Renal Intercalated Cells: Alien Cells Inside Us?
Simple Summary
Abstract
1. Introduction
2. B-Type Intercalated Cells Are Localized by Peanut Agglutinin
3. Role of Intercalated Cells in Urinary Tract Infection and Urosepsis
4. Role of Intercalated Cells in Non-Infectious Kidney Damage
5. Kidney Epithelial Regeneration After Damage
6. Renal Intercalated Cells Are Energized in a Peculiar Way
7. Cochlea and the Endolymphatic Sac
8. Epididymal Cells
9. Macrophages
10. Osteoclasts
11. Protists and the Phylogeny of Macrophages
12. Discussion
13. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verlander, J.W.; Kim, Y.H.; Shin, W.; Pham, T.D.; Hassell, K.A.; Beierwaltes, W.H.; Green, E.D.; Everett, L.; Matthews, S.W.; Wall, S.M. Dietary Cl(-) restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am. J. Physiol. Ren. Physiol. 2006, 291, F833–F839. [Google Scholar] [CrossRef] [PubMed]
- Satlin, L.M.; Schwartz, G.J. Cellular remodeling of HCO3(-)-secreting cells in rabbit renal collecting duct in response to an acidic environment. J. Cell. Biol. 1989, 109, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Stosiek, P.; Springer, G.F.; Karsten, U. Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: A systematic and comparative study. Histochem. Cell. Biol. 1996, 106, 197–207. [Google Scholar] [CrossRef]
- Saxena, V.; Gao, H.; Arregui, S.; Zollman, A.; Kamocka, M.M.; Xuei, X.; McGuire, P.; Hutchens, M.; Hato, T.; Hains, D.S.; et al. Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli. Nat. Commun. 2021, 12, 2405. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.; Hains, D.S.; Ketz, J.; Chanley, M.; Spencer, J.D.; Becknell, B.; Pierce, K.R.; Nelson, R.D.; Purkerson, J.M.; Schwartz, G.J.; et al. Cell-specific qRT-PCR of renal epithelial cells reveals a novel innate immune signature in murine collecting duct. Am. J. Physiol. Ren. Physiol. 2018, 315, F812–F823. [Google Scholar] [CrossRef]
- Nozaki, Y.; Hino, S.; Ri, J.; Sakai, K.; Nagare, Y.; Kawanishi, M.; Niki, K.; Funauchi, M.; Matsumura, I. Lipopolysaccharide-induced acute kidney injury is dependent on an IL-18 receptor signaling pathway. Int. J. Mol. Sci. 2017, 18, 2777. [Google Scholar] [CrossRef]
- Hains, D.S.; Chen, X.; Saxena, V.; Barr-Beare, E.; Flemming, W.; Easterling, R.; Becknell, B.; Schwartz, G.J.; Schwaderer, A.L. Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility. Am. J. Physiol. Ren. Physiol. 2014, 307, F869–F880. [Google Scholar] [CrossRef]
- Ketz, J.; Saxena, V.; Arregui, S.; Jackson, A.; Schwartz, G.J.; Yagisawa, T.; Fairchild, R.L.; Hains, D.S.; Schwaderer, A.L. Developmental loss, but not pharmacological suppression, of renal carbonic anhydrase 2 results in pyelonephritis susceptibility. Am. J. Physiol. Ren. Physiol. 2020, 318, F1441–F1453. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, W.; Zhang, J.; Xu, C.; Yu, S.; Mao, Z.; Wu, J.; Ye, C.; Mei, C.; Dai, B. Urinary interleukin 18 for detection of acute kidney injury: A meta-analysis. Am. J. Kidney Dis. 2013, 62, 1058–1067. [Google Scholar] [CrossRef]
- Siew, E.D.; Ikizler, T.A.; Gebretsadik, T.; Shintani, A.; Wickersham, N.; Bossert, F.; Peterson, J.F.; Parikh, C.R.; May, A.K.; Ware, L.B. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin. J. Am. Soc. Nephrol. 2010, 5, 1497–1505. [Google Scholar] [CrossRef]
- Gauer, S.; Sichler, O.; Obermüller, N.; Holzmann, Y.; Kiss, E.; Sobkowiak, E.; Pfeilschifter, J.; Geiger, H.; Mühl, H.; Hauser, I. IL-18 is expressed in the intercalated cell of human kidney. Kidney Int. 2007, 72, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Lee, H.T.; Rapoport, D.; Drexler, I.R.; Foster, K.; Yang, J.; Schmidt-Ott, K.M.; Chen, X.; Li, J.Y.; Weiss, S.; et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Investig. 2005, 115, 610–621. [Google Scholar] [CrossRef]
- Mike, L.A.; Smith, S.N.; Sumner, C.A.; Eaton, K.A.; Mobley, H.L.T. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl. Acad. Sci. USA 2016, 113, 13468–13473. [Google Scholar] [CrossRef]
- Olsen, T.S.; Hansen, H.E. Ultrastructure of medullary tubules in ischemic acute tubular necrosis and acute interstitial nephritis in man. APMIS 1990, 98, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Takasu, O.; Gaut, J.P.; Watanabe, E.; To, K.; Fagley, R.E.; Sato, B.; Jarman, S.; Efimov, I.R.; Janks, D.L.; Srivastava, A.; et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 2013, 187, 509–517. [Google Scholar] [CrossRef]
- Zarbock, A.; Nadim, M.K.; Pickkers, P.; Gomez, H.; Bell, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Pannu, N.; Meersch, M.; et al. Sepsis-associated acute kidney injury: Consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 2023, 19, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Shin, J.-A.; Kwon, H.M.; Weiner, I.D.; Han, K.-H. Renal ischemia-reperfusion injury causes intercalated cell-specific disruption of occludin in the collecting duct. Histochem. Cell. Biol. 2011, 136, 637–647. [Google Scholar] [CrossRef]
- Azroyan, A.; Cortez-Retamozo, V.; Bouley, R.; Liberman, R.; Ruan, Y.C.; Kiselev, E.; Jacobson, K.A.; Pittet, M.J.; Brown, D.; Breton, S. Renal intercalated cells sense and mediate inflammation via the P2Y14 receptor. PLoS ONE 2015, 10, e0121419. [Google Scholar] [CrossRef]
- Breton, S.; Battistone, M.A. Unexpected Participation of Intercalated Cells in Renal Inflammation and Acute Kidney Injury. Nephron 2021, 146, 268–273. [Google Scholar] [CrossRef]
- Battistone, M.A.; Mendelsohn, A.C.; Spallanzani, R.G.; Allegretti, A.S.; Liberman, R.N.; Sesma, J.; Kalim, S.; Wall, S.M.; Bonventre, J.V.; Lazarowski, E.R.; et al. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J. Clin. Investig. 2020, 130, 3734–3749. [Google Scholar] [CrossRef]
- Butt, M.; Tarantal, A.; Jimenez, D.; Matsell, D. Matsell. Collecting duct epithelial-mesenchymal transition in fetal urinary tract obstruction. Kidney Int. 2007, 72, 936–944. [Google Scholar] [CrossRef] [PubMed]
- MHiatt, M.J.; Ivanova, L.; Toran, N.; Tarantal, A.F.; Matsell, D.G. Remodeling of the fetal collecting duct epithelium. Am. J. Pathol. 2010, 176, 630–637. [Google Scholar] [CrossRef]
- Hiatt, M.J.; Ivanova, L.; Trnka, P.; Solomon, M.; Matsell, D.G. Urinary tract obstruction in the mouse: The kinetics of distal nephron injury. Lab. Investig. 2013, 93, 1012–1023. [Google Scholar] [CrossRef]
- Fejes-Tóth, G.; Náray-Fejes-Tóth, A. Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture. Proc. Natl. Acad. Sci. USA 1992, 89, 5487–5491. [Google Scholar] [CrossRef]
- Chen, L.; Lee, J.W.; Chou, C.-L.; Nair, A.V.; Battistone, M.A.; Păunescu, T.G.; Merkulova, M.; Breton, S.; Verlander, J.W.; Wall, S.M.; et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc. Natl. Acad. Sci. USA 2017, 114, E9989–E9998. [Google Scholar] [CrossRef] [PubMed]
- Boekhorst, V.T.; Jiang, L.; Mählen, M.; Meerlo, M.; Dunkel, G.; Durst, F.C.; Yang, Y.; Levine, H.; Burgering, B.M.; Friedl, P. Calpain-2 regulates hypoxia/HIF-induced plasticity toward amoeboid cancer cell migration and metastasis. Curr. Biol. 2022, 32, 412–427. [Google Scholar] [CrossRef]
- Sinha, F.; Federlein, A.; Biesold, A.; Schwarzfischer, M.; Krieger, K.; Schweda, F.; Tauber, P. Empagliflozin increases kidney weight due to increased cell size in the proximal tubule S3 segment and the collecting duct. Front. Pharmacol. 2023, 14, e1118358. [Google Scholar] [CrossRef]
- Rosselot, C.; Spraggon, L.; Chia, I.; Batourina, E.; Riccio, P.; Lu, B.; Niederreither, K.; Dolle, P.; Duester, G.; Chambon, P.; et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development 2010, 137, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Takasato, M.; Er, P.X.; Chiu, H.S.; Maier, B.; Baillie, G.J.; Ferguson, C.; Parton, R.G.; Wolvetang, E.J.; Roost, M.S.; Chuva de Sousa Lopes, S.M.; et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015, 526, 564–568. [Google Scholar] [CrossRef]
- Saxena, V.; Fitch, J.; Ketz, J.; White, P.; Wetzel, A.; Chanley, M.A.; Spencer, J.D.; Becknell, B.; Pierce, K.R.; Arregui, S.W.; et al. Whole Transcriptome Analysis of Renal Intercalated Cells Predicts Lipopolysaccharide Mediated Inhibition of Retinoid X Receptor alpha Function. Sci. Rep. 2019, 9, 545. [Google Scholar] [CrossRef]
- Wilson, J.G.; Warkany, J. Malformations in the genito-urinary tract induced by maternal vitamin a deficiency in the rat. Am. J. Anat. 1948, 83, 357–407. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, C.; Lohnes, D.; Décimo, D.; Lufkin, T.; LeMeur, M.; Chambon, P.; Mark, M. Function of the retinoic acid receptors (RARs) during development: (II) Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 1994, 120, 2749–2771. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.F.; Kopp, J.B.; Roberts, C.; Scambler, P.J.; Abe, Y.; Rankin, A.C.; Dutt, N.; Hendry, B.M.; Xu, Q. Endogenous Retinoic Acid Activity in Principal Cells and Intercalated Cells of Mouse Collecting Duct System. PLoS ONE 2011, 6, e16770. [Google Scholar] [CrossRef] [PubMed]
- Munday, J.S.; McKinnon, H.; Aberdein, D.; Collett, M.G.; Parton, K.; Thompson, K.G. Cystitis, pyelonephritis, and urolithiasis in rats accidentally fed a diet deficient in vitamin A. J. Am. Assoc. Lab. Anim. Sci. 2009, 48, 790–794. [Google Scholar]
- Skou, J.C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys Acta. 1957, 23, 394–401. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 1952, 116, 449–472. [Google Scholar] [CrossRef]
- Ussing, H.H.; Zerahn, K. Active Transport of Sodium as the Source of Electric Current in the Short-circuited Isolated Frog Skin. Acta Physiol. Scand. 1951, 23, 110–127. [Google Scholar] [CrossRef]
- Chambrey, R.; Kurth, I.; Peti-Peterdi, J.; Houillier, P.; Purkerson, J.M.; Leviel, F.; Hentschke, M.; Zdebik, A.A.; Schwartz, G.J.; Hübner, C.A.; et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc. Natl. Acad. Sci. USA 2013, 110, 7928–7933. [Google Scholar] [CrossRef]
- Wieczorek, H.; Brown, D.; Grinstein, S.; Ehrenfeld, J.; Harvey, W.R. Animal plasma membrane energization by proton-motive V-ATPases. BioEssays 1999, 21, 637–648. [Google Scholar] [CrossRef]
- Horrisberger, J.-D.; Doucet, A. Renal Ion Translocating ATPases: The P-Type Family. In Seldin and Giebisch’s the Kidney Physiology and Pathophysiology; Academic Press: Cambridge, MA, USA, 2008; pp. 57–90. [Google Scholar]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Yan, J.-J.; Furukawa, F.; Chen, R.-D.; Lee, J.-R.; Tsou, Y.-L.; Liu, T.-Y.; Tang, Y.-H.; Hwang, P.-P. Teleostean fishes may have developed an efficient Na+ uptake for adaptation to the freshwater system. Front. Physiol. 2022, 13, 947958. [Google Scholar] [CrossRef] [PubMed]
- Gagov, H.; Chichova, M.; Mladenov, M. Endolymph Composition: Paradigm or Inevitability? Physiol. Res. 2018, 67, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Jäger, D.; Novak, F.J.S.; Harvey, W.R.; Wieczorek, H.; Klein, U. Temporal and Spatial Distribution of V-ATPase and its mRNA in the Midgut of Moulting Manduca Sexta. J. Exp. Biol. 1996, 199, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.R.; Xiang, M.A. K+ pump: From caterpillar midgut to human cochlea. J. Insect Physiol. 2012, 58, 590–598. [Google Scholar] [CrossRef]
- Stanković, K.M.; Brown, D.; Alper, S.L.; Adams, J.C. Localization of pH regulating proteins H+ATPase and Cl−HCO3− exchanger in the guinea pig inner ear. Hear. Res. 1997, 114, 21–34. [Google Scholar] [CrossRef]
- Eaton, A.F.; Merkulova, M.; Brown, D. The H+-ATPase (V-ATPase): From proton pump to signaling complex in health and disease. Am. J. Physiol. Physiol. 2021, 320, C392–C414. [Google Scholar] [CrossRef]
- Couloigner, V.; Teixeira, M.; Hulin, P.; Sterkers, O.; Bichara, M.; Escoubet, B.; Planelles, G.; Ferrary, E.; Inamoto, R.; Miyashita, T.; et al. Effect of locally applied drugs on the pH of luminal fluid in the endolymphatic sac of guinea pig. Am. J. Physiol. Integr. Comp. Physiol. 2000, 279, R1695–R1700. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kang, H.H.; Chung, J.W. The Change of Hearing Threshold and Endocochlear Potential by Bafilomycin Delivered to Round Window in Guinea Pigs. Korean J. Otolaryngol. 2004, 47, 524–529. [Google Scholar]
- Liu, W.; Nordström, C.K.; Danckwardt-Lillieström, N.; Rask-Andersen, H. Human Inner Ear Immune Activity: A Super-Resolution Immunohistochemistry Study. Front. Neurol. 2019, 10, 728. [Google Scholar] [CrossRef]
- Møller, M.N.; Kirkeby, S.; Vikeså, J.; Nielsen, F.C.; Cayé-Thomasen, P. Gene expression demonstrates an immunological capacity of the human endolymphatic sac. Laryngoscope 2015, 125, E269–E275. [Google Scholar] [CrossRef]
- Dou, H.; Xu, J.; Wang, Z.; Smith, A.N.; Soleimani, M.; Karet, F.E.; Greinwald, J.H., Jr.; Choo, D. Co-expression of Pendrin, Vacuolar H+-ATPase α4-Subunit and Carbonic Anhydrase II in Epithelial Cells of the Murine Endolymphatic Sac. J. Histochem. Cytochem. 2004, 52, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.W.; Usselman, M.C.; Acott, T.S. Effects of pH, Lactate, and Viscoelastic Drag on Sperm Motility: A Species Comparison. Biol. Reprod. 1985, 33, 588–595. [Google Scholar] [CrossRef]
- Acott, T.S.; Carr, D.W. Inhibition of Bovine Spermatozoa by Caudal Epididymal Fluid: II. Interaction of pH and a Quiescence Factor. Biol. Reprod. 1984, 30, 926–935. [Google Scholar] [CrossRef]
- Blomqvist, S.R.; Vidarsson, H.; Söder, O.; Enerbäck, S. Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J. 2006, 25, 4131–4141. [Google Scholar] [CrossRef]
- Arenas, M.I.; de Miguel, M.P.; Bethencourt, F.R.; Fraile, B.; Royuela, M.; Paniagua, R. Lectin histochemistry in the human epididymis. J. Reprod. Fertil. 1996, 106, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yu, C.; He, C.; Mei, C.; Liao, A.; Huang, D. The Immune Characteristics of the Epididymis and the Immune Pathway of the Epididymitis Caused by Different Pathogens. Front. Immunol. 2020, 11, 2115. [Google Scholar] [CrossRef]
- Poole, A.M.; Neumann, N. Reconciling an archaeal origin of eukaryotes with engulfment: A biologically plausible update of the Eocyte hypothesis. Res. Microbiol. 2011, 162, 71–76. [Google Scholar] [CrossRef]
- Mills, D.B. The origin of phagocytosis in Earth history. Interface Focus 2020, 10, 20200019. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.; Chitayat, D.; Tzehoval, E.; Waxdal, M.; Sharon, N. Detection and enumeration of monocytes in human blood with peanut agglutinin. J. Immunol. Methods 1985, 81, 7–13. [Google Scholar] [CrossRef]
- Yoshida, H.; Fuwa, T.J.; Arima, M.; Hamamoto, H.; Sasaki, N.; Ichimiya, T.; Osawa, K.-I.; Ueda, R.; Nishihara, S. Identification of the Drosophila core 1 1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology 2008, 18, 1094–1104. [Google Scholar] [CrossRef]
- Tojo, A.; Guzman, N.J.; Garg, L.C.; Tisher, C.C.; Madsen, K.M.; Lima, V.d.S.; Crajoinas, R.O.; Carraro-Lacroix, L.R.; Godinho, A.N.; Dias, J.L.G.; et al. Nitric oxide inhibits bafilomycin-sensitive H(+)-ATPase activity in rat cortical collecting duct. Am. J. Physiol. Physiol. 1994, 267, F509–F515. [Google Scholar] [CrossRef] [PubMed]
- Swallow, C.J.; Grinstein, S.; Sudsbury, R.A.; Rotstein, O.D. Relative roles of Na+/H+ exchange and vacuolar-type H+ ATPases in regulating cytoplasmic pH and function in murine peritoneal macrophages. J. Cell. Physiol. 1993, 157, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Heming, T.A.; Traber, D.L.; Hinder, F.; Bidani, A. Effects of Plasmalemmal V-ATPase Activity on Plasma Membrane Potential of Resident Alveolar Macrophages; Effects of Bafilomycin A1 on cytosolic pH of sheep alveolar and peritoneal macrophages: Evaluation of the ph-regulatory role of plasma membrane V-ATPases. J. Exp. Biol. 1995, 198, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-P.; Krits, I.; Bai, S.; Lee, B.S. Regulation of Enhanced Vacuolar H+-ATPase Expression in Macrophages. J. Biol. Chem. 2002, 277, 8827–8834. [Google Scholar] [CrossRef]
- Ratheesh, A.; Biebl, J.; Vesela, J.; Smutny, M.; Papusheva, E.; Krens, S.G.; Kaufmann, W.; Gyoergy, A.; Casano, A.M.; Siekhaus, D.E. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Dev. Cell 2018, 45, 331–346. [Google Scholar] [CrossRef]
- Siekhaus, D.; Haesemeyer, M.; Moffitt, O.; Lehmann, R. RhoL controls invasion and Rap1 localization during immune cell transmigration in Drosophila. Nat. Cell Biol. 2010, 12, 605–610. [Google Scholar] [CrossRef]
- Ortmann, M.; Vierbuchen, M.; Fischer, R. Sialylated glycoconjugates in chromophobe cell renal carcinoma compared with other renal cell tumors. Indication of its development from the collecting duct epithelium. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1992, 61, 123–132. [Google Scholar] [CrossRef]
- Brockhausen, I.; Wandall, H.H.; Hagen, K.G.T.; Stanley, P. O-GalNAC Glycans. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; pp. 117–127. [Google Scholar]
- Cavalier-Smith, T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 2013, 49, 115–178. [Google Scholar] [CrossRef]
- Porter, S.M.; Riedman, L.A. Evolution: Ancient Fossilized Amoebae Find Their Home in the Tree. Curr. Biol. 2019, 29, R212–R215. [Google Scholar] [CrossRef]
- Pesanti, E.L.; Lorenzo, J.A. Osteoclasts and Effects of Interleukin 4 in Development of Chronic Osteomyelitis. Clin. Orthop. Relat. Res. 1998, 355, 290–299. [Google Scholar] [CrossRef]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015, 2015, e615486. [Google Scholar] [CrossRef] [PubMed]
- Takagi, M.; Yagasaki, H.; Baba, T.; Baba, H. Ultrastructural visualization of selective peanut agglutinin binding sites in rat osteoclasts. J. Histochem. Cytochem. 1988, 36, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Harre, U.; Keppeler, H.; Ipseiz, N.; Derer, A.; Poller, K.; Aigner, M.; Schett, G.; Herrmann, M.; Lauber, K. Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 2012, 45, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, K.S. Find-me and eat-me signals in apoptotic cell clearance: Progress and conundrums. J. Exp. Med. 2010, 207, 1807–1817. [Google Scholar] [CrossRef]
- Li, H.; Hong, S.; Qian, J.; Zheng, Y.; Yang, J.; Yi, Q. Cross talk between the bone and immune systems: Osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 2010, 116, 210–217. [Google Scholar] [CrossRef]
- Ahmadzadeh, K.; Vanoppen, M.; Rose, C.D.; Matthys, P.; Wouters, C.H. Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities, and Mechanism of Formation. Front. Cell Dev. Biol. 2022, 10, 873226. [Google Scholar] [CrossRef]
- Liang, X.; Meng, B.; Yang, X.; Chen, Y.; Zhai, J. Effect of titanium particles on osteoclast activity in vitro. Mol. Med. Rep. 2010, 3, 1065–1069. [Google Scholar] [CrossRef]
- Bajgar, A.; Krejčová, G. On the origin of the functional versatility of macrophages. Front. Physiol. 2023, 14, 1128984. [Google Scholar] [CrossRef]
- Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G. The New Tree of Eukaryotes. Trends Ecol. Evol. 2020, 35, 43–55. [Google Scholar] [CrossRef]
- Al Jewari, C.; Baldauf, S.L. An excavate root for the eukaryote tree of life. Sci. Adv. 2023, 9, eade4973. [Google Scholar] [CrossRef]
- Brusca, R.C.; Giribeti, G.; Moore, W. Phylum Porifera. The Sponges. In Invertebrates; Sinauer: Sunderland, MA, USA, 2023; pp. 119–163. [Google Scholar]
- López-Escardó, D.; Grau-Bové, X.; Guillaumet-Adkins, A.; Gut, M.; Sieracki, M.E.; Ruiz-Trillo, I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190088. [Google Scholar] [CrossRef] [PubMed]
- Ereskovsky, A.; Borisenko, I.E.; Bolshakov, F.V.; Lavrov, A.I. Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects. Genes 2021, 12, 506. [Google Scholar] [CrossRef] [PubMed]
- Brunet, T.; King, N. The Origin of Animal Multicellularity and Cell Differentiation. Dev. Cell 2017, 43, 124–140. [Google Scholar] [CrossRef]
- Fritz-Laylin, L.K.; Prochnik, S.E.; Ginger, M.L.; Dacks, J.B.; Carpenter, M.L.; Field, M.C.; Kuo, A.; Paredez, A.; Chapman, J.; Pham, J.; et al. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell 2010, 140, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Noselli, G.; Beran, A.; Arroyo, M.; DeSimone, A. Swimming Euglena respond to confinement with a behavioural change enabling effective crawling. Nat. Phys. 2019, 15, 496–502. [Google Scholar] [CrossRef]
- Brunet, T.; Albert, M.; Roman, W.; Coyle, M.C.; Spitzer, D.C.; King, N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021, 10, e61037. [Google Scholar] [CrossRef]
- Madsen, K.M.; Verlander, J.W.; Tisher, C.C. Relationship between structure and function in distal tubule and collecting duct. J. Electron Microsc. Tech. 1988, 9, 187–208. [Google Scholar] [CrossRef]
- Barott, K.L.; Thies, A.B.; Tresguerres, M. V-type H+ -ATPase in the symbiosome membrane is a conserved mechanism for host control of photosynthesis in anthozoan photosymbioses. R. Soc. Open Sci. 2022, 9, 211449. [Google Scholar] [CrossRef]
- Fok, A.K.; Aihara, M.S.; Ishida, M.; Nolta, K.V.; Steck, T.L.; Allen, R.D. The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps. J. Cell Sci. 1995, 108, 3163–3170. [Google Scholar] [CrossRef]
- Grønlien, H.K.; Stock, C.; Aihara, M.S.; Allen, R.D.; Naitoh, Y. Relationship between the membrane potential of the contractile vacuole complex and its osmoregulatory activity in Paramecium multimicronucleatum. J. Exp. Biol. 2002, 205, 3261–3270. [Google Scholar] [CrossRef]
- Meléndez-Hernández, M.G.; Barrios, M.L.L.; Orozco, E.; Luna-Arias, J.P. The Vacuolar ATPase from Entamoeba histolytica: Molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein. BMC Microbiol. 2008, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.T.; Barlow, L.D.; Ramirez-Macias, I.; Herman, E.K.; Dacks, J.B. Endosomal vesicle fusion machinery is involved with the contractile vacuole in Dictyostelium discoideum. J. Cell Sci. 2023, 136, jcs260477. [Google Scholar] [CrossRef] [PubMed]
- Velle, K.B.; Garner, R.M.; Beckford, T.K.; Weeda, M.; Liu, C.; Kennard, A.S.; Edwards, M.; Fritz-Laylin, L.K. A conserved pressure-driven mechanism for regulating cytosolic osmolarity. Curr. Biol. 2023, 33, 3325–3337.e5. [Google Scholar] [CrossRef] [PubMed]
- Brauer, E.B.; McKanna, J.A. Contractile vacuoles in cells of a fresh water sponge, Spongilla lacustris. Cell Tissue Res. 1978, 192, 309–317. [Google Scholar] [CrossRef]
- Evans, D.H. (Ed.) Osmotic and Ionic Regulation: Cells and Animals; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- O’Donnell, M.J. Mechanisms of Excretion and Ion Transport in Invertebrates. In Handbook of Physiology Comparative Physiology; Wiley Online Library: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Cannon, J.T.; Vellutini, B.C.; Smith, J.; Ronquist, F.; Jondelius, U.; Hejnol, A. Xenacoelomorpha is the sister group to Nephrozoa. Nature 2016, 530, 89–93. [Google Scholar] [CrossRef]
- Andrikou, C.; Thiel, D.; Ruiz-Santiesteban, J.A.; Hejnol, A. Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biol. 2019, 17, e3000408. [Google Scholar] [CrossRef]
- Cheval, L.; Morla, L.; Elalouf, J.-M.; Doucet, A. Kidney collecting duct acid-base “regulon”. Physiol. Genom. 2006, 27, 271–281. [Google Scholar] [CrossRef]
- Borisenko, I.; Bolshakov, F.V.; Ereskovsky, A.; Lavrov, A.I. Expression of Wnt and TGF-Beta Pathway Components during Whole-Body Regeneration from Cell Aggregates in Demosponge Halisarca dujardinii. Genes 2021, 12, 944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graciano, M.L. Renal Intercalated Cells: Alien Cells Inside Us? Biology 2025, 14, 607. https://doi.org/10.3390/biology14060607
Graciano ML. Renal Intercalated Cells: Alien Cells Inside Us? Biology. 2025; 14(6):607. https://doi.org/10.3390/biology14060607
Chicago/Turabian StyleGraciano, Miguel Luis. 2025. "Renal Intercalated Cells: Alien Cells Inside Us?" Biology 14, no. 6: 607. https://doi.org/10.3390/biology14060607
APA StyleGraciano, M. L. (2025). Renal Intercalated Cells: Alien Cells Inside Us? Biology, 14(6), 607. https://doi.org/10.3390/biology14060607