Predictions of the Chinese Forest Frog (Rana chensinensis) Distribution Pattern Under Climate Change up to 2090s
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data Collection and Processing
2.2. Sources and Processing of Environmental Data
2.3. Species Distribution Modeling and Model Optimization
2.4. Evaluation of Modeling
2.5. Center of Gravity Migration
3. Results
3.1. Validation and Comparison of Models
3.2. Importance of Environmental Variables
3.3. Potential Distribution
3.4. Potential Changes in the Distribution Under Future Scenarios
4. Discussion
4.1. Environmental Variable Predictors and Model Performance
4.2. Response of the Spatial Distribution Pattern of the Chinese Forest Frog to Climate Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef]
- Hou, J.; Xiang, J.; Li, D.; Liu, X. Prediction of potential suitable distribution areas of Quasipaa spinosa in China based on maxent optimization model. Biology 2023, 12, 366. [Google Scholar] [CrossRef]
- Winter, M.; Fiedler, W.; Hochachka, W.M.; Koehncke, A.; Meiri, S.; De la Riva, I. Patterns and biases in climate change research on amphibians and reptiles: A systematic review. R. Soc. Open Sci. 2016, 3, 160158. [Google Scholar] [CrossRef]
- Alan Pounds, J.; Bustamante, M.R.; Coloma, L.A.; Consuegra, J.A.; Fogden, M.P.; Foster, P.N.; La Marca, E.; Masters, K.L.; Merino-Viteri, A.; Puschendorf, R.; et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167. [Google Scholar] [CrossRef]
- Bendik, N.F.; Gluesenkamp, A.G. Body length shrinkage in an endangered amphibian is associated with drought. J. Zool. 2013, 290, 35–41. [Google Scholar] [CrossRef]
- Caruso, N.M.; Sears, M.W.; Adams, D.C.; Lips, K.R. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 2014, 20, 1751–1759. [Google Scholar] [CrossRef]
- Sheridan, J.A.; Caruso, N.M.; Apodaca, J.J.; Rissler, L.J. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecol. Evol. 2018, 8, 1316–1327. [Google Scholar] [CrossRef]
- Araújo, M.B.; Thuiller, W.; Pearson, R.G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 2006, 33, 1712–1728. [Google Scholar] [CrossRef]
- Milanovich, J.R.; Peterman, W.E.; Nibbelink, N.P.; Maerz, J.C. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change. PLoS ONE 2010, 5, e12189. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.M.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The impact of conservation on the status of the world’s vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef]
- Collins, J.P.; Storfer, A. Global amphibian declines: Sorting the hypotheses. Divers. Distrib. 2003, 9, 89–98. [Google Scholar] [CrossRef]
- Grant, E.H.C.; Miller, D.A.W.; Schmidt, B.R.; Adams, M.J.; Amburgey, S.M.; Chambert, T.; Cruickshank, S.S.; Fisher, R.N.; Green, D.M.; Hossack, B.R.; et al. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci. Rep. 2016, 6, 25625. [Google Scholar] [CrossRef]
- Bertrand, R.; Perez, V.; Gégout, J.-C. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: The case of Quercus pubescens in France. Glob. Change Biol. 2012, 18, 2648–2660. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Latimer, A.M.; Wu, S.; Gelfand, A.E.; Silander, J.A., Jr. Building statistical models to analyze species distributions. Ecol. Appl. 2006, 16, 33–50. [Google Scholar] [CrossRef]
- Venne, S.; Currie, D.J. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers. Distrib. 2021, 27, 873–886. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Shen, H.; Xu, M.; Yang, X.; Chen, Z.; Xiao, N.; Chen, X. A new brown frog of the genus Rana (Anura, Ranidae) from North China, with a taxonomic revision of the R. chensinensis species group. Asian Herpetol. Res. 2022, 13, 145–158. [Google Scholar] [CrossRef]
- Zhou, W.; Wen, Y.; Fu, J.; Xu, Y.; Jin, J.; Ding, L.; Min, M.; Che, J.; Zhang, Y. Speciation in the Rana chensinensis species complex and its relationship to the uplift of the Qinghai–Tibetan Plateau. Mol. Ecol. 2012, 21, 960–973. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Xu, Z.; Chai, L.; Wang, H. Variation in the sensitivity of intestine and skin of Bufo gargarizans and Rana chensinensis tadpoles in relation to zinc exposure. Chemosphere 2024, 363, 142874. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhu, K.; Dong, Y.; Cui, H.; Mao, L.; Xu, X.; Zhou, H. Acute toxicity, antioxidant, and antifatigue activities of protein-rich extract from Oviductus ranae. Oxidative Med. Cell. Longev. 2018, 2018, 9021371. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.; Ye, X.; Fan, B. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, X.; Liu, M.; Liu, X.; Tao, J. Species distribution models of the Spartina alterniflora loisel in its origin and invasive country reveal an ecological niche shift. Front. Plant Sci. 2021, 12, 738769. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Virkkala, R.; Leikola, N.; Kujala, H.; Kivinen, S.; Hurskainen, P.; Kuusela, S.; Valkama, J.; Heikkinen, R.K. Developing fine-grained nationwide predictions of valuable forests using biodiversity indicator bird species. Ecol. Appl. 2022, 32, e2505. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Burgio, K.R.; Dougherty, E.R.; Phillips, A.J.; Bueno, V.M.; Clements, C.F.; Castaldo, G.; Dallas, T.A.; Cizauskas, C.A.; Cumming, G.S.; et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 2017, 3, e1602422. [Google Scholar] [CrossRef]
- Chen, Q.; Yin, Y.; Zhao, R.; Yang, Y.; Teixeira da Silva, J.A.; Yu, X. Incorporating local adaptation into species distribution modeling of Paeonia mairei, an endemic plant to China. Front. Plant Sci. 2020, 10, 1717. [Google Scholar] [CrossRef]
- Deka, M.A.; Morshed, N. Mapping disease transmission risk of Nipah Virus in South and Southeast Asia. Trop. Med. Infect. Dis. 2018, 3, 57. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.J.; Zhang, Y.L.; Xu, X.Q. Current situation, global potential distribution and evolution of six almond species in China. Front. Plant Sci. 2021, 12, 619883. [Google Scholar] [CrossRef]
- Bai, J.; Wang, H.; Hu, Y. Prediction of potential suitable distribution of Liriodendron chinense (hemsl.) sarg. in China based on future climate change using the optimized maxent model. Forests 2024, 15, 988. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Razgour, O.; Taggart, J.B.; Manel, S.; Juste, J.; Ibáñez, C.; Rebelo, H.; Alberdi, A.; Jones, G.; Park, K. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 2018, 18, 18–31. [Google Scholar] [CrossRef]
- Yang, L.; Huang, L.; Zhang, H.; Lee, P.; Zhang, N.; Cai, R.; Li, E.; Pan, T.; Wu, X. Habitat suitability and distribution pattern response to global climate change in a widespread species, the Asiatic toad (Bufo gargarizans). Asian Herpetol. Res. 2023, 14, 138–146. [Google Scholar] [CrossRef]
- Xia, X.; Li, Y.; Yang, D.-D.; Pi, Y.-Y. Potential geographical distribution of Rana hanluica in China under climate change. Chin. J. Appl. Ecol. 2021, 32, 4307–4314. [Google Scholar] [CrossRef]
- Ward-Fear, G.; Brown, G.P.; Pearson, D.J.; West, A.; Rollins, L.A.; Shine, R. The ecological and life history correlates of boldness in free-ranging lizards. Ecospher 2018, 9, e02125. [Google Scholar] [CrossRef]
- Zhang, X.; Othman, S.N.; Kohler, D.B.; Wu, Z.; Wang, Z.; Borzée, A. Combined climate change and dispersal capacity positively affect Hoplobatrachus chinensis occupancy of agricultural wetlands. Iscience 2024, 27, 110732. [Google Scholar] [CrossRef]
- Jolivet, A.; Chauvaud, L.; Thébault, J.; Robson, A.A.; Dumas, P.; Amos, G.; Lorrain, A. Circadian behaviour of Tectus (Trochus) niloticus in the southwest Pacific inferred from accelerometry. Mov. Ecol. 2015, 3, 26. [Google Scholar] [CrossRef]
- Beck, C.W.; Congdon, J.D. Effects of age and size at metamorphosis on performance and metabolic rates of Southern Toad, Bufo terrestris, metamorphs. Funct. Ecol. 2000, 14, 32–38. [Google Scholar] [CrossRef]
- Bickford, D.; Howard, S.D.; Ng, D.J.J.; Sheridan, J.A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 2010, 19, 1043–1062. [Google Scholar] [CrossRef]
- Wassersug, R.J.; Feder, M.E. The effects of aquatic oxygen concentration, body size and respiratory behaviour on the stamina of obligate aquatic (Bufo americanus) and facultative air-breathing (Xenopus laevis and Rana berlandieri) anuran larvae. J. Exp. Biol. 1983, 105, 173–190. [Google Scholar] [CrossRef]
- Raxworthy, C.J.; Pearson, R.G.; Rabibisoa, N.; Rakotondrazafy, A.M.; Ramanamanjato, J.; Raselimanana, A.P.; Wu, S.; Nussbaum, R.A.; Stone, D.A. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 2008, 14, 1703–1720. [Google Scholar] [CrossRef]
Environmental Variables | Description | Unit |
---|---|---|
Bio1 | Annual mean temperature | °C |
Bio2 | Mean diurnal range | °C |
Bio3 | Isothermality | - |
Bio4 | Temperature seasonality | - |
Bio5 | Max temperature of warmest month | °C |
Bio6 | Min temperature of coldest month | °C |
Bio7 | Temperature annual range | °C |
Bio8 | Mean temperature of wettest quarter | °C |
Bio9 | Mean temperature of driest quarter | °C |
Bio10 | Mean temperature of warmest quarter | °C |
Bio11 | Mean temperature of coldest quarter | °C |
Bio12 | Annual precipitation | mm |
Bio13 | Precipitation of wettest month | mm |
Bio14 | Precipitation of driest month | mm |
Bio15 | Precipitation seasonality | - |
Bio16 | Precipitation of wettest quarter | mm |
Bio17 | Precipitation of driest quarter | mm |
Bio18 | Precipitation of warmest quarter | mm |
Bio19 | Precipitation of coldest quarter | mm |
Ele | Altitude | m |
People | Human footprint | - |
NDVI | Mean normalized vegetation index value, 2010–2019 | - |
Waterway | Euclidean distance to waterways | - |
Roads | Euclidean distance to roads | - |
Type | FC | RM | Delta AICc | Avg. Diff. AUC |
---|---|---|---|---|
Default | LQHTP | 1 | 0 | 0.07957 |
Optimized | LQHTP | 1 | 0 | 0.07957 |
Period | Current | 2050s-SSP126 | 2050s-SSP585 | 2090s-SSP126 | 2090s-SSP585 |
---|---|---|---|---|---|
Mean ± SD | 0.641 ± 0.0567 | 0.816 ± 0.0353 | 0.835 ± 0.0314 | 0.825 ± 0.0251 | 0.842 ± 0.0168 |
Environmental Variables | Description | Unit | PC (%) | PI (%) |
---|---|---|---|---|
Bio3 | Isothermality | - | 10.1 | 9.8 |
Bio4 | Temperature seasonality | - | 5 | 8.5 |
Bio9 | Mean temperature of driest quarter | °C | 7.4 | 6.2 |
Bio10 | Mean temperature of warmest quarter | °C | 28.1 | 18.6 |
Bio12 | Annual precipitation | mm | 7.3 | 12.7 |
Bio15 | Precipitation seasonality | - | 7.8 | 4.2 |
People | Human footprint | 19.4 | 18.6 | |
NDVI | Mean normalized vegetation index value from 2010 to 2019 | - | 11.5 | 17.2 |
Waterway | Euclidean distance to waterways | - | 3.4 | 4 |
Roads | Euclidean distance to roads | - | 0.1 | 0.1 |
Periods | Low Suitability | Medium Suitability | High Suitability | All Suitability Areas | ||||
---|---|---|---|---|---|---|---|---|
Area | Percentage | Area | Percentage | Area | Percentage | Area | Percentage | |
Current | 267 | 62.68 | 126 | 29.58 | 33 | 7.75 | 426 | 44.34 |
2050s-SSP126 | 143 | 66.51 | 46 | 21.40 | 26 | 12.09 | 215 | 22.43 |
2050s-SSP585 | 131 | 64.53 | 45 | 22.17 | 27 | 13.30 | 203 | 21.15 |
2090s-SSP126 | 129 | 65.15 | 44 | 22.22 | 25 | 12.63 | 198 | 20.66 |
2090s-SSP585 | 160 | 65.31 | 58 | 23.67 | 27 | 11.02 | 245 | 25.54 |
Periods | Area (×104 km2) | Rate of Change (%) | ||||
---|---|---|---|---|---|---|
Gain | Loss | Change | Gain | Loss | Change | |
2050s-SSP126 | 31 | 241 | −210 | 3.21 | 25.12 | −21.91 |
2050s-SSP585 | 22 | 246 | −224 | 2.29 | 25.58 | −23.29 |
2090s-SSP126 | 19 | 247 | −227 | 2.03 | 25.71 | −23.68 |
2090s-SSP585 | 36 | 216 | −180 | 3.72 | 22.52 | −18.80 |
Period | Climate Scenario | Longitude | Latitude | Migration Distance (×104 km) |
---|---|---|---|---|
Current | - | 108°05′52″ E | 35°55′46″ N | - |
2050s | SSP126 | 106°01′05″ E | 34°00′41″ N | 2.83 |
SSP585 | 106°47′38″ E | 33°45′02″ N | 2.54 | |
2090s | SSP126 | 106°42′28″ E | 34°29′37″ N | 2.00 |
SSP585 | 106°17′34″ E | 33°19′30″ N | 3.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Lu, J.; Yang, P.; Pi, J. Predictions of the Chinese Forest Frog (Rana chensinensis) Distribution Pattern Under Climate Change up to 2090s. Biology 2025, 14, 754. https://doi.org/10.3390/biology14070754
Fu Y, Lu J, Yang P, Pi J. Predictions of the Chinese Forest Frog (Rana chensinensis) Distribution Pattern Under Climate Change up to 2090s. Biology. 2025; 14(7):754. https://doi.org/10.3390/biology14070754
Chicago/Turabian StyleFu, Ying, Juanjuan Lu, Pinhong Yang, and Jie Pi. 2025. "Predictions of the Chinese Forest Frog (Rana chensinensis) Distribution Pattern Under Climate Change up to 2090s" Biology 14, no. 7: 754. https://doi.org/10.3390/biology14070754
APA StyleFu, Y., Lu, J., Yang, P., & Pi, J. (2025). Predictions of the Chinese Forest Frog (Rana chensinensis) Distribution Pattern Under Climate Change up to 2090s. Biology, 14(7), 754. https://doi.org/10.3390/biology14070754