Biomarkers in Venous Thrombosis: Diagnostic Potential and Limitations
Simple Summary
Abstract
1. Epidemiology of VTE
2. Pathophysiology of VTE
3. VTE Biomarkers
3.1. D-Dimer
3.2. Fibrinogen Degradation Products (FDPs)
3.3. Soluble P-Selectin (sP-Selectin)
3.4. Thrombin–Antithrombin Complex (TAT)
3.5. Plasmin–Alpha2–Antiplasmin Complex (PAP)
3.6. Prothrombin Fragment F1+2 (F1+2)
3.7. Microparticles (MPs)
3.8. C-Reactive Protein (CRP)
3.9. Homocysteine
3.10. Endocan
Biomarkers | Sensitivity (95% CI) | Specificity (95% CI) | Advantages | Limitations | Ref. |
---|---|---|---|---|---|
D-dimer | >95% | 50–70% | high NPV for VTE exclusion; good AUC performance | relatively low specificity | [22,23,24,28,117] |
Fibrinogen degradation products (FDPs) | >90% | varied (30–90%) in different populations | high specificity for acute VTE; high NPV for subclinical VTE exclusion | low diagnostic accuracy in subclinical VTE | [37] |
Soluble P-selectin (sP-selectin) | >70% | >90% | high NPV for DVT exclusion | moderate diagnostic performance | [47,48,49] |
Thrombin–antithrombin complex (TAT) | >85% | >75% | high sensitivity; early signals | specificity is compromised under inflammatory or infectious conditions | [51,52,53] |
Plasmin–alpha2–antiplasmin complex (PAP) | >70% | >80% | high specificity and specificity for VTE diagnosis in malignant tumor patients | applications confined to specialized populations | [52,60,61] |
Prothrombin fragment F1+2 (F1+2) | >70% | >70% | highly sensitive to thrombus formation; early signals of hypercoagulability | elevated in various conditions; limited diagnostic accuracy in specific populations | [67,68,69] |
Microparticles (MPs) | >90% | approx. 50% | high effectiveness in PE diagnosis | influenced by other disease conditions; measurement limitations and variations in results | [82,84,86,88,89] |
C-reactive protein (CRP) | undefined | undefined | early diagnosis of acute-phase in VTE | influenced by various inflammatory conditions and not specific to VTE | [94,95,97] |
Homocysteine | undefined | undefined | strong association with unprovoked VTE | not specific to VTE and elevated in various disease conditions | [101,102,103,104] |
Endocan | >80% | 50–75% | early VTE detection; strong association with PE severity | low specificity; lack of standardized cutoff values | [112,113,114] |
4. Challenges and Future Directions for VTE Biomarkers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wendelboe, A.; Weitz, J.I. Global Health Burden of Venous Thromboembolism. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1007–1011. [Google Scholar] [CrossRef]
- Yamashita, Y.; Morimoto, T.; Kadota, K.; Takase, T.; Hiramori, S.; Kim, K.; Oi, M.; Akao, M.; Kobayashi, Y.; Toyofuku, M.; et al. Causes of long-term mortality in patients with venous thromboembolism in the real world: From the COMMAND VTE registry. Thromb. Res. 2022, 219, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Mahani, S.; DiCaro, M.V.; Tak, N.; Hartnett, S.; Cyrus, T.; Tak, T. Venous Thromboembolism: Current Insights and Future Directions. Int. J. Angiol. 2024, 33, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Kujovich, J.L. Factor V Leiden thrombophilia. Genet. Med. 2011, 13, 1–16. [Google Scholar] [CrossRef]
- Yıldız, E.; Türkmen, F.M. Factor V Leiden Mutation Frequency and Geographical Distribution in Turkish Population. J. Transl. Intern. Med. 2020, 8, 268–273. [Google Scholar] [CrossRef]
- Pastori, D.; Cormaci, V.M.; Marucci, S.; Franchino, G.; Del Sole, F.; Capozza, A.; Fallarino, A.; Corso, C.; Valeriani, E.; Menichelli, D.; et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int. J. Mol. Sci. 2023, 24, 3169. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.M.; Woller, S.C.; Bauer, K.A.; Kasthuri, R.; Cushman, M.; Streiff, M.; Lim, W.; Douketis, J.D. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J. Thromb. Thrombolysis 2016, 41, 154–164. [Google Scholar] [CrossRef]
- Giustozzi, M.; Vedovati, M.C.; Agnelli, G. Venous thromboembolism and COVID-19: Mind the gap between clinical epidemiology and patient management. Eur. J. Intern. Med. 2020, 82, 18–20. [Google Scholar] [CrossRef]
- Maughan, B.C.; Marin, M.; Han, J.; Gibbins, K.J.; Brixey, A.G.; Caughey, A.B.; Kline, J.A.; Jarman, A.F. Venous Thromboembolism during Pregnancy and the Postpartum Period: Risk Factors, Diagnostic Testing, and Treatment. Obstet. Gynecol. Surv. 2022, 77, 433–444. [Google Scholar] [CrossRef]
- Hobohm, L.; Keller, K.; Valerio, L.; Ni Ainle, F.; Klok, F.A.; Münzel, T.; Kucher, N.; Lankeit, M.; Konstantinides, S.V.; Barco, S. Fatality rates and use of systemic thrombolysis in pregnant women with pulmonary embolism. ESC Heart Fail. 2020, 7, 2365–2372. [Google Scholar] [CrossRef]
- Gervaso, L.; Dave, H.; Khorana, A.A. Venous and Arterial Thromboembolism in Patients with Cancer. JACC CardioOncol. 2021, 3, 173–190. [Google Scholar] [CrossRef]
- Hawbaker, S. Venous Thromboembolism in the Cancer Population: Pathology, Risk, and Prevention. J. Adv. Pract. Oncol. 2012, 3, 23–33. [Google Scholar] [PubMed]
- Merli, G.J. Pathophysiology of Venous Thrombosis and the Diagnosis of Deep Vein Thrombosis-Pulmonary Embolism in the Elderly. Cardiol. Clin. 2008, 26, 203–219. [Google Scholar] [CrossRef]
- Saha, P.; Humphries, J.; Modarai, B.; Mattock, K.; Waltham, M.; Evans, C.E.; Ahmad, A.; Patel, A.S.; Premaratne, S.; Lyons, O.T.; et al. Leukocytes and the natural history of deep vein thrombosis: Current concepts and future directions. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Senst, B.; Tadi, P.; Basit, H.; Jan, A. Hypercoagulability. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK538251/ (accessed on 1 June 2025).
- Nakashima, M.O.; Rogers, H.J. Hypercoagulable states: An algorithmic approach to laboratory testing and update on monitoring of direct oral anticoagulants. Blood Res. 2014, 49, 85. [Google Scholar] [CrossRef] [PubMed]
- Rosendaal, F.R. Venous thrombosis: A multicausal disease. Lancet 1999, 353, 1167–1173. [Google Scholar] [CrossRef]
- Xu, X.; Wang, B.; Ren, C.; Hu, J.; Greenberg, D.A.; Chen, T.; Xie, L.; Jin, K. Age-related Impairment of Vascular Structure and Functions. Aging Dis. 2017, 8, 590–610. [Google Scholar] [CrossRef]
- Halter, J.B.; Musi, N.; Horne, F.M.; Crandall, J.P.; Goldberg, A.; Harkless, L.; Hazzard, W.R.; Huang, E.S.; Kirkman, M.S.; Plutzky, J.; et al. Diabetes and Cardiovascular Disease in Older Adults: Current Status and Future Directions. Diabetes 2014, 63, 2578–2589. [Google Scholar] [CrossRef]
- Olson, J.D. D-dimer: An Overview of Hemostasis and Fibrinolysis, Assays, and Clinical Applications. Adv. Clin. Chem. 2015, 69, 1–46. [Google Scholar]
- Righini, M.; Perrier, A.; De Moerloose, P.; Bounameaux, H. D-Dimer for venous thromboembolism diagnosis: 20 years later. J. Thromb. Haemost. 2008, 6, 1059–1071. [Google Scholar] [CrossRef]
- Cohen, A.T.; Spiro, T.; Spyropoulos, A.C.; DeSanctis, Y.H.; Homering, M.; Büller, H.R.; Haskell, L.; Hu, D.; Hull, R.; Mebazaa, A.; et al. D-dimer as a predictor of venous thromboembolism in acutely ill, hospitalized patients: A subanalysis of the randomized controlled MAGELLAN trial. J. Thromb. Haemost. 2014, 12, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, S.; Heinze, G.; Kyrle, P.A. D-Dimer Levels Over Time and the Risk of Recurrent Venous Thromboembolism: An Update of the Vienna Prediction Model. J. Am. Heart Assoc. 2014, 3, e000467. [Google Scholar] [CrossRef]
- Di Minno, M.N.D.; Calcaterra, I.; Papa, A.; Lupoli, R.; Di Minno, A.; Maniscalco, M.; Ambrosino, P. Diagnostic accuracy of D-Dimer testing for recurrent venous thromboembolism: A systematic review with meta-analysis.: VTE recurrence and D-dimer. Eur. J. Intern. Med. 2021, 89, 39–47. [Google Scholar] [CrossRef]
- Thomas, D.P.; Niewiarowski, S.; Myers, A.R.; Bloch, K.J.; Colman, R.W. A comparative study of four methods for detecting fibrinogen degradation products in patients with various diseases. N. Engl. J. Med. 1970, 283, 663–668. [Google Scholar] [CrossRef]
- Riley, R.S.; Gilbert, A.R.; Dalton, J.B.; Pai, S.; McPherson, R.A. Widely Used Types and Clinical Applications of D-Dimer Assay. Lab. Med. 2016, 47, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Reber, G.; Moerloose, P.D. D-Dimer Assays for the Exclusion of Venous Thromboembolism. Semin. Thromb. Hemost. 2000, 26, 619–624. [Google Scholar] [CrossRef]
- Pulivarthi, S.; Gurram, M.K. Effectiveness of D-Dimer as a Screening Test for Venous Thromboembolism: An Update. N. Am. J. Med. Sci. 2014, 6, 491–499. [Google Scholar] [PubMed]
- Prisco, D.; Grifoni, E. The role of D-dimer testing in patients with suspected venous thromboembolism. Semin. Thromb. Hemost. 2009, 35, 50–59. [Google Scholar] [CrossRef]
- Di nisio, M.; Squizzato, A.; Rutjes, A.W.S.; Büller, H.R.; Zwinderman, A.H.; Bossuyt, P.M.M. Diagnostic accuracy of D-dimer test for exclusion of venous thromboembolism: A systematic review. J. Thromb. Haemost. 2007, 5, 296–304. [Google Scholar] [CrossRef]
- Franchini, M.; Focosi, D.; Pezzo, M.P.; Mannucci, P.M. How we manage a high D-dimer. Haematologica 2023, 109, 1035–1045. [Google Scholar] [CrossRef]
- Ay, C.; Dunkler, D.; Pirker, R.; Thaler, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012, 97, 1158–1164. [Google Scholar] [CrossRef]
- Bertsch, T.; Behringer, W.; Blaschke, S.; Body, R.; Davidson, S.; Müller-Olling, M.; Guo, G.; Rieger, A.; Wahl, A.; Horner, D.; et al. Deep vein thrombosis and pulmonary embolism: A prospective, observational study to evaluate diagnostic performance of the Tina-quant D-Dimer Gen.2 assay. Front. Cardiovasc. Med. 2023, 10, 1142465. [Google Scholar] [CrossRef] [PubMed]
- Tita-Nwa, F.; Bos, A.; Adjei, A.; Ershler, W.B.; Longo, D.L.; Ferrucci, L. Correlates of D-dimer in older persons. Aging Clin. Exp. Res. 2010, 22, 20–23. [Google Scholar] [CrossRef]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Moresco, R.N.; Vargas, L.C.R.; Voegeli, C.F.; Santos, R.C.V. D-dimer and its relationship to fibrinogen/fibrin degradation products (FDPs) in disorders associated with activation of coagulation or fibrinolytic systems. J. Clin. Lab. Anal. 2003, 17, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Wada, H.; Miyazaki, S.; Yamaguchi, T.; Wakabayashi, H.; Fujimoto, N.; Matsumoto, T.; Ohishi, K.; Sakaguchi, A.; Yamada, N.; et al. The Evaluation of Fibrin-Related Markers for Diagnosing or Predicting Acute or Subclinical Venous Thromboembolism in Patients Undergoing Major Orthopedic Surgery. Clin. Appl. Thromb. Hemost. 2018, 24, 107–114. [Google Scholar] [CrossRef]
- Flick, M.J.; Kangro, K.; Wolberg, A.S. Fibrinogen, Fibrin, and Fibrin Degradation Products in COVID-19. Curr. Drug Targets 2022, 23, 1593–1602. [Google Scholar] [CrossRef]
- Rai, R.; Skbasu, B.; Jaiprakash, M. Fibrin and Fibrinogen Degradation Products in Malignancy. Med. J. Armed Forces India 2017, 52, 32–34. [Google Scholar] [CrossRef]
- Hayakawa, M. Dynamics of fibrinogen in acute phases of trauma. J. Intensive Care 2017, 5, 3. [Google Scholar] [CrossRef]
- Gaffney, P.J. Fibrin Degradation Products. Ann. N. Y. Acad. Sci. 2001, 936, 594–610. [Google Scholar] [CrossRef]
- Popescu, N.I.; Lupu, C.; Lupu, F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022, 139, 1973–1986. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Handa, M.; Araki, Y.; Ambo, H.; Kawai, Y.; Watanabe, K.; Ikeda, Y. Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome. Br. J. Haematol. 1993, 84, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Panicker, S.R.; Mehta-D’souza, P.; Zhang, N.; Klopocki, A.G.; Shao, B.; McEver, R.P. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood 2017, 130, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Furie, B.; Furie, B.C. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol. Med. 2004, 10, 171–178. [Google Scholar] [CrossRef]
- McEver, R.P. Selectins: Initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 2015, 107, 331–339. [Google Scholar] [CrossRef]
- Riva, N.; Vella, K.; Hickey, K.; Bertù, L.; Zammit, D.; Spiteri, S.; Kitchen, S.; Makris, M.; Ageno, W.; Gatt, A. Biomarkers for the diagnosis of venous thromboembolism: D-dimer, thrombin generation, procoagulant phospholipid and soluble P-selectin. J. Clin. Pathol. 2018, 71, 1015–1022. [Google Scholar] [CrossRef]
- Ramacciotti, E.; Blackburn, S.; Hawley, A.E.; Vandy, F.; Ballard-Lipka, N.; Stabler, C.; Baker, N.; Guire, K.E.; Rectenwald, J.E.; Henke, P.K.; et al. Evaluation of Soluble P-selectin for the Diagnosis of Deep Venous Thrombosis. Clin. Appl. Thromb. Hemost. 2011, 17, 425–431. [Google Scholar] [CrossRef]
- Ay, C.; Simanek, R.; Vormittag, R.; Dunkler, D.; Alguel, G.; Koder, S.; Kornek, G.; Marosi, C.; Wagner, O.; Zielinski, C.; et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008, 112, 2703–2708. [Google Scholar] [CrossRef]
- Harenberg, J. Thrombin-antithrombin (TAT) complexes. In Laboratory Techniques in Thrombosis—A Manual; Springer: Dordrecht, The Netherlands, 1999; pp. 209–216. Available online: https://link.springer.com/chapter/10.1007/978-94-011-4722-4_22 (accessed on 29 May 2025).
- Cheng, Y.; Liu, J.; Su, Y.; Zhao, H.; Zhao, Y.; Wen, M.; Lu, S.; Zhang, W.; Wu, J. Clinical Impact of Coagulation and Fibrinolysis Markers for Predicting Postoperative Venous Thromboembolism in Total Joint Arthroplasty Patients. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619877458. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, J.; Zheng, Z.-R.; Zhou, Y.-Z.; Zhou, X.; Wang, L.-D.; Suo, B.; Jiang, X.-F.; Liu, P.-J.; Wang, D.-H. Diagnostic and Prognostic Value of TAT, PIC, TM, and t-PAIC in Malignant Tumor Patients with Venous Thrombosis. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620971041. [Google Scholar] [CrossRef]
- Reda, S.; Schwarz, N.; Müller, J.; McRae, H.L.; Oldenburg, J.; Pötzsch, B.; Rühl, H. Fibrinolysis biomarker, thrombin, and activated protein C level alterations after coagulation activation depend on type of thrombophilia and clinical phenotype. Res. Pract. Thromb. Haemost. 2024, 8, 102351. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Xu, H.; Ling, C.; Xue, T. Early identification of lung cancer patients with venous thromboembolism: Development and validation of a risk prediction model. Thromb. J. 2023, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Heerink, J.S.; Gemen, E.; Oudega, R.; Geersing, G.-J.; Hopstaken, R.; Kusters, R. Performance of C-Reactive Protein, Procalcitonin, TAT Complex, and Factor VIII in Addition to D-Dimer in the Exclusion of Venous Thromboembolism in Primary Care Patients. J. Appl. Lab. Med. 2022, 7, 444–455. [Google Scholar] [CrossRef]
- Hansen, J.-B.; Fernández, J.A.; Borch, K.H.; Griffin, J.H.; Brox, J.H.; Braekkan, S.K. Activated Protein C Plasma Levels in the Fasting and Postprandial States among Patients with Previous Unprovoked Venous Thromboembolism. Thromb. Res. 2012, 129, 502–507. [Google Scholar] [CrossRef]
- Schaller, J.; Gerber, S.S. The plasmin-antiplasmin system: Structural and functional aspects. Cell Mol. Life Sci. 2010, 68, 785–801. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, W.M.; Macy, E.; Cornell, E.S.; Nightingale, S.D.; Pearce, L.A.; Tracy, R.P.; Bovill, E.G. Plasmin-alpha2-antiplasmin complex in patients with atrial fibrillation. Stroke Prevention in Atrial Fibrillation Investigators. Thromb. Haemost. 1999, 82, 100–103. [Google Scholar] [CrossRef]
- Abdul, S.; Leebeek, F.W.; Rijken, D.C.; Uitte de Willige, S. Natural heterogeneity of α2-antiplasmin: Functional and clinical consequences. Blood 2016, 127, 538–545. [Google Scholar] [CrossRef]
- Baráth, B.; Bogáti, R.; Miklós, T.; Kállai, J.; Mezei, Z.A.; Bereczky, Z.; Muszbek, L.; Katona, É. Effect of α2-plasmin inhibitor heterogeneity on the risk of venous thromboembolism. Thromb. Res. 2021, 203, 110–116. [Google Scholar] [CrossRef]
- Ma, J.; Tang, Y.; Zhou, J.; Zhao, A.; Shi, J. Plasmin-Antiplasmin Complex as a New Predictive Marker of Postoperative Venous Thromboembolism in Patients with Gynecologic Malignancy. Clin. Appl. Thromb. Hemost. 2025, 31, 10760296251324918. [Google Scholar] [CrossRef]
- Folsom, A.R.; Cushman, M.; Heckbert, S.R.; Rosamond, W.D.; Aleksic, N. Prospective study of fibrinolytic markers and venous thromboembolism. J. Clin. Epidemiol. 2003, 56, 598–603. [Google Scholar] [CrossRef]
- Haeberli, A. Prothrombin fragment F 1 + 2. In Laboratory Techniques in Thrombosis—A Manual; Jespersen, J., Bertina, R.M., Haverkate, F., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 217–222. Available online: http://link.springer.com/10.1007/978-94-011-4722-4_23 (accessed on 29 May 2025).
- Van Es, J.; Biere-Rafi, S.; Ahdi, M.; Kamphuisen, P.W.; Meijers, J.C.M.; Gerdes, V.E.A. Urinary prothrombin fragment 1 + 2 in patients with venous thrombosis and myocardial infarction. J. Thromb. Thrombolysis 2013, 36, 47–49. [Google Scholar] [CrossRef]
- Ota, S.; Wada, H.; Abe, Y.; Yamada, E.; Sakaguchi, A.; Nishioka, J.; Hatada, T.; Ishikura, K.; Yamada, N.; Sudo, A.; et al. Elevated levels of prothrombin fragment 1 + 2 indicate high risk of thrombosis. Clin. Appl. Thromb. Hemost. 2008, 14, 279–285. [Google Scholar] [CrossRef]
- McRae, H.L.; Horchler, M.; Schwarz, N.; Oldenburg, J.; Pötzsch, B.; Rühl, H.; Müller, J. Higher D-Dimer and Prothrombin Fragment 1 + 2 in Patients Taking Direct Oral Anticoagulants As Compared to Vitamin K Antagonists. Blood 2024, 144, 1251. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, G.; Yan, J.; Wu, L.; Wang, F.; Ding, D.; Wang, H.; Jin, Q. Plasminogen activator inhibitor-1, thrombin-antithrombin, and prothrombin fragment F 1 + 2 have higher diagnostic values than D-dimer for venous thromboembolism after TKA. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221097383. [Google Scholar] [CrossRef]
- Zotz, R.B.; Gerhardt, A.; Marzotko, S.; Wagner, K.J.; Bender, H.G.; Scharf, R.E. Elevated Prothrombin Fragment F 1 + 2 Levels during Pregnancy in Women with Previous Venous Thromboembolism. Blood 2004, 104, 1055. [Google Scholar] [CrossRef]
- Lundbech, M.; Krag, A.E.; Christensen, T.D.; Hvas, A.-M. Thrombin generation, thrombin-antithrombin complex, and prothrombin fragment F 1 + 2 as biomarkers for hypercoagulability in cancer patients. Thromb. Res. 2020, 186, 80–85. [Google Scholar] [CrossRef]
- Ay, C.; Vormittag, R.; Dunkler, D.; Simanek, R.; Chiriac, A.-L.; Drach, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. D-Dimer and Prothrombin Fragment 1 + 2 Predict Venous Thromboembolism in Patients with Cancer: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2009, 27, 4124–4129. [Google Scholar] [CrossRef]
- Kondo, S.; Sasaki, M.; Hosoi, H.; Sakamoto, Y.; Morizane, C.; Ueno, H.; Okusaka, T. Incidence and risk factors for venous thromboembolism in patients with pretreated advanced pancreatic carcinoma. Oncotarget 2018, 9, 16883–16890. [Google Scholar] [CrossRef]
- Okamoto, K.; Takaki, A.; Takeda, S.; Katoh, H.; Ohsato, K. Coagulopathy in disseminated intravascular coagulation due to abdominal sepsis: Determination of prothrombin fragment 1 + 2 and other markers. Pathophysiol. Haemost. Thromb. 1992, 22, 17–24. [Google Scholar] [CrossRef]
- Caspers, M.; Schäfer, N.; Bouillon, B.; Schaeben, V.; Ciorba, M.C.; Maegele, M.; Müller, J.; Pötzsch, B. Plasmatic coagulation profile after major traumatic injury: A prospective observational study. Eur. J. Trauma. Emerg. Surg. 2022, 48, 4595–4606. [Google Scholar] [CrossRef]
- Arfan, S.; Zamzam, A.; Syed, M.H.; Jain, S.; Jahanpour, N.; Abdin, R.; Qadura, M. The Clinical Utility of D-Dimer and Prothrombin Fragment (F 1 + 2) for Peripheral Artery Disease: A Prospective Study. Biomedicines 2022, 10, 878. [Google Scholar] [CrossRef]
- PárAmo, J.; Orbe, J.; Beloqui, O.; Benito, A.; Colina, I.; Martinez-Vila, E.; Diez, J. Prothrombin Fragment 1 + 2 Is Associated with Carotid Intima-Media Thickness in Subjects Free of Clinical Cardiovascular Disease. Stroke 2004, 35, 1085–1089. [Google Scholar] [CrossRef]
- Borgen, P.O.; Reikeras, O. Prothrombin fragment F 1 + 2 in plasma and urine during total hip arthroplasty. J. Orthop. 2017, 14, 475–479. [Google Scholar] [CrossRef]
- Mege, D.; Mezouar, S.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Microparticles and cancer thrombosis in animal models. Thromb. Res. 2016, 140, S21–S26. [Google Scholar] [CrossRef]
- Ridger, V.C.; Boulanger, C.M.; Angelillo-Scherrer, A.; Badimon, L.; Blanc-Brude, O.; Bochaton-Piallat, M.L.; Boilard, E.; Buzas, E.I.; Caporali, A.; Dignat-George, F.; et al. Microvesicles in vascular homeostasis and diseases: Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb. Haemost. 2017, 117, 1296–1316. [Google Scholar] [CrossRef]
- Gieseler, F.; Gamperl, H.; Theophil, F.; Stenzel, I.; Quecke, T.; Ungefroren, H.; Lehnert, H. Using annexin V-coated magnetic beads to capture active tissue factor-bearing microparticles from body fluids. Cell Biol. Int. 2014, 38, 277–281. [Google Scholar] [CrossRef]
- Morel, O.; Jesel, L.; Freyssinet, J.-M.; Toti, F. Cellular Mechanisms Underlying the Formation of Circulating Microparticles. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 15–26. [Google Scholar] [CrossRef]
- Camoin-Jau, L.; Sabatier, F.; Arnoux, D.; Anfosso, F.; Bardin, N.; Veit, V.; Combes, V.; Gentile, S.; Moal, V.; Sanmarco, M.; et al. Endothelial microparticles: A potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb. Haemost. 2004, 91, 667–673. [Google Scholar] [CrossRef]
- Bal, L.; Ederhy, S.; Di Angelantonio, E.; Toti, F.; Zobairi, F.; Dufaitre, G.; Meuleman, C.; Mallat, Z.; Boccara, F.; Tedgui, A.; et al. Circulating procoagulant microparticles in acute pulmonary embolism: A case-control study. Int. J. Cardiol. 2010, 145, 321–322. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Su, Y.; Zhao, H.; Zhao, Y.; Wen, M.; Lu, S.; Cao, X.; Zhang, W.; Liu, L.; et al. Annexin V− and tissue factor+ microparticles as biomarkers for predicting deep vein thrombosis in patients after joint arthroplasty. Clin. Chim. Acta 2022, 536, 169–179. [Google Scholar] [CrossRef]
- Campello, E.; Spiezia, L.; Radu, C.M.; Simioni, P. Microparticles as Biomarkers of Venous Thromboembolic Events. Biomark. Med. 2016, 10, 743–755. [Google Scholar] [CrossRef]
- Geddings, J.E.; Mackman, N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013, 122, 1873–1880. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Y.; Xu, L.; Xiao, L.; Yue, Y.; Liu, S.; Huang, Q.; Li, S.; Li, Y. Diagnostic value of platelet-derived microparticles in pulmonary thromboembolism: A population-based study. Exp. Ther. Med. 2018, 16, 3099–3106. [Google Scholar] [CrossRef]
- Ghozlan, M.F.; Osman, A.A.; Mahmoud, H.M.; Eissa, D.G.; Abuelela, S. Comprehensive study on laboratory biomarkers for prediction and diagnosis of deep venous thrombosis. Blood Coagul. Fibrinolysis 2015, 26, 255–260. [Google Scholar] [CrossRef]
- Anghel, L.; Sascău, R.; Radu, R.; Stătescu, C. From Classical Laboratory Parameters to Novel Biomarkers for the Diagnosis of Venous Thrombosis. Int. J. Mol. Sci. 2020, 21, 1920. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Heresi, G.A.; Velasquez, H.; Jy, W.; Jimenez, J.J.; Ahn, E.; Horstman, L.L.; Soriano, A.O.; Zambrano, J.P.; Ahn, Y.S. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 2005, 45, 1467–1471. [Google Scholar] [CrossRef]
- Dix, C.; Zeller, J.; Stevens, H.; Eisenhardt, S.U.; Shing, K.S.C.T.; Nero, T.L.; Morton, C.J.; Parker, M.W.; Peter, K.; McFadyen, J.D. C-reactive protein, immunothrombosis and venous thromboembolism. Front. Immunol. 2022, 13, 1002652. [Google Scholar] [CrossRef]
- Braig, D.; Nero, T.L.; Koch, H.-G.; Kaiser, B.; Wang, X.; Thiele, J.R.; Morton, C.J.; Zeller, J.; Kiefer, J.; Potempa, L.A.; et al. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat. Commun. 2017, 8, 14188. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Kiefer, J.; Braig, D.; Loseff-Silver, J.; Potempa, L.A.; Eisenhardt, S.U.; Peter, K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front. Immunol. 2018, 9, 1351. [Google Scholar] [CrossRef]
- Jackson, S.P.; Darbousset, R.; Schoenwaelder, S.M. Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019, 133, 906–918. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seidu, S.; Blom, A.W.; Khunti, K.; Laukkanen, J.A. Serum C-reactive protein increases the risk of venous thromboembolism: A prospective study and meta-analysis of published prospective evidence. Eur. J. Epidemiol. 2017, 32, 657–667. [Google Scholar] [CrossRef]
- Grimnes, G.; Isaksen, T.; Tichelaar, Y.I.G.V.; Brox, J.; Brækkan, S.K.; Hansen, J.-B. C-reactive protein and risk of venous thromboembolism: Results from a population-based case-crossover study. Haematologica 2018, 103, 1245–1250. [Google Scholar] [CrossRef]
- Wuillemin, W.A.; Caliezi, C.; Riesen, W.F.; Korte, W.C. CRP measured by a high sensitivity assay correlates with clinical probability (Wells score) testing for deep venous thrombosis. Thromb. Haemost. 2004, 91, 841–842. [Google Scholar] [CrossRef]
- Roumen-Klappe, E.M.; den Heijer, M.; van Uum, S.H.; van der Ven-Jongekrijg, J.; van der Graaf, F.; Wollersheim, H. Inflammatory response in the acute phase of deep vein thrombosis. J. Vasc. Surg. 2002, 35, 701–706. [Google Scholar] [CrossRef]
- Welch, G.N.; Loscalzo, J. Homocysteine and atherothrombosis. N. Engl. J. Med. 1998, 338, 1042–1050. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Alonso-Iglesias, E. Homocysteine as a Biomarker in Vascular Disease. In Biomarkers in Cardiovascular Disease; Springer: Dordrecht, The Netherlands, 2015; pp. 1–26. Available online: https://link.springer.com/referenceworkentry/10.1007/978-94-007-7741-5_11-1 (accessed on 3 June 2025).
- Brożek, J.; Szczeklik, A.; Undas, A. Homocysteine and thrombosis: From basic science to clinical evidence. Thromb. Haemost. 2005, 94, 907–915. [Google Scholar] [CrossRef]
- Aday, A.W.; Duran, E.K.; Van Denburgh, M.; Kim, E.; Christen, W.G.; Manson, J.E.; Ridker, P.M.; Pradhan, A.D. Homocysteine Is Associated with Future Venous Thromboembolism in Two Prospective Cohorts of Women. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2215–2224. [Google Scholar] [CrossRef]
- Herrmann, M.; Whiting, M.J.; Veillard, A.-S.; Ehnholm, C.; Sullivan, D.R.; Keech, A.C. Plasma homocysteine and the risk of venous thromboembolism: Insights from the FIELD study. Clin. Chem. Lab. Med. 2012, 50, 2213–2219. [Google Scholar] [CrossRef]
- Ekim, M.; Ekim, H.; Yılmaz, Y.K.; Külah, B.; Polat, M.F.; Göçmen, A.Y. Study on relationships among deep vein thrombosis, homocysteine & related B group vitamins. Pak. J. Med. Sci. 2015, 31, 398–402. [Google Scholar]
- Ducros, V.; Barro, C.; Yver, J.; Pernod, G.; Polack, B.; Carpentier, P.; Desruet, M.-D.; Bosson, J.-L. Should plasma homocysteine be used as a biomarker of venous thromboembolism? A case-control study. Clin. Appl. Thromb. Hemost. 2009, 15, 517–522. [Google Scholar] [CrossRef]
- González-Lamuño, D.; Arrieta-Blanco, F.J.; Fuentes, E.D.; Forga-Visa, M.T.; Morales-Conejo, M.; Peña-Quintana, L.; Vitoria-Miñana, I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2023, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Moll, S.; Varga, E.A. Homocysteine and MTHFR Mutations. Circulation 2015, 132, e6–e9. Available online: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.114.013311. [CrossRef]
- Lassalle, P.; Molet, S.; Janin, A.; Van der Heyden, J.; Tavernier, J.; Fiers, W.; Devos, R.; Tonnel, A.-B. ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines. J. Biol. Chem. 1996, 271, 20458–20464. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, P.; Wang, J.; Song, J. Roles of endothelial cell specific molecule-1 in tumor angiogenesis (Review). Oncol Lett. 2024, 27, 137. [Google Scholar] [CrossRef]
- Rocha, S.F.; Schiller, M.; Jing, D.; Li, H.; Butz, S.; Vestweber, D.; Biljes, D.; Drexler, H.C.; Nieminen-Kelhä, M.; Vajkoczy, P.; et al. Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ. Res. 2014, 115, 581–590. [Google Scholar] [CrossRef]
- Kanbay, A.; Ceylan, E.; Köseoğlu, H.I.; Çalışkan, M.; Takir, M.; Tulu, S.; Çaklılı, O.T.; Köstek, O.; Erek, A.; Afsar, B. Endocan: A novel predictor of endothelial dysfunction in obstructive sleep apnea syndrome. Clin Respir. J. 2018, 12, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Fang, F.; Li, K.; Zhang, H.; Zhang, M.; Zhang, L.; Li, J.; Qin, Y.; Wei, Y. Circulating ESM-1 levels are correlated with the presence of coronary artery disease in patients with obstructive sleep apnea. Respir. Res. 2019, 20, 188. [Google Scholar] [CrossRef]
- Güzel, A.; Duran, L.; Köksal, N.; Torun, A.Ç.; Alaçam, H.; Ekiz, B.C.; Murat, N. Evaluation of serum endothelial cell specific molecule-1 (endocan) levels as a biomarker in patients with pulmonary thromboembolism. Blood Coagul. Fibrinolysis 2014, 25, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Kuluöztürk, M.; İn, E.; İ;lHan, N. Endocan as a marker of disease severity in pulmonary thromboembolism. Clin. Respir. J. 2019, 13, 773–780. [Google Scholar] [CrossRef]
- Chenevier-Gobeaux, C.; Ducastel, M.; Meritet, J.-F.; Ballaa, Y.; Chapuis, N.; Pene, F.; Carlier, N.; Roche, N.; Szwebel, T.-A.; Terrier, B.; et al. Plasma Endocan as a Biomarker of Thrombotic Events in COVID-19 Patients. J. Clin. Med. 2022, 11, 5560. [Google Scholar] [CrossRef]
- Mosevoll, K.A.; Lindås, R.; Wendelbo, Ø.; Bruserud, Ø.; Reikvam, H. Systemic levels of the endothelium-derived soluble adhesion molecules endocan and E-selectin in patients with suspected deep vein thrombosis. SpringerPlus 2014, 3, 571. Available online: https://pubmed.ncbi.nlm.nih.gov/25332871/ (accessed on 21 November 2023). [CrossRef] [PubMed]
- Gkana, A.; Papadopoulou, A.; Mermiri, M.; Beltsios, E.; Chatzis, D.; Malli, F.; Adamou, A.; Gourgoulianis, K.; Mavrovounis, G.; Pantazopoulos, I. Contemporary Biomarkers in Pulmonary Embolism Diagnosis: Moving beyond D-Dimers. J. Pers. Med. 2022, 12, 1604. [Google Scholar] [CrossRef] [PubMed]
- Koch, V.; Biener, M.; Müller-Hennessen, M.; Vafaie, M.; Staudacher, I.; A Katus, H.; Giannitsis, E. Diagnostic performance of D-dimer in predicting venous thromboembolism and acute aortic dissection. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hou, J.; Li, W.; Chen, J.; Li, Y.; Zhang, J.; Zhou, W.; Zhang, W.; Deng, F.; Wang, Y.; et al. Construction and optimization of a polygenic risk model for venous thromboembolism in the Chinese population. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101666. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Lu, J.; Chen, C. Biomarkers in Venous Thrombosis: Diagnostic Potential and Limitations. Biology 2025, 14, 800. https://doi.org/10.3390/biology14070800
Chang Y, Lu J, Chen C. Biomarkers in Venous Thrombosis: Diagnostic Potential and Limitations. Biology. 2025; 14(7):800. https://doi.org/10.3390/biology14070800
Chicago/Turabian StyleChang, Yijin, Jiahao Lu, and Changsheng Chen. 2025. "Biomarkers in Venous Thrombosis: Diagnostic Potential and Limitations" Biology 14, no. 7: 800. https://doi.org/10.3390/biology14070800
APA StyleChang, Y., Lu, J., & Chen, C. (2025). Biomarkers in Venous Thrombosis: Diagnostic Potential and Limitations. Biology, 14(7), 800. https://doi.org/10.3390/biology14070800