TRIB1 and TRPS1 Gene Polymorphisms Are Associated with the Incidence of Acute Coronary Syndrome and Plasma Lipid Concentrations
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Population
2.2. Laboratory Analyses
2.3. Genetic Analysis
2.4. Statistical Analysis
2.5. Association of the TRSP1 and TRIB1 Genotypes with Cardiovascular Risk Factors
3. Results
3.1. Parameters of the Study Sample
3.2. Association of TRSP1 and TRIB1 Polymorphisms with ACS
3.3. Haplotype Analysis
3.4. Association of TRSP1 and TRIB1 Polymorphisms with Plasma Lipids Concentrations
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarma, V.K.; Henry, R.A.; Ahamed, H.; George, S.M. Clinical Utility of Immature Platelet Fraction (IPF) as a Biomarker in the Diagnosis of Acute Coronary Syndrome (ACS). Cureus 2025, 17, e81406. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.X.F.; Yousaf, A.; Moon, J.; Ahmed, R.; Uppal, K.; Pemminati, S. Recent Advances in the Management of Dyslipidemia: A Systematic Review. Cureus 2025, 17, e81034. [Google Scholar] [PubMed]
- Fularski, P.; Czarnik, W.; Dąbek, B.; Lisińska, W.; Radzioch, E.; Witkowska, A.; Młynarska, E.; Rysz, J.; Franczyk, B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int. J. Mol. Sci. 2024, 25, 5212. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar]
- Chasman, D.I.; Paré, G.; Mora, S.; Hopewell, J.C.; Peloso, G.; Clarke, R.; Cupples, L.A.; Hamsten, A.; Kathiresan, S.; Mälarstig, A.; et al. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet. 2009, 5, e1000730. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Huang, J.; Mo, Z.; He, J.; Wang, L.; Yang, X.; Tan, A.; Chen, S.; Chen, J.; Gu, C.C.; et al. Genetic Susceptibility to Lipid Levels and Lipid Change Over Time and Risk of Incident Hyperlipidemia in Chinese Populations. Circ. Cardiovasc. Genet. 2016, 9, 37–44. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, G.; Park, S.; Kang, S.M.; Jang, Y.; Lee, S.H. Associations between Genetic Variants and Angiographic Characteristics in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2015, 22, 363–371. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Bi, L.; Xu, X.; Cheng, W.; Yu, B.; Zhang, Y. Lipid-associated genetic polymorphisms are associated with FBP and LDL-c levels among myocardial infarction patients in Chinese population. Gene 2018, 676, 22–28. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yin, R.X.; Chen, W.X.; Cao, X.L.; Wu, J.Z. TRIB1 and TRPS1 variants, G × G and G × E interactions on serum lipid levels, the risk of coronary heart disease and ischemic stroke. Sci. Rep. 2019, 9, 2376. [Google Scholar] [CrossRef]
- Kaiser, F.J.; Tavassoli, K.; Van den Bemd, G.J.; Chang, G.T.; Horsthemke, B.; Möröy, T.; Lüdecke, H.J. Nuclear interaction of the dynein light chain LC8a with the TRPS1 transcription factor suppresses the transcriptional repression activity of TRPS1. Hum. Mol. Genet. 2003, 12, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Malik, T.H.; Shoichet, S.A.; Latham, P.; Kroll, T.G.; Peters, L.L.; Shivdasani, R.A. Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J. 2001, 20, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gong, X.; Wang, J.; Fan, Q.; Yuan, J.; Yang, X.; Sun, X.; Li, Y.; Wang, Y. Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol. Res. Pract. 2022, 237, 154022. [Google Scholar] [CrossRef]
- Hu, S.; Hu, D.; Wei, H.; Li, S.Y.; Wang, D.; Li, C.Z.; Jiang, J.; Wang, D.; Cui, G.; Wang, D. Functional deletion/insertion promoter variants in scarb1 associated with increased susceptibility to lipid profile abnormalities and coronary heart disease. Front. Cardiovasc. Med. 2022, 8, 800873. [Google Scholar] [CrossRef] [PubMed]
- Eyers, P.A.; Keeshan, K.; Kannan, N. Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends Cell Biol. 2017, 27, 284–298. [Google Scholar] [CrossRef]
- Danger, R.; Feseha, Y.; Brouard, S. The Pseudokinase TRIB1 in Immune Cells and Associated Disorders. Cancers 2022, 14, 1011. [Google Scholar] [CrossRef]
- Jadhav, K.S.; Bauer, R.C. Trouble With Tribbles-1. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 998–1005. [Google Scholar] [CrossRef]
- Makishima, S.; Boonvisut, S.; Ishizuka, Y.; Watanabe, K.; Nakayama, K.; Iwamoto, S. Sin3A-associated protein, 18 kDa, a novel binding partner of TRIB1, regulates MTTP expression. J. Lipid Res. 2015, 56, 1145–1152. [Google Scholar] [CrossRef]
- Soubeyrand, S.; Martinuk, A.; Naing, T.; Lau, P.; McPherson, R. Role of Tribbles Pseudokinase 1 (TRIB1) in human hepatocyte metabolism. Biochim. Biophys. Acta. 2016, 1862, 223–232. [Google Scholar] [CrossRef]
- Hernandez-Resendiz, I.; Burkhardt, R. Novel functions of Tribbles-homolog 1 in liver, adipocytes and atherosclerosis. Curr. Opin. Lipidol. 2024, 35, 51–57. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477, Erratum in: Eur. Heart J. 2020, 4, 4242. [Google Scholar] [CrossRef] [PubMed]
- Winther, S.; Schmidt, S.E.; Rasmussen, L.D.; Juárez Orozco, L.E.; Steffensen, F.H.; Bøtker, H.E.; Knuuti, J.; Bøttcher, M. Validation of the European Society of Cardiology pre-test probability model for obstructive coronary artery disease. Eur. Heart J. 2021, 42, 1401–1411. [Google Scholar] [CrossRef]
- Posadas-Sanchez, R.; Perez-Hernandez, N.; Angeles-Martinez, J.; Lopez-Bautista, F.; Villarreal-Molina, T.; Rodríguez-Perez, J.M.; Fragoso, J.M.; Posadas-Rometro, C.; Vargas-Alarcón, G. Interleukin 35 polymorphisms are associated with decreased risk of premature coronary artery disease, metabolic parameters, and IL-35 Levels: The Genetics of Atherosclerotic Disease (GEA) Study. Mediat. Inflamm. 2017, 2017, 6012795. [Google Scholar] [CrossRef]
- DeLong, D.M.; DeLong, E.R.; Wood, P.D.; Lippel, K.; Rifkind, B.M. A comparison of methods for the estimation of plasma low- and very low-density lipoprotein cholesterol. The Lipid Research Clinics Prevalence Study. JAMA. 1986, 256, 2372–2377. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.nhlbi.nih.gov/resources/third-report-expert-panel-detection-evaluation-and-treatment-high-blood-cholesterol-0 (accessed on 2 May 2023).
- Available online: https://www.msdmanuals.com/professional/endocrine-and-metabolic-disorders/diabetes-mellitus-and-disorders-of-carbohydrate-metabolism/diabetes-mellitus-dm#v29299021 (accessed on 2 May 2023).
- Wang, B.X. Diagnosis and Management of Hypertensive Heart Disease: Incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates. J. Cardiovasc. Dev. Dis. 2025, 12, 46. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Nurnberger, J.I., Jr. A rapid non-enzymatic method for the preparation HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef] [PubMed]
- Schaid, D.J. Disease-marker association. In Biostatistical Genetics and Genetic Epidemiology; Elston, R.C., Olson, J.M., Palmer, L., Eds.; Wiley: Chichester, UK, 2002; pp. 216–217. [Google Scholar]
- Clayton, D. Population association. In Handbook of Statistical Genetics; Balding, D.J., Bishop, M., Cannings, C., Eds.; Wiley: Chichester, UK, 2001; pp. 519–540. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Perez-Calahorra, S.; Laclaustra, M.; Marco-Benedi, V.; Pinto, X.; Sanchez-Hernandez, R.M.; Plana, N.; Ortega, E.; Fuentes, F.; Civeira, F. Comparative efficacy between atorvastatin and rosuvastatin in the prevention of cardiovascular disease recurrence. Lipids Health Dis. 2019, 18, 216. [Google Scholar] [CrossRef]
- Kim, K.J.; Yoon, J.; Won, K.H.; Lim, S.W.; Chae, I.H.; Lee, S.Y.; Kim, S.-W.; Kim, H.-S. Assessment of the efficacy of lowering LDL cholesterol with rosuvastatin 10 mg in four Korean statin benefit groups as per ACC/AHA guidelines (NewStaR4G). J. Clin. Med. 2020, 9, 916. [Google Scholar] [CrossRef]
- Sayols-Baixeras, S.; Lluís-Ganella, C.; Lucas, G.; Elosua, R. Pathogenesis of coronary artery disease: Focus on genetic risk factors and identification of genetic variants. Appl. Clin. Genet. 2014, 7, 15–32. [Google Scholar]
- Valacchi, G.; Sticozzi, C.; Lim, Y.; Pecorelli, A. Scavenger receptor class B type I: A multifunctional receptor. Ann. N. Y. Acad. Sci. 2011, 1229, E1–E7. [Google Scholar] [CrossRef] [PubMed]
- Karimi, Z.; Daneshmoghadam, J.; Ghaedi, H.; Khalili, E.; Panahi, G.; Shanaki, M. Association of rs2954029 and rs6982502 Variants with Coronary Artery Disease by HRM Technique: A GWAS Replication Study in an Iranian Population. Rep. Biochem. Mol. Biol. 2022, 10, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, D.; Safranow, K.; Pawlik, A. PON1 rs662, rs854560 and TRIB1 rs17321515, rs2954029 Gene Polymorphisms Are Associated with Lipid Parameters in Patients with Unstable Angina. Genes 2024, 15, 871. [Google Scholar] [CrossRef] [PubMed]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Grande, P.; Nordestgaard, B.G. TRIB1 and GCKR polymorphisms, lipid levels, and risk of ischemic heart disease in the general population. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 451–457. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Li, C.; Du, X.; Zhou, H. Polymorphisms of TRIB1 genes for coronary artery disease and stroke risk: A systematic review and meta-analysis. Gene 2023, 880, 147613. [Google Scholar] [CrossRef]
- Burkhardt, R.; Toh, S.A.; Lagor, W.R.; Birkeland, A.; Levin, M.; Li, X.; Robblee, M.; Fedorov, V.D.; Yamamoto, M.; Satoh, T.; et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J. Clin. Investig. 2010, 120, 4410–4414. [Google Scholar] [CrossRef]
- Hernández-Alcaraz, C.; Aguilar-Salinas, C.A.; Mendoza-Herrera, K.; Pedroza-Tobías, A.; Villalpando, S.; Shamah-Levy, T.; Rivera-Dommarco, J.; Hernández-Ávila, M.; Barquera, S. Dyslipidemia prevalence, awareness, treatment and control in Mexico: Results of the Ensanut 2012. Salud Publica Mex. 2020, 62, 137–146. [Google Scholar] [CrossRef]
Characteristics | ACS Patients (n (%)) (n = 1262) | Controls (n (%)) (n = 1051) | p-Value * | |
---|---|---|---|---|
Age (years) | 59.1 ± 10.8 | 51.3 ± 8.9 | <0.001 | |
BMI (kg/m2) | 27.6 ± 4.21 | 28.2 ± 4.05 | <0.001 | |
Sex, n (%) | Male | 1016 (80.5) | 426 (40.5) | <0.001 |
Female | 246 (19.4) | 625 (59.4) | <0.001 | |
Elevated blood pressure, n (%) | Yes | 719 (57) | 193 (18) | <0.001 |
Type 2 diabetes mellitus, n (%) | Yes | 737 (58) | 62 (6) | <0.001 |
Smoking, n (%) | Yes | 612 (48) | 231 (22) | <0.001 |
Blood pressure (mmHg) | Systolic | 130 [115–150] | 112 [103–122] | <0.001 |
Diastolic | 80 [70–90] | 70 [65–76] | <0.001 | |
Glucose (mg/dL) | 136 [109–200] | 90 [84–97] | <0.001 | |
Total cholesterol (mg/dL) | 157 [126–190] | 190 [167–211] | <0.001 | |
HDL-C (mg/dL) | 37 [31–44] | 45 [36–55] | <0.001 | |
LDL-C (mg/dL) | 97 [71–126] | 116 [95–134] | <0.001 | |
Triglycerides (mg/dL) | 142 [107–193] | 146 [108–203] | 0.275 |
SNP (rsID-Number)/ * Inheritance Model | Genotype | ACS Patients n = 1262 (n(%)) | Controls n = 1051 (n(%)) | OR (95%CI) | pC |
---|---|---|---|---|---|
TRPS1 rs2737229 A/C | |||||
Co-dominant | CC AC AA | 420 (33.3) 590 (46.8) 252 (20.0) | 371 (35.3) 513 (48.8) 167 (15.9) | 1.41 (1.06–1.87) | 0.046 |
Dominant | CC AC + AA | 420 (33.3) 842 (66.7) | 371 (35.3) 680 (64.7) | 1.15 (1.07–1.41) | 0.171 |
Recessive | CC + AC AA | 1010 (80.0) 252 (20.0) | 884 (84.1) 167 (15.9) | 1.36 (1.06–1.74) | 0.017 |
Over-dominant | CC + AA AC | 672 (53.2) 590 (46.8) | 538 (51.2) 513 (48.8) | 0.95 (0.79–1.15) | 0.598 |
Additive | -------- | --------- | ----------- | 1.17 (1.02–1.34) | 0.026 |
TRIB1 rs2980880 C/T | |||||
Co-dominant | TT TC CC | 668 (52.9) 481 (38.1) 113 (8.9) | 590 (56.1) 393 (37.4) 68 (6.5) | 1.84 (1.16–2.90) | 0.015 |
Dominant | TT TC + CC | 668 (52.9) 594 (47.1) | 590 (56.1) 461 (43.9) | 1.34 (1.06–1.70) | 0.015 |
Recessive | TT + TC CC | 1149 (91.0) 113 (8.9) | 938 (93.5) 68 (6.5) | 1.66 (1.07–2.59) | 0.024 |
Over-dominant | TT + CC TC | 781 (61.9) 481 (38.1) | 658 (62.6) 393 (37.4) | 1.17 (0.92–1.49) | 0.209 |
Additive | -------- | --------- | ----------- | 1.31 (1.09–1.58) | 0.004 |
TRIB1 rs2954029 T/A | |||||
Co-dominant | AA AT TT | 485 (38.4) 572 (45.3) 205 (16.2) | 432 (41.1) 485 (46.1) 134 (12.8) | 1.42 (1.08–1.87) | 0.037 |
Dominant | AA AT + TT | 485 (38.4) 777 (61.6) | 432 (41.1) 619 (58.9) | 1.14 (0.95–1.36) | 0.161 |
Recessive | AA + AT TT | 1057 (83.8) 205 (16.2) | 917 (87.2) 134 (12.8) | 1.38 (1.07–1.78) | 0.012 |
Over-dominant | AA + TT AT | 690 (54.7) 572 (45.3) | 566 (53.9) 485 (46.1) | 0.97 (0.81–1.15) | 0.699 |
Additive | -------- | --------- | ----------- | 1.16 (1.02–1.32) | 0.024 |
* Polymorphic Site | ACS Patients n = 1262 | Controls n = 1051 | OR | 95%CI | p |
---|---|---|---|---|---|
Block Haplotype | Hf (%) | Hf (%) | |||
T C | 0.377 | 0.390 | 0.94 | 0.84–1.06 | 0.385 |
A A | 0.219 | 0.210 | 1.05 | 0.91–1.21 | 0.462 |
T A | 0.215 | 0.193 | 1.14 | 1.00–1.31 | 0.035 |
A C | 0.189 | 0.207 | 0.89 | 0.77–1.03 | 0.062 |
Block Haplotype | Hf (%) | Hf (%) | p | ||
T A | 0.368 | 0.399 | 0.87 | 0.77–0.98 | 0.030 |
T T | 0.352 | 0.349 | 1.01 | 0.89–1.14 | 0.851 |
C A | 0.243 | 0.243 | 1.00 | 0.87–1.14 | 0.984 |
C T | 0.037 | 0.009 | 4.24 | 2.62–7.13 | <0.001 |
TRPS1 | rs231150 A/T | |||
TT (n = 345) | AT (n = 535) | AA (n = 171) | p-value * | |
Parameters | ||||
Glucose (mg/dL) | 89 [83–96] | 91 [85–98] | 88 [83–96] | 0.263 |
Total cholesterol (mg/dL) | 187 [164–208] | 192 [169–215] | 189 [169–210] | 0.070 |
HDL-C (mg/dL) | 44 [36–53] | 45 [36–55] | 46 [38–60] | 0.036 |
LDL-C (mg/dL) | 113 [93–133] | 118 [99–137] | 114 [94–131] | 0.035 |
Triglycerides (mg/dL) | 148 [108–205] | 149 [113–202] | 128 [97–191] | 0.041 |
TRPS1 | rs2737229 A/C | |||
CC (n = 371) | AC (n = 513) | AA (n = 167) | p-value | |
Parameters | ||||
Glucose (mg/dL) | 90 [84–98] | 90 [85–97] | 88 [81–94] | 0.311 |
Total cholesterol (mg/dL) | 189 [167–213] | 191 [169–211] | 188 [164–209] | 0.169 |
HDL-C (mg/dL) | 45 [36–54] | 45 [36–55] | 45 [37–57] | 0.333 |
LDL-C (mg/dL) | 113 [95–135] | 118 [96–134] | 113 [93–133] | 0.232 |
Triglycerides (mg/dL) | 156 [115–210] | 147 [107–204] | 125 [99–181] | <0.001 |
TRIB1 | rs2980880 C/T | |||
TT (n = 590) | TC (n = 393) | CC (n = 68) | p-value | |
Parameters | ||||
Glucose (mg/dL) | 90 [84–96] | 90 [84–98] | 90 [84–95] | 0.751 |
Total cholesterol (mg/dL) | 188 [164–209] | 191 [170–217] | 197 [170–216] | 0.037 |
HDL-C (mg/dL) | 45 [36–56] | 45 [36–54] | 43 [36–54] | 0.573 |
LDL-C (mg/dL) | 114 [94–132] | 116 [98–137] | 122 [99–142] | 0.025 |
Triglycerides (mg/dL) | 144 [107–192] | 147 [110–214] | 152 [101–190] | 0.134 |
TRIB1 | rs2954029 T/A | |||
AA (n = 432) | AT (n = 485) | TT (n = 134) | p-value | |
Parameters | ||||
Glucose (mg/dL) | 91 [84–97] | 89 [83–96] | 90 [85–99] | 0.150 |
Total cholesterol (mg/dL) | 190 [167–212] | 190 [169–210] | 190 [163–211] | 0.848 |
HDL-C (mg/dL) | 45 [36–54] | 44 [36–54] | 48 [38–58] | 0.017 |
LDL-C (mg/dL) | 116 [97–133] | 116 [95–135] | 114 [95–133] | 0.732 |
Triglycerides (mg/dL) | 145 [109–204] | 148 [107–205] | 131 [101–189] | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Alarcón, G.; Pérez-Méndez, Ó.; Posadas-Sánchez, R.; González-Pacheco, H.; Juárez-Cedillo, T.; Escobedo, G.; López-Olmos, V.; Fragoso, J.M. TRIB1 and TRPS1 Gene Polymorphisms Are Associated with the Incidence of Acute Coronary Syndrome and Plasma Lipid Concentrations. Biology 2025, 14, 606. https://doi.org/10.3390/biology14060606
Vargas-Alarcón G, Pérez-Méndez Ó, Posadas-Sánchez R, González-Pacheco H, Juárez-Cedillo T, Escobedo G, López-Olmos V, Fragoso JM. TRIB1 and TRPS1 Gene Polymorphisms Are Associated with the Incidence of Acute Coronary Syndrome and Plasma Lipid Concentrations. Biology. 2025; 14(6):606. https://doi.org/10.3390/biology14060606
Chicago/Turabian StyleVargas-Alarcón, Gilberto, Óscar Pérez-Méndez, Rosalinda Posadas-Sánchez, Héctor González-Pacheco, Teresa Juárez-Cedillo, Galileo Escobedo, Victoria López-Olmos, and José Manuel Fragoso. 2025. "TRIB1 and TRPS1 Gene Polymorphisms Are Associated with the Incidence of Acute Coronary Syndrome and Plasma Lipid Concentrations" Biology 14, no. 6: 606. https://doi.org/10.3390/biology14060606
APA StyleVargas-Alarcón, G., Pérez-Méndez, Ó., Posadas-Sánchez, R., González-Pacheco, H., Juárez-Cedillo, T., Escobedo, G., López-Olmos, V., & Fragoso, J. M. (2025). TRIB1 and TRPS1 Gene Polymorphisms Are Associated with the Incidence of Acute Coronary Syndrome and Plasma Lipid Concentrations. Biology, 14(6), 606. https://doi.org/10.3390/biology14060606