Proprioceptive Control of Muscle Activation in Aging: Implications for Balance and Fall Risk
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.2.1. Bioelectrical Activity Assessment of the Muscles
2.2.2. Balance Assessment
- -
- Center of pressure (COP) deviation range in the anterior–posterior (AP) direction (cm) (Length y), measuring the total range of sway forward and backward. A larger value may indicate poorer postural control in the sagittal plane.
- -
- COP deviation range in the medial–lateral (ML) direction (cm) (Length x), measuring the total range of side-to-side sway. It reflects lateral stability and control of hip and trunk muscles.
- -
- COP deviation velocity in the AP direction (cm/s) (Velocity y), representing the speed of postural adjustments forward and backward. A higher velocity can indicate increased postural instability or compensatory movements.
- -
- COP deviation velocity in the ML direction (cm/s) (Velocity x), indicating the speed of side-to-side sway. Like Velocity y, elevated values suggest less control over balance.
- -
- Total path length of the COP (cm) (Total Length). This is the total distance covered by the COP trajectory over time. It is a general indicator of postural stability; longer paths typically reflect reduced balance.
- -
- 95% confidence ellipse area (cm2) (Area 95%), representing the area encompassing 95% of the COP data points. A larger area is associated with greater postural sway and instability.
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Differences in VMO and VLO Muscle Activity at 15%, 30%, and 60% MVC Thresholds
- -
- VLO MEAN (non-dominant side): this was significant at all thresholds (p = 0.044 at 15%, p = 0.0001 at 30%, and p = 0.0001 at 60%).
- -
- VMO MEAN (non-dominant side): significant differences emerged only at 30% and 60% (p = 0.0001); it was borderline at 15% (p = 0.056).
- -
- VLO and VMO MSD values showed higher variability and only partial significance. For example, VMO MSD (dominant) showed no significant difference at 30% (p = 0.152), while other thresholds were significant.
3.2. Differences in VLO and VMO Muscle Activity Between the Dominant and Non-Dominant Sides
3.3. Correlation Between VMO and VLO Muscle Activity and Balance
- -
- 15% MVC: MEAN r = 0.63* and MSD r = 0.61*;
- -
- 30% MVC: MEAN r = 0.51* and MSD r = 0.53*;
- -
- 60% MVC: MEAN r = 0.35* and MSD r = 0.39*.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlinc, A.; Fabiani, E.; Velnar, T.; Gradisnik, L. The Importance and Role of Proprioception in the Elderly: A Short Review. Mater. Sociomed. 2019, 31, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.G.; Santos, K.B.; Rodacki, A.L. Joint positioning sense, perceived force level and two-point discrimination tests of young and active elderly adults. Braz. J. Phys. Ther. 2015, 19, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, N.; Aruin, A.S. The effect of aging on anticipatory postural control. Exp. Brain Res. 2014, 232, 1127–1136. [Google Scholar] [CrossRef]
- Seynnes, O.; Hue, O.A.; Garrandes, F.; Colson, S.S.; Bernard, P.L.; Legros, P.; Fiatarone Singh, M.A. Force steadiness in the lower extremities as an independent predictor of functional performance in older women. J. Aging Phys. Act. 2005, 13, 395–408. [Google Scholar] [CrossRef]
- Enoka, R.M.; Christou, E.A.; Hunter, S.K.; Kornatz, K.W.; Semmler, J.G.; Taylor, A.M. Mechanisms that contribute to differences in motor performance between young and old adults. J. Electromyogr. Kinesiol. 2003, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; van der Velde, N.; Martin, F.C. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2023, 52, afad188. [Google Scholar] [CrossRef]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35 (Suppl. 2), ii37–ii41. [Google Scholar] [CrossRef]
- Haentjens, P.; Magaziner, J.; Colón-Emeric, C.S. Meta-analysis: Excess mortality after hip fracture among older women and men. Ann. Intern. Med. 2010, 152, 380–390. [Google Scholar] [CrossRef]
- Tracy, B.L.; Enoka, R.M. Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J. Appl. Physiol. 2002, 92, 1004–1012. [Google Scholar] [CrossRef]
- Fujita, E.; Kanehisa, H.; Yoshitake, Y.; Fukunaga, T.; Nishizono, H. Association between knee extensor strength and EMG activities during squat movement. Med. Sci. Sports Exerc. 2011, 43, 2328–2334. [Google Scholar] [CrossRef]
- Visser, M.; Kritchevsky, S.B.; Goodpaster, B.H.; Newman, A.B.; Nevitt, M.; Stamm, E.; Harris, T.B. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: The health, aging and body composition study. J. Am. Geriatr. Soc. 2002, 50, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Beretta-Piccoli, M.; Boccia, G.; Ponti, T.; Clijsen, R.; Barbero, M.; Cescon, C. Relationship between Isometric Muscle Force and Fractal Dimension of Surface Electromyogram. Biomed. Res. Int. 2018, 2018, 5373846. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, D.E.; Larsson, L.; Newell, K.M. Time-dependent structure in the discharge rate of human motor units. Clin. Neurophysiol. 2002, 113, 1325–1338. [Google Scholar] [CrossRef]
- Laidlaw, D.H.; Bilodeau, M.; Enoka, R.M. Steadiness is reduced and motor unit discharge is more variable in old adults. Muscle Nerve. 2000, 23, 600–612. [Google Scholar] [CrossRef]
- Galganski, M.E.; Fuglevand, A.J.; Enoka, R.M. Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J. Neurophysiol. 1993, 69, 2108–2115. [Google Scholar] [CrossRef]
- Merletti, R.; Parker, P. Electromyography: Physiology, Engineering, and Non-Invasive Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Camata, T.V.; Dantas, J.L.; Abrao, T.; Brunetto, M.A.; Moraes, A.C.; Altimari, L.R. Fourier and wavelet spectral analysis of EMG signals in supramaximal constant load dynamic exercise. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1364–1367. [Google Scholar]
- Chen, X.; Qu, X. Age-Related Differences in the Relationships Between Lower-Limb Joint Proprioception and Postural Balance. Hum. Factors 2019, 61, 702–711. [Google Scholar] [CrossRef]
- Allison, K.F.; Sell, T.C.; Benjaminse, A.; Lephart, S.M. Force Sense of the Knee Not Affected by Fatiguing the Knee Extensors and Flexors. J. Sport Rehabil. 2016, 25, 155–163. [Google Scholar] [CrossRef]
- Lo Martire, R.; Gladh, K.; Westman, A.; Äng, B.O. Neck Muscle EMG-Force Relationship and Its Reliability During Isometric Contractions. Sports Med. Open 2017, 3, 16. [Google Scholar] [CrossRef]
- Ahamed, N.U.; Sundaraj, K.; Alqahtani, M.; Altwijri, O.; Ali, M.A.; Islam, M.A. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle. Technol. Health Care 2014, 22, 505–513. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Z.; Jiang, G.; Liu, W.; Jiao, X. Correlation among proprioception, muscle strength, and balance. J. Phys. Ther. Sci. 2016, 28, 3468–3472. [Google Scholar] [CrossRef] [PubMed]
- Antcliff, S.; Welvaert, M.; Witchalls, J.; Wallwork, S.B.; Waddington, G. Assessing Proprioception in an Older Population: Reliability of a Protocol Based on Active Movement Extent Discrimination. Percept. Mot. Skills. 2021, 128, 2075–2096. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Anson, J.; Waddington, G.; Adams, R. Proprioceptive performance of bilateral upper and lower limb joints: Side-general and site-specific effects. Exp. Brain Res. 2013, 226, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Strong, A.; Grip, H.; Arumugam, A.; Boraxbekk, C.J.; Selling, J.; Häger, C.K. Right hemisphere brain lateralization for knee proprioception among right-limb dominant individuals. Front. Hum. Neurosci. 2023, 17, 969101. [Google Scholar] [CrossRef]
- Galamb, K.; Szilágyi, B.; Magyar, O.M.; Hortobágyi, T.; Nagatomi, R.; Váczi, M.; Négyesi, J. Effects of side-dominance on knee joint proprioceptive target-matching asymmetries. Physiol. Int. 2018, 105, 257–265. [Google Scholar] [CrossRef]
- Acosta-Sojo, Y.; Martin, B.J. Age-related differences in proprioceptive asymmetries. Neurosci. Lett. 2021, 757, 135992. [Google Scholar] [CrossRef]
- Grgic, J.; Garofolini, A.; Orazem, J.; Sabol, F.; Schoenfeld, B.J.; Pedisic, Z. Effects of Resistance Training on Muscle Size and Strength in Very Elderly Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2020, 50, 1983–1999. [Google Scholar] [CrossRef]
- Reed-Jones, R.J.; Dorgo, S.; Hitchings, M.K.; Bader, J.O. Vision and agility training in community dwelling older adults: Incorporating visual training into programs for fall prevention. Gait Posture 2012, 35, 585–589. [Google Scholar] [CrossRef]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Multi-System Physical Exercise Intervention for Fall Prevention and Quality of Life in Pre-Frail Older Adults: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 3102. [Google Scholar] [CrossRef]
Outcome Measure | 15% MVC | 30% MVC | 60% MVC | |||
---|---|---|---|---|---|---|
% | p * | % | p ** | % | p *** | |
VLO MEAN ND | 5.61 | 0.044 | 6.87 | 0.0001 | 9.13 | 0.0001 |
VLO MEAN D | 5.05 | 0.0001 | 6.99 | 0.001 | 8.52 | 0.0001 |
VMO MEAN ND | 5.20 | 0.056 | 6.23 | 0.0001 | 8.69 | 0.0001 |
VMO MEAN D | 4.55 | 0.0001 | 6.50 | 0.004 | 8.05 | 0.0001 |
VLO MSD ND | 2.42 | 0.260 | 2.75 | 0.0001 | 3.69 | 0.0001 |
VLO MSD D | 2.11 | 0.0001 | 2.95 | 0.060 | 3.33 | 0.0001 |
VMO MSD ND | 2.04 | 0.003 | 2.57 | 0.0001 | 3.56 | 0.0001 |
VMO MSD D | 1.93 | 0.0001 | 2.91 | 0.152 | 3.34 | 0.0001 |
Outcome Measure | Side | VLO MEAN | p | VLO MSD | p |
---|---|---|---|---|---|
15% MVC | ND | 5.61 | 0.16 | 2.42 | 0.14 |
D | 4.87 | 2.07 | |||
30% MVC | ND | 6.93 | 0.91 | 2.78 | 0.67 |
D | 6.99 | 2.89 | |||
60% MVC | ND | 9.13 | 0.13 | 3.69 | 0.10 |
D | 8.45 | 3.32 |
Outcome Measure | Side | VMO MEAN | p | VMO MSD | p |
---|---|---|---|---|---|
15% MVC | ND | 5.26 | 0.16 | 2.05 | 0.57 |
D | 4.55 | 1.93 | |||
30% MVC | ND | 6.29 | 0.71 | 2.60 | 0.21 |
D | 6.59 | 2.91 | |||
60% MVC | ND | 8.69 | 0.17 | 3.55 | 0.26 |
D | 8.05 | 3.34 |
VLO/VMO MEAN | VLO/VMO MSD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15% MVC | 30% MVC | 60% MVC | 15% MVC | 30% MVC | 60% MVC | ||||||||
VLO | VMO | VLO | VMO | VLO | VMO | VLO | VMO | VLO | VMO | VLO | VMO | ||
Total length | ND | 0.17 | 0.09 | 0.18 | 0.03 | 0.16 | 0.06 | 0.15 | 0.06 | 0.18 | 0.04 | 0.21 | 0.06 |
D | 0.06 | 0.03 | 0.06 | 0.26 | 0.09 | 0.11 | 0.03 | 0.04 | 0.03 | 0.22 | 0.07 | 0.08 | |
Length x | ND | 0.07 | 0.12 | 0.02 | 0.14 | 0.01 | 0.19 | 0.12 | 0.14 | 0.02 | 0.15 | 0.05 | 0.12 |
D | 0.26 | 0.21 | 0.20 | 0.15 | 0.24 | 0.19 | 0.34 | 0.19 | 0.28 | 0.20 | 0.32 | 0.20 | |
Length y | ND | 0.06 | 0.09 | 0.11 | 0.20 | 0.24 | 0.21 | 0.03 | 0.10 | 0.08 | 0.17 | 0.28 | 0.16 |
D | 0.04 | 0.03 | 0.13 | 0.01 | 0.05 | 0.07 | 0.01 | 0.06 | 0.01 | 0.04 | 0.08 | 0.10 | |
Velocity x | ND | 0.20 | 0.07 | 0.15 | 0.03 | 0.12 | 0.03 | 0.18 | 0.04 | 0.17 | 0.01 | 0.15 | 0.03 |
D | 0.01 | 0.06 | 0.02 | 0.03 | 0.07 | 0.11 | 0.01 | 0.03 | 0.05 | 0.26 | 0.07 | 0.11 | |
Velocity y | ND | 0.15 | 0.09 | 0.19 | 0.07 | 0.19 | 0.11 | 0.13 | 0.07 | 0.18 | 0.06 | 0.25 | 0.10 |
D | 0.10 | 0.09 | 0.09 | 0.02 | 0.09 | 0.06 | 0.07 | 0.10 | 0.01 | 0.18 | 0.06 | 0.04 | |
Area 95% | ND | 0.63 * | 0.41 * | 0.51 * | 0.15 | 0.35 * | 0.13 | 0.61 * | 0.39 * | 0.53 * | 0.15 | 0.39 * | 0.26 |
D | 0.24 | 0.10 | 0.35 * | 0.18 | 0.31 | 0.04 | 0.22 | 0.09 | 0.25 | 0.24 | 0.25 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleksy, Ł.; Mika, A.; Sopa, M.; Stolarczyk, A.; Adamska, O.; Zyznawska, J.; Buryta, R.; Ciepiela, P.; Witkowski, J.; Kielnar, R. Proprioceptive Control of Muscle Activation in Aging: Implications for Balance and Fall Risk. Biology 2025, 14, 703. https://doi.org/10.3390/biology14060703
Oleksy Ł, Mika A, Sopa M, Stolarczyk A, Adamska O, Zyznawska J, Buryta R, Ciepiela P, Witkowski J, Kielnar R. Proprioceptive Control of Muscle Activation in Aging: Implications for Balance and Fall Risk. Biology. 2025; 14(6):703. https://doi.org/10.3390/biology14060703
Chicago/Turabian StyleOleksy, Łukasz, Anna Mika, Martyna Sopa, Artur Stolarczyk, Olga Adamska, Joanna Zyznawska, Rafał Buryta, Paulina Ciepiela, Jarosław Witkowski, and Renata Kielnar. 2025. "Proprioceptive Control of Muscle Activation in Aging: Implications for Balance and Fall Risk" Biology 14, no. 6: 703. https://doi.org/10.3390/biology14060703
APA StyleOleksy, Ł., Mika, A., Sopa, M., Stolarczyk, A., Adamska, O., Zyznawska, J., Buryta, R., Ciepiela, P., Witkowski, J., & Kielnar, R. (2025). Proprioceptive Control of Muscle Activation in Aging: Implications for Balance and Fall Risk. Biology, 14(6), 703. https://doi.org/10.3390/biology14060703