Neighboring Patch Density or Patch Size? Which Determines the Importance of Forest Patches in Maintaining Overall Landscape Connectivity in Kanas, Xinjiang, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
3. Results
3.1. Quantifying Overall Landscape Connectivity of Forest Patches
3.2. Comparing Patch Importance Based on Different Landscape Connectivity Indices and Identifying Important Patches
3.3. The Explanation Power of Each Structural Factor on Patch Importance
4. Discussion
4.1. Spatial Mismatch Among Priority Patches for Different Connectivity Indices and Dispersal Distances
4.2. The Influence of Structural Factors on Patch Importance
4.3. Suggestions for Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PS | Patch size |
SI | Shape index |
MID | Mean inter-patch distance |
NPD | Neighboring patch density |
References
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C. Climate change extinctions. Science 2024, 386, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Lander, T.A.; Boshier, D.H.; Harris, S.A. Fragmented but not isolated: Contribution of single trees, small patches and long-distance pollen flow to genetic connectivity for Gomortega keule, an endangered Chilean tree. Biol. Conserv. 2010, 143, 2583–2590. [Google Scholar] [CrossRef]
- Zhuo, Y.; Xu, W.; Wang, M.; Chen, C.; da Silva, A.A.; Yang, W.; Ruckstuhl, K.E.; Alves, J. The effect of mining and road development on habitat fragmentation and connectivity of khulan (Equus hemionus) in Northwestern China. Biol. Conserv. 2022, 275, 109770. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Huang, G.; Kouba, A.; Swaisgood, R.R.; Zhou, W.; Hu, Y.; Nie, Y.; Wei, F. Habitat connectivity drives panda recovery. Curr. Biol. 2024, 34, 3894–3904.e3. [Google Scholar] [CrossRef] [PubMed]
- CBD (The Executive Secretary of Convention on Biological Diversity) Considerations on Ecosystem Restoration for the Post-2020 Global Biodiversity Framework, Including on a Possible Successor to Aichi Biodiversity Target 15. 2019. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.cbd.int%2Fdoc%2Fc%2Fcada%2F2ab7%2F69bb1964df35aadce19e6484%2Fpost2020-ws-2019-11-03-en.docx&wdOrigin=BROWSELINK (accessed on 15 November 2023).
- UN. Kunming Declaration: “Ecological Civilization: Building a Shared Future for All Life on Earth”. 2021. Available online: https://www.cbd.int/doc/c/c2db/972a/fb32e0a277bf1ccfff742be5/cop-15-05-add1-en.pdf (accessed on 1 October 2024).
- Herrera, L.P.; Sabatino, M.C.; Jaimes, F.R.; Saura, S. Landscape connectivity and the role of small habitat patches as stepping stones: An assessment of the grassland biome in South America. Biodivers. Conserv. 2017, 26, 3465–3479. [Google Scholar] [CrossRef]
- Zheng, P.; Jiang, X.; Shu, F.; Li, Z.; Zhang, S.; Alahuhta, J.; Heino, J. Loss of lateral hydrological connectivity impacts multiple facets of molluscan biodiversity in floodplain lakes. J. Environ. Manag. 2022, 320, 115885. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Sherren, K.; Stott, J.; Zerger, A.; Warren, G.; Stein, J. Toward landscape-wide conservation outcomes in Australia’s temperate grazing region. Front. Ecol. Environ. 2009, 8, 69–74. [Google Scholar] [CrossRef]
- Qi, K.; Fan, Z.; Xie, Y. The influences of habitat proportion and patch-level structural factors in the spatial habitat importance ranking for connectivity and implications for habitat conservation. Urban For. Urban Green. 2021, 64, 127239. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: New Jersey, NJ, USA, 1967. [Google Scholar]
- Akçakaya, H.R.; Mills, G.; Doncaster, C.P. The role of metapopulation conservation. In Key Topics in Conservation Biology; Macdonald, D.W., Service, K., Eds.; Blackwell: Oxford, UK, 2007; pp. 64–84. [Google Scholar]
- Han, L.; Wang, Z.; Wei, M.M.; Wang, M.Y.; Shi, H.; Ruckstuhl, K.; Yang, W.K.; Alves, J. Small patches play a critical role in the connectivity of the Western Tianshan landscape, Xinjiang, China. Ecol. Indic. 2022, 144, 109542. [Google Scholar] [CrossRef]
- Saura, S.; Estreguil, C.; Mouton, C.; Rodríguez-Freire, M. Network analysis to assess landscape connectivity trends: Application to European forests (1990–2000). Ecol. Indic. 2011, 11, 407–416. [Google Scholar] [CrossRef]
- Saura, S.; Bodin, Ö.; Fortin, M. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Cameron, A.; Veloz, S.; Kukkala, A.; Moilanen, A.; Fordon, G.; Lentini, P.E.; Cadenhead, N.C.R.; et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Avon, C.; Bergès, L. Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landsc. Ecol. 2016, 31, 1551–1565. [Google Scholar] [CrossRef]
- Cable, A.B.; O’Keefe, J.M.; Deppe, J.L.; Hohoff, T.C.; Taylor, S.J.; Davis, M.A. Habitat suitability and connectivity modeling reveal priority areas for Indiana bat (Myotis sodalis) conservation in a complex habitat mosaic. Landsc. Ecol. 2021, 36, 119–137. [Google Scholar] [CrossRef]
- Hashemi, R.; Darabi, H. The review of ecological network indicators in graph theory context: 2014–2021. Int. J. Environ. Res. 2022, 16, 24. [Google Scholar] [CrossRef]
- Nathan, R. Long-Distance dispersal of plants. Science 2006, 313, 786–788. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, G.D.; Harestad, A.S.; Price, K.; Lertzman, K.P. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 2000, 4, 16. [Google Scholar] [CrossRef]
- Cadavid-Florez, L.; Laborde, J.; Mclean, D.J. Isolated trees and small woody patches greatly contribute to connectivity in highly fragmented tropical landscapes. Landsc. Urban Plan. 2020, 196, 103745. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Shi, H.; Han, L. Effect of forest connectivity on the dispersal of species: A case study in the Bogda World Natural Heritage Site, Xinjiang, China. Ecol. Indic. 2021, 125, 107576. [Google Scholar] [CrossRef]
- Riva, F.; Martion, C.J.; Millard, K.; Fahrig, L. Loss of the world’s smallest forests. Glob. Change Biol. 2022, 28, 7164–7166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, Y.; Han, L.; Chen, K.; Wang, Z.; Yang, Q. Importance of Patches in Maintaining Forest Landscape Connectivity: A Case Study of Barluk, Xinjiang, China. Forests 2025, 16, 74. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Cui, S.; Chen, D.; Wang, J.; Sun, J.; Chu, H.; Li, C.; Jiang, Z. Camera-trapping survey on mammals and birds in the Kanas River Valley of Altai Mountains, Xinjiang, China. Biodiv. Sci. 2020, 28, 435–441. [Google Scholar] [CrossRef]
- Hu, Y. Characteristics of Vegetation Along the Banks of the Kanas River and Its Response to Water Quality. Master’s Dissertation, Xinjiang Agricultural University, Xinjiang, China, 2024. (In Chinese). [Google Scholar]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Osawa, S.; Katsuno, T. Dispersal of Brown Frogs Rana japonica and R. ornativentris in the forests of the Tama Hills. Curr. Herpetol. 2001, 20, 1–10. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Modell. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5; Microcomputer Power: Ithaca, NY, USA, 2002; Available online: https://edepot.wur.nl/405659 (accessed on 15 May 2023).
- Laita, A.; Kotiaho, J.S.; Mönkkönen, M. Graph-theoretic connectivity measures: What do they tell us about connectivity? Landsc. Ecol. 2011, 26, 951–967. [Google Scholar] [CrossRef]
- Baranyi, G.; Saura, S.; Podani, J.; Jordán, F. Contribution of habitat patches to network connectivity: Redundancy and uniqueness of topological indices. Ecol. Indic. 2011, 11, 1301–1310. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Bodin, Ö.; Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 2010, 221, 2393–2405. [Google Scholar] [CrossRef]
- Bowman, J.; Cappuccino, N.; Fahrig, L. Patch size and population density: The effect of immigration behavior. Conserv. Ecol. 2002, 6, 9. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef]
- Keitt, T.H.; Urban, D.L.; Milne, B.T. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1997, 1, 4. [Google Scholar] [CrossRef]
- Riva, F.; Galán-Acedo, C.; Martin, A.E.; Fahrig, L. Why we should not assume that habitat fragmentation is generally bad for restoration: A reply to Watts and Hughes (2024). Restor. Ecol. 2025, 33, 14385. [Google Scholar] [CrossRef]
Dispersal Distance | 50 m | 100 m | 200 m | 500 m | 1000 m | 2000 m | 5000 m |
---|---|---|---|---|---|---|---|
PC (%) | 2.71 | 3.47 | 4.19 | 4.95 | 5.35 | 5.61 | 5.79 |
IIC (%) | 2.23 | 2.29 | 2.40 | 2.57 | 2.65 | 2.73 | 2.84 |
LCP (%) | 4.59 | 4.87 | 5.62 | 5.81 | 5.92 | 5.93 | 5.93 |
NC | 1359 | 648 | 218 | 38 | 9 | 2 | 1 |
Dispersal Distance | 50 m | 100 m | 200 m | 500 m | 1000 m | 2000 m | 5000 m |
---|---|---|---|---|---|---|---|
dNC vs. dLCP | −0.644 ** | −0.522 ** | −0.192 ** | −0.197 ** | −0.192 ** | −0.083 ** | −0.046 * |
dNC vs. dIIC | −0.615 ** | −0.504 ** | −0.19 ** | −0.188 ** | −0.190 ** | −0.082 ** | −0.046 * |
dNC vs. dPC | −0.331 ** | −0.296 ** | −0.133 ** | −0.187 ** | −0.157 ** | −0.082 ** | −0.046 * |
dLPC vs. dIIC | 0.986 ** | 0.992 ** | 0.977 ** | 0.979 ** | 0.977 ** | 0.985 ** | 0.991 ** |
dLCP vs. dPC | 0.668 ** | 0.762 ** | 0.784 ** | 0.912 ** | 0.946 ** | 0.980 ** | 0.993 ** |
dIIC vs. dPC | 0.691 ** | 0.784 ** | 0.845 ** | 0.924 ** | 0.955 ** | 0.975 ** | 0.986 ** |
Dispersal Distances | 50 m | 100 m | 200 m | 500 m | 1000 m | 2000 m | 5000 m |
---|---|---|---|---|---|---|---|
PS | 5.4 | 3.8 | 96.1 | 94.6 | 96.4 | 96.6 | 96.9 |
NPD | 81.5 | 84.6 | 0.4 | 1.1 | 0.2 | 0.4 | <0.1 |
SI | <0.1 | 0.1 | 0.1 | 0.4 | <0.1 | 0.2 | 0.4 |
MID | <0.1 | - | <0.1 | <0.1 | <0.1 | <0.1 | - |
Total adjusted explained variance | 87.0 | 88.6 | 96.6 | 96.1 | 96.7 | 97.3 | 97.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Han, L.; Wang, L.; Shi, H.; Luo, Y. Neighboring Patch Density or Patch Size? Which Determines the Importance of Forest Patches in Maintaining Overall Landscape Connectivity in Kanas, Xinjiang, China. Biology 2025, 14, 881. https://doi.org/10.3390/biology14070881
Wang Z, Han L, Wang L, Shi H, Luo Y. Neighboring Patch Density or Patch Size? Which Determines the Importance of Forest Patches in Maintaining Overall Landscape Connectivity in Kanas, Xinjiang, China. Biology. 2025; 14(7):881. https://doi.org/10.3390/biology14070881
Chicago/Turabian StyleWang, Zhi, Lei Han, Luyao Wang, Hui Shi, and Yan Luo. 2025. "Neighboring Patch Density or Patch Size? Which Determines the Importance of Forest Patches in Maintaining Overall Landscape Connectivity in Kanas, Xinjiang, China" Biology 14, no. 7: 881. https://doi.org/10.3390/biology14070881
APA StyleWang, Z., Han, L., Wang, L., Shi, H., & Luo, Y. (2025). Neighboring Patch Density or Patch Size? Which Determines the Importance of Forest Patches in Maintaining Overall Landscape Connectivity in Kanas, Xinjiang, China. Biology, 14(7), 881. https://doi.org/10.3390/biology14070881