Early Vascular Developmental Toxicity and Underlying Mechanisms of 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ) in Zebrafish Larvae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Zebrafish Culture and Husbandry
2.3. Preparation of Solutions and Acute Exposure Assay
2.4. Developmental Toxicity Testing of 1-B-36-CCZ
2.5. Acquisition of Fluorescent Images in Transgenic Zebrafish Larvae
2.6. Verapamil Recovery Experiment
2.7. Construction of 1-B-36-CCZ and Vascular Injury Targets
2.8. PPI Network Construction and Enrichment Analysis
2.9. Molecular Docking
2.10. QPCR
2.11. Data Analysis
3. Results
3.1. Effects of 1-B-36-CCZ Exposure on Acute Toxicity and General Development in Zebrafish
3.2. Effects of 1-B-36-CCZ on Vascular Development in Zebrafish Larvae
3.3. Potential Targets and Signaling Pathways Involved in 1-B-36-CCZ-Induced Vascular Toxicity
3.4. Verapamil Alleviates 1-B-36-CCZ-Induced Vascular Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, S.; Zhang, T.; Shen, Q.; Song, Q.; Ji, C.; Chen, Y.; Mao, M.; Kong, Y.; Chen, D.; Liu, J.; et al. Assessment of endocrine-disrupting effects of emerging polyhalogenated carbazoles (PHCZs): In vitro, in silico, and in vivo evidence. Environ. Int. 2020, 140, 105729. [Google Scholar] [CrossRef]
- Tu, J.; Zeng, X.; Liang, Y.; Yu, Z.; Peng, P. Polyhalogenated carbazoles in the environment: Analysis, origins, occurrence, and toxicity. Environ. Pollut. 2025, 372, 125910. [Google Scholar]
- Lin, K.D.; Chen, Y.Q.; Yuan, D.X. Environmental behaviors and ecotoxicology of the emerging contaminants polyhalogenated carbazoles. Huan Jing Ke Xue 2016, 37, 1576–1583. [Google Scholar]
- Chen, W.L.; Xie, Z.; Wolschke, H.; Gandrass, J.; Kötke, D.; Winkelmann, M.; Ebinghaus, R. Quantitative determination of ultra-trace carbazoles in sediments in the coastal environment. Chemosphere 2016, 150, 586–595. [Google Scholar] [CrossRef]
- Peng, H.; Chen, C.; Cantin, J.; Saunders, D.M.; Sun, J.; Tang, S.; Codling, G.; Hecker, M.; Wiseman, S.; Jones, P.D.; et al. Untargeted screening and distribution of organo-iodine compounds in sediments from Lake Michigan and the Arctic Ocean. Environ. Sci. Technol. 2016, 50, 10097–10105. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Ranasinghe, P.; Bonina, S.; Hosseini, S.; Corcoran, M.B.; Smalley, C.; Rockne, K.J.; Sturchio, N.C.; Giesy, J.P.; et al. Spatial and temporal trends of polyhalogenated carbazoles in sediments of upper great lakes: Insights into their origin. Environ. Sci. Technol. 2017, 51, 89–97. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, Y.; Tan, H.; Chen, D. Polyhalogenated carbazoles in sediments from Lake Tai (China): Distribution, congener composition, and toxic equivalent evaluation. Environ. Pollut. 2017, 220, 142–149. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, N.; Hu, H.; Liu, W.; Zhao, M. Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea. Water Res. 2021, 190, 116717. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, T.; Li, S.; Hou, H.; Xiao, K.; Hu, J.; Liang, S.; Liu, B.; Yang, J. Occurrence and exposure risk evaluation of polyhalogenated carbazoles (PHCZs) in drinking water. Sci. Total Environ. 2021, 750, 141615. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Li, A.; Rockne, K.J.; Xu, K.; Wu, Y.; Xu, X.; Chen, S.; Hu, Y.; Wang, X.; et al. Polyhalogenated carbazoles in freshwater and estuarine sediment from China and the United States: A multi-regional study. Sci. Total Environ. 2021, 788, 147908. [Google Scholar] [CrossRef]
- Ji, C.; Chen, D.; Zhao, M. Environmental behavior and safety of polyhalogenated carbazoles (PHCZs): A review. Environ. Pollut. 2021, 268, 115717. [Google Scholar] [CrossRef]
- Wang, X.; Hu, M.; Li, M.; Huan, F.; Gao, R.; Wang, J. Effects of exposure to 3,6-DBCZ on neurotoxicity and AhR pathway during early life stages of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2024, 270, 115892. [Google Scholar] [CrossRef]
- Bello, S.M.; Heideman, W.; Peterson, R.E. 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits regression of the common cardinal vein in developing zebrafish. Toxicol. Sci. Off. J. Soc. Toxicol. 2004, 78, 258–266. [Google Scholar] [CrossRef]
- Dong, M.; Wang, J.; Liu, Y.; He, Q.; Sun, H.; Xu, Z.; Hong, H.; Lin, H.; Gao, P. 3-bromocarbazole-induced developmental neurotoxicity and effect mechanisms in zebrafish. ACS EST Water 2023, 3, 2471–2480. [Google Scholar]
- Xu, T.; Hu, X.; Yang, G.; Liu, Y.; Zhang, Q.; Yu, S.; Chen, G.; Li, Y.; Sha, R.; Chen, Y.; et al. HIF-1alpha/VEGF pathway mediates 1,3,6,8-tetrabromo-9H-carbazole-induced angiogenesis: A potential vascular toxicity of an emerging contaminant. J. Hazard. Mater. 2022, 432, 128718. [Google Scholar] [CrossRef]
- Gao, C.; Lai, S.; Zeng, J.; Peng, Y.; Li, J. Toxicity evaluation and transcriptome analysis of yellowstripe goby (Mugilogobius chulae) in response to 2,7-dibromocarbazole exposure during early development. Toxics 2024, 12, 609. [Google Scholar] [CrossRef]
- Huang, S. Efficient analysis of toxicity and mechanisms of environmental pollutants with network toxicology and molecular docking strategy: Acetyl tributyl citrate as an example. Sci. Total Environ. 2023, 905, 167904. [Google Scholar] [CrossRef]
- Sukumaran, S.; Zochedh, A.; Chandran, K.; Sultan, A.B.; Kathiresan, T. Exploring the co-activity of FDA approved drug gemcitabine and docetaxel for enhanced anti-breast cancer activity: DFT, docking, molecular dynamics simulation and pharmacophore studies. Quantum Chem. 2024, 124, e27359. [Google Scholar]
- Gu, J.; Guo, L.; Zhu, Y.; Qian, L.; Shi, L.; Zhang, H.; Ji, G. Neurodevelopmental toxicity of emamectin benzoate to the early life stage of zebrafish larvae (Danio rerio). Int. J. Mol. Sci. 2023, 24, 3757. [Google Scholar] [CrossRef]
- Hong, T.; Park, J.; An, G.; Song, J.; Song, G.; Lim, W. Evaluation of organ developmental toxicity of environmental toxicants using zebrafish embryos. Mol. Cells 2024, 47, 100144. [Google Scholar] [CrossRef]
- Peng, W.; Yi, X.; Peng, Y.; Lu, H.; Liu, H. Developmental toxicity and mechanism of dibutyl phthalate on the development of subintestinal vessels in zebrafish. Sci. Rep. 2024, 14, 28464. [Google Scholar] [CrossRef]
- Haustein, M.; Hannes, T.; Trieschmann, J.; Verhaegh, R.; Köster, A.; Hescheler, J.; Brockmeier, K.; Adelmann, R.; Khalil, M. Excitation-contraction coupling in zebrafish ventricular myocardium is regulated by trans-sarcolemmal Ca2+ influx and sarcoplasmic reticulum Ca2+ release. PLoS ONE 2015, 10, e0125654. [Google Scholar] [CrossRef]
- Swisstargetprediction. Available online: http://www.swisstargetprediction.ch/ (accessed on 29 August 2024).
- Genecards. Available online: http://www.genecards.org/ (accessed on 29 August 2024).
- Bioinformatics & Evolutionary Genomics. Available online: http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 29 August 2024).
- STRING. Available online: https://cn.string-db.org/ (accessed on 29 August 2024).
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- National Institutes of Health. Available online: https://david.ncifcrf.gov/ (accessed on 29 August 2024).
- RCSB PDB. Available online: https://www.rcsb.org/ (accessed on 29 August 2024).
- Shi, B.; Cheng, C.; Zhang, Y.; Du, Z.; Zhu, L.; Wang, J.; Wang, J.; Li, B. Effects of 3,6-dichlorocarbazole on microbial ecology and its degradation in soil. J. Hazard. Mater. 2022, 424, 127315. [Google Scholar] [CrossRef]
- Mrinalini, R.; Tamilanban, T.; Naveen Kumar, V.; Manasa, K. Zebrafish—The Neurobehavioural Model in Trend. Neuroscience 2023, 520, 95–118. [Google Scholar] [CrossRef]
- Wilkinson, R.N.; van Eeden, F.J. The zebrafish as a model of vascular development and disease. Prog. Mol. Biol. Transl. Sci. 2014, 124, 93–122. [Google Scholar] [CrossRef]
- Ornoy, A.; Miller, R.K. Yolk sac development, function and role in rodent pregnancy. Birth Defects Res. 2023, 115, 1243–1254. [Google Scholar] [CrossRef]
- Ji, C.; Yan, L.; Chen, Y.; Yue, S.; Dong, Q.; Chen, J.; Zhao, M. Evaluation of the developmental toxicity of 2,7-dibromocarbazole to zebrafish based on transcriptomics assay. J. Hazard. Mater. 2019, 368, 514–522. [Google Scholar] [CrossRef]
- Krzykwa, J.C.; Olivas, A.; Sellin Jeffries, M.K. Development of cardiovascular and neurodevelopmental metrics as sublethal endpoints for the fish embryo toxicity test. Environ. Toxicol. Chem. 2018, 37, 2530–2541. [Google Scholar] [CrossRef]
- Tobia, C.; Gariano, G.; Guerra, J.; Presta, M. Zebrafish embryo intersegmental vessels: A tool for investigating sprouting angiogenesis. Methods Mol. Biol. 2015, 1214, 173–184. [Google Scholar] [CrossRef]
- Villefranc, J.A.; Nicoli, S.; Bentley, K.; Jeltsch, M.; Zarkada, G.; Moore, J.C.; Gerhardt, H.; Alitalo, K.; Lawson, N.D. A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Devlopment 2013, 140, 1497–1506. [Google Scholar] [CrossRef]
- Nakajima, H.; Chiba, A.; Fukumoto, M.; Morooka, N.; Mochizuki, N. Zebrafish vascular development: General and tissue-specific regulation. J. Lipid Atheroscler. 2021, 10, 145–159. [Google Scholar] [CrossRef]
- Koenig, A.L.; Baltrunaite, K.; Bower, N.I.; Rossi, A.; Stainier, D.Y.; Hogan, B.M.; Sumanas, S. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Dev. Biol. 2016, 411, 115–127. [Google Scholar] [CrossRef]
- Lv, H.; Liu, B.; Qin, Y. Investigation of the effects of some cardiovascular drugs on angiogenesis by transgenic zebrafish. Mediat. Inflamm. 2023, 2023, 1958046. [Google Scholar] [CrossRef]
- He, J.; Zhu, X.; Xu, K.; Li, Y.; Zhou, J. Network toxicological and molecular docking to investigate the mechanisms of toxicity of agricultural chemical thiabendazole. Chemosphere 2024, 363, 142711. [Google Scholar] [CrossRef]
- Kaur, T.; Madgulkar, A.; Bhalekar, M.; Asgaonkar, K. Molecular docking in formulation and development. Curr. Drug Discov. Technol. 2019, 16, 30–39. [Google Scholar]
- Werdich, X.Q.; Penn, J.S. Src, Fyn and Yes play differential roles in VEGF-mediated endothelial cell events. Angiogenesis 2005, 8, 315–326. [Google Scholar] [CrossRef]
- Goishi, K.; Klagsbrun, M. Vascular endothelial growth factor and its receptors in embryonic zebrafish blood vessel development. Curr. Top. Dev. Biol. 2004, 62, 127–152. [Google Scholar] [CrossRef]
- Tsoukias, N.M. Calcium dynamics and signaling in vascular regulation: Computational models. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3, 93–106. [Google Scholar] [CrossRef]
- Bayer, H.; Müller, T.; Myrtek, D.; Sorichter, S.; Ziegenhagen, M.; Norgauer, J.; Zissel, G.; Idzko, M. Serotoninergic receptors on human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2007, 36, 85–93. [Google Scholar] [CrossRef]
- Saucier, C.; Khoury, H.; Lai, K.M.; Peschard, P.; Dankort, D.; Naujokas, M.A.; Holash, J.; Yancopoulos, G.D.; Muller, W.J.; Pawson, T.; et al. The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 2345–2350. [Google Scholar] [CrossRef]
- Bełtowski, J.; Jazmroz-Wiśniewska, A. Transactivation of ErbB receptors by leptin in the cardiovascular system: Mechanisms, consequences and target for therapy. Curr. Pharm. Des. 2014, 20, 616–624. [Google Scholar] [CrossRef]
- Villalobo, A.; García-Palmero, I.; Stateva, S.R.; Jellali, K. Targeting the calmodulin-regulated ErbB/Grb7 signaling axis in cancer therapy. J. Pharm. Pharm. Sci. 2013, 16, 177–189. [Google Scholar] [CrossRef]
- Anguita, E.; Villalobo, A. Src-family tyrosine kinases and the Ca2+ signal. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 915–932. [Google Scholar] [CrossRef]
- Liu, J.; He, L.; Zhang, W.; Tang, Y.; Fan, J.; He, Y. Evodiamine inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cells via the SRC/ERBB2-mediated MAPK/ERK signaling pathway. J. Transl. Med. 2024, 22, 859. [Google Scholar]
- Robitaille, M.; Chan, S.M.; Peters, A.A.; Dai, L.; So, C.L.; Bong, A.H.; Sadras, F.; Roberts-Thomson, S.J.; Monteith, G.R. ORAI1-regulated gene expression in breast cancer cells: Roles for STIM1 binding, calcium influx and transcription factor translocation. Int. J. Mol. Sci. 2022, 23, 5867. [Google Scholar]
- Huang, T.; Feng, X.; Wang, J.; Zhou, J.; Wang, J. Calcium-related genes predicting outcomes and serving as therapeutic targets in endometrial cancer. Cells 2022, 11, 3156. [Google Scholar]
- Herrera-Pérez, S.; Rueda-Ruzafa, L.; Campos-Ríos, A.; Fernández-Fernández, D.; Lamas, J.A. Antiarrhythmic calcium channel blocker verapamil inhibits trek currents in sympathetic neurons. Front. Pharmacol. 2022, 13, 997188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Gong, Z.; Fan, Y.; Hu, J.; Guo, L.; Pei, W.; Yin, D. Early Vascular Developmental Toxicity and Underlying Mechanisms of 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ) in Zebrafish Larvae. Biology 2025, 14, 659. https://doi.org/10.3390/biology14060659
Gu J, Gong Z, Fan Y, Hu J, Guo L, Pei W, Yin D. Early Vascular Developmental Toxicity and Underlying Mechanisms of 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ) in Zebrafish Larvae. Biology. 2025; 14(6):659. https://doi.org/10.3390/biology14060659
Chicago/Turabian StyleGu, Jie, Ziyu Gong, Yue Fan, Jun Hu, Liguo Guo, Wenming Pei, and Daqiang Yin. 2025. "Early Vascular Developmental Toxicity and Underlying Mechanisms of 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ) in Zebrafish Larvae" Biology 14, no. 6: 659. https://doi.org/10.3390/biology14060659
APA StyleGu, J., Gong, Z., Fan, Y., Hu, J., Guo, L., Pei, W., & Yin, D. (2025). Early Vascular Developmental Toxicity and Underlying Mechanisms of 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ) in Zebrafish Larvae. Biology, 14(6), 659. https://doi.org/10.3390/biology14060659