qura Univ. Appl. Sci. 2025, 11, 1–14. [Google Scholar] [CrossRef]
- Tong, B.; Hao, Z. The Pattern of Endogenous Hormones of Pistillate Flower Differentiation in Walnut (Juglans Regia L.). Sci. Silvae Sin. 1991, 4, 401–409. [Google Scholar]
- Marzal, A.; Cervera, A.; Blasco, C.; Martínez-Fuentes, A.; Reig, C.; Bianco, R.L.; Mesejo, C.; Agustí, M. Influence of stem and bud auxin levels on bud release and flower meristem formation in Citrus. Plant Sci. Int. J. Exp. Plant Biol. 2025, 354, 112438. [Google Scholar] [CrossRef]
- Frankowski, K.; Kesy, J.; Wojciechowski, W.; Kopcewicz, J. Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. J. Plant Physiol. 2009, 166, 192–202. [Google Scholar] [CrossRef]
- Sapkota, S.; Liu, J.; Islam, M.T.; Ravindran, P.; Kumar, P.P.; Sherif, S.M. Contrasting bloom dates in two apple cultivars linked to differential levels of phytohormones and heat requirements during ecodormancy. Sci. Hortic. 2021, 288, 110413. [Google Scholar] [CrossRef]
- Li, X.; Fan, J.; Liao, H.; He, J.; Zeng, Y.; Long, Q.; Bu, Z. Dynamic changes of Endogenous Hormones and Polyamine in Paphiopedilum hirsutissimum Leaves During Floral Bud Formation. Chin. J. Trop. Crops 2021, 42, 3236–3241. [Google Scholar]
- Wilson, R.N.; Heckman, J.W.; Somerville, C.R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 1992, 100, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Tuan, P.A.; Saito, T.; Bai, S.; Kita, M.; Moriguchi, T. Changes in phytohormone content and associated gene expression throughout the stages of pear (Pyrus pyrifolia Nakai) dormancy. Tree Physiol. 2019, 41, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhong, W.; Huo, X.; Zhuang, W.; Ni, Z.; Gao, Z. Expression analysis of ABA-and GA-related genes during four stages of bud dormancy in Japanese apricot (Prunus mume Sieb. & Zucc). J. Hortic. Sci. Biotechnol. 2016, 91, 362–369. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Yao, G.; Wang, D.; Wu, J. Effects of exogenous growth regulator treatment on floral initiation of pear progenies from hybrids ‘Mantianhong’ בDangshansuli’. J. Nanjing Agric. Univ. 2015, 38, 381–388. [Google Scholar]
- Li, Q.; Guo, W.; Chen, B.; Pan, F.; Yang, H.; Zhou, J.; Wang, G.; Li, X. Transcriptional and hormonal responses in ethephon-induced promotion of femaleness in pumpkin. Front. Plant Sci. 2021, 12, 715487. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; He, S.; Li, W.; Zhu, M.; He, J. Ethephon-Induced Flower Bud Differentiation and Endogenous Hormonal Changes in Mangifera indica. South China Fruits 2016, 45, 55–58. [Google Scholar]
- Li, Z.; Ou, Y.; Zhang, Z.; Li, J.; He, Y. Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis. Mol. Plant 2018, 11, 1135–1146. [Google Scholar] [CrossRef]
- Khan, M.; Luo, B.; Hu, M.; Fu, S.; Liu, J.; Jiang, M.; Zhao, Y.; Huang, S.; Wang, S.; Wang, X. Brassinosteroid Signaling Downstream Suppressor BIN2 Interacts with SLFRIGIDA-LIKE to Induce Early Flowering in Tomato. Int. J. Mol. Sci. 2022, 23, 11264. [Google Scholar] [CrossRef]
- Serrano-Bueno, G.; de Los Reyes, P.; Chini, A.; Ferreras-Garrucho, G.; Sánchez de Medina-Hernández, V.; Boter, M.; Solano, R.; Valverde, F. Regulation of floral senescence in Arabidopsis by coordinated action of CONSTANS and jasmonate signaling. Mol. Plant 2022, 15, 1710–1724. [Google Scholar] [CrossRef]
Gene Name | Forward Primer Sequences (5′-3′) | Reverse Primer Sequences (5′-3′) |
---|---|---|
Unigene10594_All | ACTCATCGTGCCAGTGCTCCA | GCGTTGGTCTGCTCCATCTTCC |
Unigene23329_All | ACGGACCCTTCCTCAGGCAAT | TGGCAGCAGGAGCAGTAGCA |
Unigene3655_All | GGAGAACGCATTGGCAGTGTCA | TGGGTGGTTCAGAGGCAACAGA |
Unigene32828_All | GTCTCTGTACCGTGCCGTCATC | GCTGTCCGACTGGTGCTTGTAG |
Unigene22251_All | CACGCCACCAGGAAGTTGTCAG | TTCCCTCGTCCCTCTTCTTGCC |
Unigene31023_All | CCGCCGTTGATAGAGGACTTCC | GTCTTCGTGGACACTCTGCCTT |
Actin | CGCATTGACGACCTCCAGTG | TCTTCACCGCATGTGACAATCC |
Material | Total Raw Read (M) | Total Clean Read (M) | Clean Read Q30 (%) | Clean Read Ratio (%) | Total Mapping Gene Ratio (%) | Uniquely Mapping Gene Ratio (%) | N50 (bp) |
---|---|---|---|---|---|---|---|
CK-1 | 43.82 | 42.29 | 90.84 | 96.51 | 83.35 | 22.41 | 1938 |
CK-2 | 45.57 | 43.41 | 91.20 | 95.26 | 84.31 | 23.74 | 1719 |
CK-3 | 43.82 | 42.35 | 90.99 | 96.64 | 85.43 | 25.38 | 1681 |
Precocious-1 | 40.03 | 38.24 | 91.01 | 95.55 | 81.48 | 21.91 | 1913 |
Precocious-2 | 43.82 | 42.05 | 90.82 | 95.95 | 82.35 | 23.89 | 1743 |
Precocious-3 | 45.57 | 43.41 | 91.19 | 95.24 | 83.69 | 22.11 | 1931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, S.; Zhao, H.; Li, Q.; Wang, Y.; Yang, C.; Li, G.; Wang, Y.; Zhang, L. Transcriptome Sequencing-Based Analysis of Premature Fruiting in Amomum villosum Lour. Biology 2025, 14, 883. https://doi.org/10.3390/biology14070883
Zhu Y, Li S, Zhao H, Li Q, Wang Y, Yang C, Li G, Wang Y, Zhang L. Transcriptome Sequencing-Based Analysis of Premature Fruiting in Amomum villosum Lour. Biology. 2025; 14(7):883. https://doi.org/10.3390/biology14070883
Chicago/Turabian StyleZhu, Yating, Shuang Li, Hongyou Zhao, Qianxia Li, Yanfang Wang, Chunyong Yang, Ge Li, Yanqian Wang, and Lixia Zhang. 2025. "Transcriptome Sequencing-Based Analysis of Premature Fruiting in Amomum villosum Lour." Biology 14, no. 7: 883. https://doi.org/10.3390/biology14070883
APA StyleZhu, Y., Li, S., Zhao, H., Li, Q., Wang, Y., Yang, C., Li, G., Wang, Y., & Zhang, L. (2025). Transcriptome Sequencing-Based Analysis of Premature Fruiting in Amomum villosum Lour. Biology, 14(7), 883. https://doi.org/10.3390/biology14070883