High-Throughput Analysis of the Flagella FliK-Dependent Surfaceome and Secretome in Bacillus thuringiensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Sample Preparation for LC-MS/MS Analysis of Secreted Proteins in Culture Supernatant
2.3. Sample Preparation for LC-MS/MS Analysis of Cell-Wall-Associated Protein
2.4. LC-MS/MS Analysis and Protein Identification
2.5. Protein Quantification and Statistical Analysis of LC-MS/MS Data
3. Results and Discussion
3.1. Global Proteomic Analysis of Cell Surface and Secreted Proteins in the Bt407 ΔfliK Mutant and Its Reference Strain
3.2. Comparative Analysis of the Surfaceomes of the Bt ΔfliK and Reference Bt407 Cry- Strains
3.3. Comparative Analysis of the Secretomes of the Bt ΔfliK and Reference Bt407 Cry- Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Q.; Zhou, M.; Zhu, L.; Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Chaban, B.; Hughes, H.V.; Beeby, M. The flagellum in bacterial pathogens: For motility and a whole lot more. In Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 46, pp. 91–103. [Google Scholar]
- Halte, M.; Erhardt, M. Protein export via the type III secretion system of the bacterial flagellum. Biomolecules 2021, 11, 186. [Google Scholar] [CrossRef]
- Young, G.M.; Schmiel, D.H.; Miller, V.L. A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 1999, 96, 6456–6461. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a taxonomic nomenclature for the Bacillus cereus group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes. MBio 2020, 11, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.H.; Sands, E.M.; Friedman, H. Bacillus cereus. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Damgaard, P.H.; Granum, P.E.; Bresciani, J.; Torregrossa, M.V.; Eilenberg, J.; Valentino, L. Characterization of Bacillus thuringiensis isolated from infections in burn wounds. FEMS Immunol. Med. Microbiol. 1997, 18, 47–53. [Google Scholar] [CrossRef]
- Green, M.; Heumann, M.; Sokolow, R.; Foster, L.R.; Bryant, R.; Skeels, M. Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985–1986. Am. J. Public Health 1990, 80, 848–852. [Google Scholar] [CrossRef]
- Helgason, E.; Caugant, D.A.; Olsen, I.; Kolstø, A.-B. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J. Clin. Microbiol. 2000, 38, 1615–1622. [Google Scholar] [CrossRef]
- Hernandez, E.; Ramisse, F.; Ducoureau, J.-P.; Cruel, T.; Cavallo, J.-D. Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: Case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 1998, 36, 2138–2139. [Google Scholar] [CrossRef]
- Kuroki, R.; Kawakami, K.; Qin, L.; Kaji, C.; Watanabe, K.; Kimura, Y.; Ishiguro, C.; Tanimura, S.; Tsuchiya, Y.; Hamaguchi, I.; et al. Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern. Med. 2009, 48, 791–796. [Google Scholar] [CrossRef]
- Abi Khattar, Z.; Rejasse, A.; Destoumieux-Garzon, D.; Escoubas, J.M.; Sanchis, V.; Lereclus, D.; Givaudan, A.; Kallassy, M.; Nielsen-Leroux, C.; Gaudriault, S. The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J. Bacteriol. 2009, 191, 7063–7073. [Google Scholar] [CrossRef] [PubMed]
- Attieh, Z.; Kallassy Awad, M.; Rejasse, A.; Courtin, P.; Gomperts Boneca, I.; Chapot-Chartier, M.P.; Sanchis Borja, V.; El Chamy, L. D-alanylation of Teichoic Acids in Bacilli impedes the immune sensing of peptidoglycan in Drosophila. BioRxiv 2019, 10-1101, 631523. [Google Scholar] [CrossRef]
- Kamar, R.; Réjasse, A.; Jéhanno, I.; Attieh, Z.; Courtin, P.; Chapot-Chartier, M.P.; Nielsen-Leroux, C.; Lereclus, D.; El Chamy, L.; Kallassy, M.; et al. DltX of bacillus thuringiensis is essential for D-Alanylation of teichoic acids and resistance to antimicrobial response in insects. Front. Microbiol. 2017, 8, 1437. [Google Scholar] [CrossRef]
- Abachin, E.; Poyart, C.; Pellegrini, E.; Milohanic, E.; Fiedler, F.; Berche, P.; Trieu-Cuot, P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol. 2002, 43, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Helmann, J.D. The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol. 2004, 186, 1136–1146. [Google Scholar] [CrossRef]
- Carvalho, F.; Atilano, M.L.; Pombinho, R.; Covas, G.; Gallo, R.L.; Filipe, S.R.; Sousa, S.; Cabanes, D. L-Rhamnosylation of Listeria monocytogenes wall teichoic acids promotes resistance to antimicrobial peptides by delaying interaction with the membrane. PLoS Pathog. 2015, 11, e1004919. [Google Scholar] [CrossRef]
- Fisher, N.; Shetron-Rama, L.; Herring-Palmer, A.; Heffernan, B.; Bergman, N.; Hanna, P. The dltABCD operon of Bacillus anthracis Sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity. J. Bacteriol. 2006, 188, 1301–1309. [Google Scholar] [CrossRef]
- May, J.J.; Finking, R.; Wiegeshoff, F.; Weber, T.T.; Bandur, N.; Koert, U.; Marahiel, M.A. Inhibition of the d-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J. 2005, 272, 2993–3003. [Google Scholar] [CrossRef]
- Palumbo, E.; Deghorain, M.; Cocconcelli, P.S.; Kleerebezem, M.; Geyer, A.; Hartung, T.; Morath, S.; Hols, P. D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J. Bacteriol. 2006, 188, 3709–3715. [Google Scholar] [CrossRef]
- Wydau-Dematteis, S.; Louis, M.; Zahr, N.; Lai-Kuen, R.; Saubaméa, B.; Butel, M.J.; Pons, J.L. The functional dlt operon of Clostridium butyricum controls the D-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis. Anaerobe 2015, 35, 105–114. [Google Scholar] [CrossRef]
- Attieh, Z.; Mouawad, C.; Rejasse, A.; Jehanno, I.; Perchat, S.; Hegna, I.K.; Økstad, O.A.; Kallassy Awad, M.; Sanchis-Borja, V.; El Chamy, L. The fliK Gene Is Required for the Resistance of Bacillus thuringiensis to Antimicrobial Peptides and Virulence in Drosophila melanogaster. Front. Microbiol. 2020, 11, 611220. [Google Scholar] [CrossRef]
- Chevance, F.F.V.; Hughes, K.T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 2008, 6, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Journet, L.; Agrain, C.; Broz, P.; Cornelis, G.R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 2003, 302, 1757–1760. [Google Scholar] [CrossRef]
- Minamino, T.; Namba, K. Self-assembly and type III protein export of the bacterial flagellum. Microb. Physiol. 2004, 7, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Patterson-Delafield, J.; Martinez, R.J.; Stocker, B.A.D.; Yamaguchi, S. A new fla gene in Salmonella typhimurium—flaR—And its mutant phenotype-superhooks. Arch. Mikrobiol. 1973, 90, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Takahashi, N.; Chevance, F.F.V.; Karlinsey, J.E.; Hughes, K.T.; Aizawa, S. FliK regulates flagellar hook length as an internal ruler. Mol. Microbiol. 2007, 64, 1404–1415. [Google Scholar] [CrossRef]
- Silverman, M.R.; Simon, M.I. Flagellar assembly mutants in Escherichia coli. J. Bacteriol. 1972, 112, 986–993. [Google Scholar] [CrossRef]
- Courtney, C.R.; Cozy, L.M.; Kearns, D.B. Molecular characterization of the flagellar hook in Bacillus subtilis. J. Bacteriol. 2012, 194, 4619–4629. [Google Scholar] [CrossRef]
- Erhardt, M.; Namba, K.; Hughes, K.T. Bacterial nanomachines: The flagellum and type III injectisome. Cold Spring Harb. Perspect. Biol. 2010, 2, a000299. [Google Scholar] [CrossRef]
- Aizawa, S.-I. Mystery of FliK in length control of the flagellar hook. J. Bacteriol. 2012, 194, 4798–4800. [Google Scholar] [CrossRef]
- Evans, L.D.B.; Hughes, C.; Fraser, G.M. Building a flagellum outside the bacterial cell. Trends Microbiol. 2014, 22, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.T. Flagellar hook length is controlled by a secreted molecular ruler. J. Bacteriol. 2012, 194, 4793–4796. [Google Scholar] [CrossRef]
- Hughes, K.T. Rebuttal: Mystery of FliK in length control of the flagellar hook. J. Bacteriol. 2012, 194, 4801. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Tanaka, S.; Inoue, Y.; Namba, K.; Aizawa, S.-I.; Minamino, T. The flexible linker of the secreted FliK ruler is required for export switching of the flagellar protein export apparatus. Sci. Rep. 2020, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Minamino, T. Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus. FEMS Microbiol Lett. 2018, 365, fny117. [Google Scholar] [CrossRef]
- Minamino, T.; Inoue, Y.; Kinoshita, M.; Namba, K. FliK-driven conformational rearrangements of FlhA and FlhB are required for export switching of the flagellar protein export apparatus. J. Bacteriol. 2020, 202, 10–1128. [Google Scholar] [CrossRef]
- Fraser, G.M.; Hirano, T.; Ferris, H.U.; Devgan, L.L.; Kihara, M.; Macnab, R.M. Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol. Microbiol. 2003, 48, 1043–1057. [Google Scholar] [CrossRef]
- Minamino, T.; Kawamoto, A.; Kinoshita, M.; Namba, K. Molecular organization and assembly of the export apparatus of flagellar type III secretion systems. Bact. Type III Protein Secret. Syst. 2020, 427, 91–107. [Google Scholar]
- Minamino, T.; Macnab, R.M. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol. 2000, 182, 4906–4914. [Google Scholar] [CrossRef]
- Terahara, N.; Inoue, Y.; Kodera, N.; Morimoto, Y.V.; Uchihashi, T.; Imada, K.; Ando, T.; Namba, K.; Minamino, T. Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Sci Adv. 2018, 4, eaao7054. [Google Scholar] [CrossRef]
- Barembruch, C.; Hengge, R. Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol. Microbiol. 2007, 65, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Calvo, R.; Kearns, D. FlgM Is Secreted by the Flagellar Export Apparatus in Bacillus subtilis. J. Bacteriol. 2015, 197, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Daughdrill, G.W.; Chadsey, M.S.; Karlinsey, J.E.; Hughes, K.T.; Dahlquist, F.W. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, σ28. Nat. Struct. Biol. 1997, 4, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Gillen, K.L.; Hughes, K.T. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 1991, 173, 6453–6459. [Google Scholar] [CrossRef]
- Kalir, S.; McClure, J.; Pabbaraju, K.; Southward, C.; Ronen, M.; Leibler, S.; Surette, M.G.; Alon, U. Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria. Science 2001, 292, 2080–2083. [Google Scholar] [CrossRef]
- Karlinsey, J.E.; Lonner, J.; Brown, K.L.; Hughes, K.T. Translation/secretion coupling by type III secretion systems. Cell 2000, 102, 487–497. [Google Scholar] [CrossRef]
- Karlinsey, J.E.; Tanaka, S.; Bettenworth, V.; Yamaguchi, S.; Boos, W.; Aizawa, S.I.; Hughes, K.T. Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol. Microbiol. 2000, 37, 1220–1231. [Google Scholar] [CrossRef]
- Kutsukake, K.; Iino, T. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J. Bacteriol. 1994, 176, 3598–3605. [Google Scholar] [CrossRef]
- Bouillaut, L.; Ramarao, N.; Buisson, C.; Gilois, N.; Gohar, M.; Lereclus, D.; Nielsen-LeRoux, C. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl. Environ. Microbiol. 2005, 71, 8903–8910. [Google Scholar] [CrossRef]
- Fagerlund, A.; Lindbäck, T.; Granum, P.E. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol. 2010, 10, 1–8. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Beecher, D.J.; Gominet, M.; Lereclus, D.; Wong, A.C.; Senesi, S. Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J. Bacteriol. 2002, 184, 6424–6433. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Ceragioli, M.; Beecher, D.J.; Senesi, S.; Wong, A.C. Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl. Environ. Microbiol. 2007, 73, 4089–4093. [Google Scholar] [CrossRef] [PubMed]
- Lereclus, D.; Arantrs, O.; Chaufaux, J.; Lecadet, M.-M. Transformation and expression of a cloned 6-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 1989, 60, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Hervé, V.; Duruflé, H.; San Clemente, H.; Albenne, C.; Balliau, T.; Zivy, M.; Dunand, C.; Jamet, E. An enlarged cell wall proteome of Arabidopsis thaliana rosettes. Proteomics 2016, 16, 3183–3187. [Google Scholar] [CrossRef]
- Craig, R.; Beavis, R.C. TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466–1467. [Google Scholar] [CrossRef] [PubMed]
- Langella, O.; Valot, B.; Balliau, T.; Blein-Nicolas, M.; Bonhomme, L.; Zivy, M. X! TandemPipeline: A tool to manage sequence redundancy for protein inference and phosphosite identification. J. Proteome Res. 2017, 16, 494–503. [Google Scholar] [CrossRef]
- Liu, H.; Sadygov, R.G.; Yates, J.R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76, 4193–4201. [Google Scholar] [CrossRef]
- Valot, B.; Langella, O.; Nano, E.; Zivy, M. MassChroQ: A versatile tool for mass spectrometry quantification. Proteomics 2011, 11, 3572–3577. [Google Scholar] [CrossRef]
- Assoni, L.; Milani, B.; Carvalho, M.R.; Nepomuceno, L.N.; Waz, N.T.; Guerra, M.E.S.; Converso, T.R.; Darrieux, M. Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Front. Microbiol. 2020, 11, 2362. [Google Scholar] [CrossRef]
- Nawrocki, K.L.; Crispell, E.K.; McBride, S.M. Antimicrobial peptide resistance mechanisms of gram-positive bacteria. Antibiotics 2014, 3, 461–492. [Google Scholar] [CrossRef]
- Olaya-Abril, A.; Jiménez-Munguía, I.; Gómez-Gascón, L.; Rodríguez-Ortega, M.J. Surfomics: Shaving live organisms for a fast proteomic identification of surface proteins. J. Proteom. 2014, 97, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Rey, S.; Acab, M.; Gardy, J.L.; Laird, M.R.; DeFays, K.; Lambert, C.; Brinkman, F.S. PSORTdb: A protein subcellular localization database for bacteria. Nucleic Acids Res. 2005, 33, D164–D168. [Google Scholar] [CrossRef] [PubMed]
- Vörös, A.; Simm, R.; Slamti, L.; McKay, M.J.; Hegna, I.K.; Nielsen-LeRoux, C.; Hassan, K.A.; Paulsen, I.T.; Lereclus, D.; Økstad, O.A.; et al. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS ONE 2014, 9, e103326. [Google Scholar] [CrossRef] [PubMed]
- Olaya-Abril, A.; Gómez-Gascón, L.; Jiménez-Munguía, I.; Obando, I.; Rodríguez-Ortega, M.J. Another turn of the screw in shaving Gram-positive bacteria: Optimization of proteomics surface protein identification in Streptococcus pneumoniae. J. Proteom. 2012, 75, 3733–3746. [Google Scholar] [CrossRef]
- Tjalsma, H.; Lambooy, L.; Hermans, P.W.; Swinkels, D.W. Shedding & shaving: Disclosure of proteomic expressions on a bacterial face. Proteomics 2008, 8, 1415–1428. [Google Scholar]
- Tjalsma, H.; Antelmann, H.; Jongbloed, J.D.; Braun, P.G.; Darmon, E.; Dorenbos, R.; Dubois, J.Y.F.; Westers, H.; Zanen, G.; Quax, W.J.; et al. Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 2004, 68, 207–233. [Google Scholar] [CrossRef]
- Hajredini, F.; Alphonse, S.; Ghose, R. BY-kinases: Protein tyrosine kinases like no other. J. Biol. Chem. 2023, 299, 102737. [Google Scholar] [CrossRef]
- Scott, K.; Diggle, M.A.; Clarke, S.C. TypA is a virulence regulator and is present in many pathogenic bacteria. Br. J. Biomed. Sci. 2003, 60, 168–170. [Google Scholar] [CrossRef]
- Verstraeten, N.; Fauvart, M.; Versées, W.; Michiels, J. The universally conserved prokaryotic GTPases. Microbiol. Mol. Biol. Rev. 2011, 75, 507–542. [Google Scholar] [CrossRef]
- Wang, F.; Zhong, N.-Q.; Gao, P.; Wang, G.-L.; Wang, H.-Y.; Xia, G.-X. SsTypA1, a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa, plays a role in oxidative stress tolerance. Plant Cell Environ. 2008, 31, 982–994. [Google Scholar] [CrossRef]
- Beckering, C.L.; Steil, L.; Weber, M.H.W.; Völker, U.; Marahiel, M.A. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 2002, 184, 6395–6402. [Google Scholar] [CrossRef] [PubMed]
- Farris, M.; Grant, A.; Richardson, T.B.; O’Connor, C.D. BipA: A tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol. Microbiol. 1998, 28, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.J.; Farris, M.; Alefounder, P.; Williams, P.H.; Woodward, M.J.; O’Connor, C.D. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol. Microbiol. 2003, 48, 507–521. [Google Scholar] [CrossRef]
- Overhage, J.; Lewenza, S.; Marr, A.K.; Hancock, R.E.W. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn 5-lux mutant library. J. Bacteriol. 2007, 189, 2164–2169. [Google Scholar] [CrossRef] [PubMed]
- Neidig, A.; Yeung, A.T.; Rosay, T.; Tettmann, B.; Strempel, N.; Rueger, M.; Lesouhaitier, O.; Overhage, J. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol. 2013, 13, 1–10. [Google Scholar] [CrossRef]
- Inoue, Y.; Kinoshita, M.; Kida, M.; Takekawa, N.; Namba, K.; Imada, K.; Minamino, T. The FlhA linker mediates flagellar protein export switching during flagellar assembly. Commun. Biol. 2021, 4, 646. [Google Scholar] [CrossRef]
- Clair, G.; Roussi, S.; Armengaud, J.; Duport, C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol. Cell. Proteom. 2010, 9, 1486–1498. [Google Scholar] [CrossRef]
- Gilois, N.; Ramarao, N.; Bouillaut, L.; Perchat, S.; Aymerich, S.; Nielsen-LeRoux, C.; Lereclus, D.; Gohar, M. Growth-related variations in the Bacillus cereus secretome. Proteomics 2007, 7, 1719–1728. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Man, S.M.; Lamb, S.; Raftery, M.J.; Wilkins, M.R.; Kovach, Z.; Mitchell, H. The secretome of Campylobacter concisus. FEBS J. 2010, 277, 1606–1617. [Google Scholar] [CrossRef]
- Minamino, T.; González-Pedrajo, B.; Yamaguchi, K.; Aizawa, S.-I.; Macnab, R.M. FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol. Microbiol. 1999, 34, 295–304. [Google Scholar] [CrossRef]
- Zeden, M.S.; Gallagher, L.A.; Bueno, E.; Nolan, A.C.; Ahn, J.; Shinde, D.; Razvi, F.; Sladek, M.; Burke, Ó.; O’Neill, E.; et al. Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. PLoS Pathog. 2023, 19, e1011536. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.B.R.; Ferreira Rde, C.C.; Padilla, G.; Ferreira, L.C.S.; Costa, S.O.P.D. Altered expression of oligopeptide-binding protein, (O.p.p.A.).; aminoglycoside resistance in laboratory clinical Escherichia coli strains. J. Med. Microbiol. 2000, 49, 409–413. [Google Scholar] [CrossRef]
- Chen, F.-C.; Shen, L.-F.; Tsai, M.-C.; Chak, K.-F. The IspA protease’s involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochem. Biophys. Res. Commun. 2003, 312, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Gohar, M.; Økstad, O.A.; Gilois, N.; Sanchis, V.; Kolstø, A.; Lereclus, D. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2002, 2, 784–791. [Google Scholar] [CrossRef]
- Huang, S.; Ding, X.; Sun, Y.; Yang, Q.; Xiao, X.; Cao, Z.; Xia, L. Proteomic analysis of Bacillus thuringiensis at different growth phases by using an automated online two-dimensional liquid chromatography-tandem mass spectrometry strategy. Appl. Environ. Microbiol. 2012, 78, 5270–5279. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ding, X.; Xia, L.; Sun, Y.; Yuan, C.; Yin, J. Proteomic analysis of Bacillus thuringiensis strain 4.0718 at different growth phases. Sci. World J. 2012, 798739. [Google Scholar]
- Omer, H.; Alpha-Bazin, B.; Brunet, J.-L.; Armengaud, J.; Duport, C. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Front. Microbiol. 2015, 6, 1004. [Google Scholar] [CrossRef]
SC Quantification | |||||
---|---|---|---|---|---|
Biological Process | Proteins Reduced in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj | Databases |
Flagellum assembly | AFV17395.1 flagellin B | Undefined | 0.38 | 2.51 × 10−10 | [1] |
AFV17389.1 flagellar hook protein FlgE | Extracellular | 0.15 | 1.02 × 10−3 | [1] | |
Proteolysis | AFV19517.1 serine protease, subtilase family | Non-cytoplasmic | 0.56 | 3.06 × 10−2 | [2,3] |
AFV19362.1 protease HhoA | Undefined | 0.22 | 5.68 × 10−3 | [2,3] | |
Stress response | AFV19771.1 GTP-binding protein TypA | Cytoplasmic Membrane | 0.04 | 7.79 × 10−7 | [4] |
Metabolic process | AFV16964.1 enoyl-[acyl-carrier-protein] reductase FabI | Cytoplasmic Membrane | 0.09 | 5.34 × 10−13 | [1,2,3] |
AFV16923.1 3-oxoacyl-[acyl-carrier-protein] synthase 2 | Cytoplasmic Membrane | 0.00 | 3.60 × 10−21 | [1,2,3] | |
AFV16410.1 sphingomyelinase C | Extracellular | 0.39 | 1.40 × 10−3 | [1,2] | |
Extracellular polysaccharide biosynthetic process | AFV21128.1 tyrosine protein kinase YwqD | Cytoplasmic Membrane | 0.00 | 7.86 × 10−5 | [3] |
Regulation of cell division | AFV20267.1 septum site-determining protein MinD | Cytoplasmic Membrane | 0.03 | 9.93 × 10−10 | [3,4] |
AFV20522.1 DNA translocase SftA | Cytoplasmic Membrane | 0.00 | 3.28 × 10−5 | [1,2] | |
Protein export | AFV19653.1 signal recognition particle protein Ffh | Cytoplasmic Membrane | 0.00 | 2.32 × 10−6 | [1,2,3] |
Unclassified | AFV20645.1 phage shock protein A | Cytoplasmic Membrane | 0.32 | 1.75 × 10−4 | - |
AFV16253.1 putative cytosolic protein | Undefined | 0.09 | 3.06 × 10−8 | - | |
AFV17720.1 oxidoreductase, short-chain dehydrogenase/reductase family superfamily | Non-cytoplasmic | 0.00 | 1.94 × 10−4 | - | |
AFV20471.1 putative thiol peroxidase Tpx | Undefined | 0.00 | 3.25 × 10−14 | - | |
AFV20858.1 FeS cluster assembly protein SufD | Undefined | 0.09 | 5.77 × 10−5 | - | |
AFV20943.1 uncharacterized protein YjlC | Undefined | 0.00 | 7.66 × 10−11 | - | |
Hypothetical proteins | AFV20367.1 hypothetical protein BTB_c46880 | Extracellular | 0.20 | 7.38 × 10−5 | - |
AFV15824.1 hypothetical protein BTB_c00190 | Undefined | 0.24 | 1.07 × 10−2 | - | |
AFV17737.1 hypothetical protein BTB_c20450 | Non-cytoplasmic | 0.14 | 9.93 × 10−10 | - | |
Proteins carried by the plasmid 502 | AFV22050.1 hypothetical protein BTB_502p07450 (plasmid) | Undefined | 0.56 | 2.71 × 10−3 | - |
AFV21751.1 hypothetical protein BTB_502p04460 (plasmid) | Undefined | 0.19 | 9.97 × 10−5 | - | |
AFV21840.1 hypothetical protein BTB_502p05350 (plasmid) | Undefined | 0.57 | 1.66 × 10−2 | - | |
AFV21949.1 hypothetical protein BTB_502p06440 (plasmid) | Cytoplasmic Membrane | 0.55 | 3.39 × 10−2 | - | |
AFV21845.1 hypothetical protein BTB_502p05400 (plasmid) | Undefined | 0.27 | 4.58 × 10−3 | - | |
AFV22055.1 hypothetical protein BTB_502p07500 (plasmid) | Undefined | 0.14 | 4.54 × 10−6 | - | |
AFV22023.1 hypothetical protein BTB_502p07180 (plasmid) | Undefined | 0.00 | 9.91 × 10−7 | - | |
AFV21509.1 hypothetical protein BTB_502p02040 (plasmid) | Non-cytoplasmic | 0.29 | 8.28 × 10−3 | - |
SC Quantification | |||||
---|---|---|---|---|---|
Biological Process | Proteins Abundant in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj | Databases |
Cell wall turnover | AFV21084.1 cell wall-binding protein YocH | Non-cytoplasmic | Absent | 4.46 × 10−6 | [3] |
AFV16578.1 cell wall-binding protein YocH | Undefined | 2.86 | 5.01 × 10−15 | [2,3] | |
AFV17714.1 endopeptidase LytF (lytF1) | Non-cytoplasmic | 1.66 | 3.94 × 10−3 | [1] | |
Cell adhesion | AFV21209.1 LPXTG-motif cell wall anchor domain protein | Cell wall | 3.53 | 5.44 × 10−5 | [3] |
Membrane-damaging toxins | AFV20963.1 hemolysin | Extracellular | 8.00 | 9.68 × 10−3 | [1] |
Transmembrane transport | AFV16934.1 dipeptide-binding protein DppE | Cell wall | Absent | 1.42 × 10−4 | [1,3] |
Unclassified | AFV20752.1 cell surface protein | Cell wall | Absent | 4.46 × 10−6 | - |
AFV18997.1 surface protein, LPXTG-motif cell wall anchor domain protein | Cell wall | Absent | 2.74 × 10−10 | - | |
Hypothetical proteins | AFV17929.1 hypothetical protein BTB_c22370 | Non-cytoplasmic | 7.33 | 6.25 × 10−4 | - |
AFV19452.1 hypothetical protein BTB_c37700 | Non-cytoplasmic | 2.07 | 3.84 × 10−2 | - |
XIC Quantification | ||||
---|---|---|---|---|
Biological Process | Proteins Reduced in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj |
Unclassified | AFV20645.1 phage shock protein A | Cytoplasmic Membrane | 0.32 | 1.26 × 10−2 |
AFV16253.1 putative cytosolic protein | Undefined | 0.27 | 1.80 × 10−2 | |
Hypothetical proteins | AFV20367.1 hypothetical protein BTB_c46880 | Extracellular | 0.53 | 5.34 × 10−3 |
AFV15824.1 hypothetical protein BTB_c00190 | Undefined | 0.57 | 7.14 × 10−3 | |
Hypothetical proteins carried by the plasmid 502 | AFV22050.1 hypothetical protein BTB_502p07450 (plasmid) | Undefined | 0.59 | 1.39 × 10−2 |
AFV21751.1 hypothetical protein BTB_502p04460 (plasmid) | Undefined | 0.51 | 3.98 × 10−2 |
XIC Quantification | ||||||
---|---|---|---|---|---|---|
Biological Process | Proteins Abundant in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/Bt407 Cry- | Padj | Databases | |
Flagellum assembly | AFV17380.1 flagellar basal body rod protein FlgC | Undefined | 5.01 | 1.88 × 10−2 | [1] | |
Cell adhesion | AFV21209.1 LPXTG-motif cell wall anchor domain protein | Cell wall | 30.16 | 4.57 × 10−3 | [3] | |
Cell wall turnover | AFV21084.1 cell wall-binding protein YocH | Non-cytoplasmic | 54.51 | 8.42 × 10−4 | [3] | |
AFV16578.1 cell wall-binding protein YocH | Undefined | 5.50 | 3.81 × 10−2 | [2,3] | ||
AFV17714.1 endopeptidase LytF (lytF1) | Non-cytoplasmic | 8.36 | 5.34 × 10−3 | [1] | ||
AFV21114.1 transcriptional regulator LytR | Cytoplasmic Membrane | 7.10 | 1.37 × 10−2 | [1,2] | ||
AFV18765.1 cell wall-binding protein YocH | Non-cytoplasmic | 6.11 | 5.48 × 10−3 | [3] | ||
AFV16473.1 cell wall-binding protein YocH | Non-cytoplasmic | 5.42 | 1.37 × 10−2 | [2,3] | ||
AFV21077.1 endopeptidase LytF (lytf3) | Non-cytoplasmic | 11.02 | 1.79 × 10−3 | [1] | ||
AFV16653.1 N-acetylmuramoyl-L-alanine amidase CwlH | Cell wall | 8.79 | 5.80 × 10−3 | [3] | ||
AFV17283.1 penicillin-binding protein 1A/1B | Cytoplasmic Membrane | 4.80 | 1.29 × 10−2 | [1] | ||
AFV20098.1 uncharacterized protein YqgF | Cytoplasmic Membrane | 3.91 | 3.25 × 10−2 | [1,3] | ||
AFV19021.1 N-acetylmuramoyl-L-alanine amidase XlyA | Cell wall | 3.73 | 8.17 × 10−3 | [3] | ||
AFV21075.1 lipoteichoic acid synthase-like YqgS | Cytoplasmic Membrane | 5.89 | 1.19 × 10−2 | [1] | ||
Bacterial toxins | Membrane-damaging toxins | AFV20963.1 hemolysin | Extracellular | 16.59 | 7.87 × 10−3 | [1] |
AFV18241.1 hemolysin BL-binding component HblA | Extracellular | 12.01 | 9.94 × 10−3 | [1] | ||
AFV18240.1 hemolysin BL lytic component L1 | Extracellular | 5.68 | 4.05 × 10−2 | [1] | ||
AFV16857.1 gamma-hemolysin component B | Extracellular | 5.64 | 1.18 × 10−2 | [1] | ||
AFV18239.1 hemolysin BL lytic component L2 | Non-cytoplasmic | 5.24 | 3.40 × 10−3 | [1] | ||
AFV17552.1 hemolysin BL-binding component HblA | Extracellular | 4.53 | 1.40 × 10−2 | [1] | ||
Extracellular matrix-damaging toxins | AFV16287.1 microbial collagenase ColA | Extracellular | 5.34 | 7.14 × 10−3 | [1] | |
Transmembrane transport | AFV16934.1 dipeptide-binding protein DppE | Cell wall | 8.60 | 4.57 × 10−3 | [1,3] | |
AFV19546.1 putative lipoprotein YufN | Non-cytoplasmic | 5.67 | 9.94 × 10−3 | [1] | ||
AFV21101.1 putative efflux system component YknX | Non-cytoplasmic | 2.92 | 1.00 × 10−2 | [1] | ||
Proteolysis | AFV15871.1 ATP-dependent zinc metalloprotease FtsH | Cytoplasmic Membrane | 7.28 | 6.92 × 10−3 | [3] | |
AFV16405.1 immune inhibitor A | Extracellular | 3.10 | 3.66 × 10−2 | [2,3] | ||
Metabolic process | AFV18894.1 endonuclease YhcR | Cell wall | 4.03 | 1.18 × 10−2 | [1,3] | |
AFV18743.1 putative polysaccharide deacetylase YheN | Non-cytoplasmic | 6.11 | 1.61 × 10−2 | [3] | ||
Unclassified | AFV20752.1 cell surface protein | Cell wall | 5.98 | 1.35 × 10−2 | - | |
AFV18997.1 surface protein, LPXTG-motif cell wall anchor domain protein | Cell wall | 4.04 | 7.04 × 10−3 | - | ||
AFV19048.1 LPXTG-motif cell wall anchor domain protein | Cell wall | 4.82 | 1.27 × 10−2 | - | ||
AFV16010.1 invasion protein IagB domain protein | Cytoplasmic Membrane | 6.27 | 9.94 × 10−3 | - | ||
AFV19026.1 PGA biosynthesis protein CapA | Cytoplasmic Membrane | 5.23 | 8.17 × 10−3 | - | ||
Hypothetical proteins | AFV17929.1 hypothetical protein BTB_c22370 | Non-cytoplasmic | 7.86 | 3.00 × 10−3 | - | |
AFV17420.1 hypothetical protein BTB_c17260 | Undefined | 4.76 | 1.27 × 10−2 | - | ||
AFV21218.1 hypothetical protein BTB_c55680 | Non-cytoplasmic | 4.82 | 1.39 × 10−2 | - | ||
AFV19452.1 hypothetical protein BTB_c37700 | Non-cytoplasmic | 4.28 | 1.39 × 10−2 | - | ||
AFV16704.1 hypothetical protein BTB_c10090 | Extracellular | 3.29 | 9.94 × 10−3 | - | ||
AFV20642.1 hypothetical protein BTB_c49630 | Cytoplasmic Membrane | 3.02 | 2.99 × 10−2 | - | ||
AFV21086.1 hypothetical protein BTB_c54360 | Undefined | 2.98 | 1.41 × 10−2 | - | ||
Proteins carried by the plasmid 502 and the plasmid 78 | AFV21822.1 hypothetical protein BTB_502p05170 (plasmid) | Extracellular | 8.50 | 1.87 × 10−2 | - | |
AFV21352.1 hypothetical protein BTB_502p00160 (plasmid) | Undefined | 4.57 | 1.45 × 10−2 | - | ||
AFV21846.1 hypothetical protein BTB_502p05410 (plasmid) | Non-cytoplasmic | 3.93 | 1.28 × 10−2 | - | ||
AFV21957.1 hypothetical protein BTB_502p06520 (plasmid) | Extracellular | 3.75 | 3.06 × 10−2 | - | ||
AFV21370.1 hypothetical protein BTB_502p00340 (plasmid) | Non-cytoplasmic | 3.24 | 4.80 × 10−2 | - | ||
AFV21847.1 penicillin-binding protein 1A (plasmid) | Cytoplasmic Membrane | 2.71 | 3.60 × 10−2 | - | ||
AFV22044.1 hypothetical protein BTB_502p07390 (plasmid) | Undefined | 1.95 | 3.89 × 10−2 | - | ||
AFV22124.1 hypothetical protein BTB_78p00520 (plasmid) | Cell wall | 5.91 | 5.34 × 10−3 | - |
SC Quantification | |||||
---|---|---|---|---|---|
Biological Process | Proteins Reduced in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj | Databases |
Flagellum assembly | AFV17376.1 flagellar hook-associated FliD | Undefined | 0.04 | 7.71 × 10−59 | [1] |
AFV17374.1 flagellar hook-associated protein FlgK | Undefined | 0.00 | 1.07 × 10−43 | [1] | |
AFV17387.1 flagellar hook length control protein BTB_c16930 FliK | Undefined | 0.00 | 4.77 × 10−13 | [1] | |
AFV17375.1 flagellar hook-associated protein 3 FlgL | Undefined | 0.23 | 3.06 × 10−8 | [1] | |
Membrane-damaging toxins | AFV16409.1 phospholipase C | Extracellular | 0.73 | 3.78 × 10−2 | [1] |
Proteolysis | AFV19517.1 serine protease, subtilase family | Non-cytoplasmic | 0.48 | 4.65 × 10−6 | [2,3] |
Unclassified | AFV19126.1 viral-enhancing factor | Undefined | 0.56 | 5.77 × 10−3 | - |
Proteins carried by the plasmid 502 and the plasmid 78 | AFV22044.1 hypothetical protein BTB_502p07390 (plasmid) | Undefined | 0.69 | 3.30 × 10−4 | - |
AFV21505.1 hypothetical protein BTB_502p02000 (plasmid) | Non-cytoplasmic | 0.52 | 6.42 × 10−5 | - | |
AFV21509.1 hypothetical protein BTB_502p02040 (plasmid) | Non-cytoplasmic | 0.58 | 5.50 × 10−3 | - | |
AFV22021.1 hypothetical protein BTB_502p07160 (plasmid) | Non-cytoplasmic | 0.00 | 7.24 × 10−4 | - | |
AFV21504.1 hypothetical protein BTB_502p01990 (plasmid) | Non-cytoplasmic | 0.31 | 5.74 × 10−4 | - | |
AFV21503.1 TPR-repeat-containing protein (plasmid) | Non-cytoplasmic | 0.49 | 4.52 × 10−6 | - | |
AFV21501.1 TPR-repeat-containing protein (plasmid) | Non-cytoplasmic | 0.38 | 4.35 × 10−7 | - | |
AFV21502.1 TPR-repeat-containing protein (plasmid) | Non-cytoplasmic | 0.14 | 2.26 × 10−7 | - | |
AFV21908.1 TROVE domain-containing protein (plasmid) | Cytoplasmic Membrane | 0.04 | 2.12 × 10−11 | - | |
AFV21346.1 single-stranded DNA-binding protein (plasmid) | Undefined | 0.13 | 1.75 × 10−4 | - | |
AFV22123.1 conjugation protein (plasmid) | Non-cytoplasmic | 0.24 | 4.98 × 10−4 | - |
SC Quantification | |||||
---|---|---|---|---|---|
Biological Process | Proteins Abundant in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj | Databases |
Flagellum assembly | AFV17389.1 flagellar hook protein FlgE | Extracellular | 1.53 | 2.33 × 10−3 | [1] |
Metabolic process | AFV19113.1 uncharacterized protein YkgB | Undefined | Absent | 5.74 × 10−4 | [1] |
AFV17736.1 putative polysaccharide deacetylase YheN | Non-cytoplasmic | 2.53 | 7.60 × 10−3 | [2,3] | |
AFV20423.1 malate dehydrogenase Mdh | Non-cytoplasmic | 6.33 | 2.93 × 10−5 | [1,2,3] | |
AFV21296.1 superoxide dismutase sodA | Extracellular | Absent | 8.17 × 10−8 | [3] | |
AFV18629.1 GlcNAc-binding protein A | Non-cytoplasmic | Absent | 2.23 × 10−4 | [1] | |
AFV19919.1 endonuclease YhcR | Cell wall | 6.00 | 1.30 × 10−7 | [1,2,3] | |
AFV20972.1 carboxylesterase Est | Cytoplasmic Membrane | 5.33 | 1.02 × 10−2 | [1] | |
Antibiotic catabolic process | AFV18265.1 beta-lactamase Bla | Extracellular | 1.96 | 1.19 × 10−2 | [1,3] |
AFV18892.1 D-alanyl-D-alanine carboxypeptidase | Extracellular | Absent | 4.21 × 10−3 | [1] | |
AFV19308.1 D-alanyl-D-alanine carboxypeptidase | Cytoplasmic Membrane | 2.44 | 4.93 × 10−2 | [3] | |
Transmembrane transport | AFV16390.1 oligopeptide-binding protein OppA | Cell wall | Absent | 5.74 × 10−4 | [1,2,3] |
AFV16928.1 dipeptide-binding protein DppE | Cell wall | Absent | 1.58 × 10−3 | [1,2,3] | |
Cell adhesion | AFV21209.1 LPXTG-motif cell wall anchor domain protein | Cell wall | 2.48 | 2.75 × 10−9 | [3] |
AFV16822.1 collagen adhesion protein | Undefined | 7.33 | 1.93 × 10−2 | [3] | |
Cell redox homeostasis | AFV20748.1 ferredoxin--NADP reductase | Cytoplasmic Membrane | 10.00 | 3.33 × 10−5 | [3] |
Dephosphorylation | AFV20169.1 alkaline phosphatase 3 | Cytoplasmic Membrane | Absent | 8.17 × 10−8 | [3] |
Proteolysis | AFV17022.1 immune inhibitor A | Extracellular | 2.76 | 1.83 × 10−5 | [3] |
AFV20917.1 neutral protease B | Extracellular | Absent | 1.13 × 10−16 | [3] | |
AFV16332.1 bacillolysin | Extracellular | 6.00 | 5.25 × 10−4 | [2,3] | |
AFV20341.1 putative carboxypeptidase YodJ | Cytoplasmic Membrane | 2.48 | 2.12 × 10−3 | [2,3] | |
Cell wall turnover | AFV16578.1 cell wall-binding protein YocH | Undefined | 1.66 | 5.35 × 10−6 | [2,3] |
AFV19469.1 cell wall-binding protein YocH | Non-cytoplasmic | 2.74 | 7.50 × 10−5 | [2] | |
Unclassified | AFV20752.1 cell surface protein | Cell wall | 3.11 | 2.93 × 10−5 | - |
AFV20609.1 cell surface protein | Non-cytoplasmic | Absent | 1.58 × 10−3 | - | |
AFV17720.1 oxidoreductase, short-chain dehydrogenase/reductase family superfamily | Non-cytoplasmic | 6.67 | 2.94 × 10−2 | - | |
AFV20529.1 putative aminopeptidase YtoP | Undefined | 10.00 | 3.33 × 10−5 | - | |
AFV19291.1 vancomycin B-type resistance protein | Non-cytoplasmic | 3.20 | 1.77 × 10−5 | - | |
AFV20774.1 phage protein | Undefined | Absent | 7.38 × 10−11 | - | |
AFV16435.1 prophage antirepressor | Undefined | Absent | 1.47 × 10−5 | - | |
Hypothetical proteins | AFV16451.1 hypothetical protein BTB_c07330 | Undefined | Absent | 1.88 × 10−18 | - |
AFV20938.1 hypothetical protein BTB_c52870 | Non-cytoplasmic | Absent | 3.93 × 10−13 | - | |
AFV20606.1 hypothetical protein BTB_c49270 | Extracellular | Absent | 7.23 × 10−10 | - | |
AFV20607.1 hypothetical protein BTB_c49280 | Non-cytoplasmic | Absent | 2.30 × 10−5 | - | |
AFV19994.1 hypothetical protein BTB_c43120 | Non-cytoplasmic | 4.17 | 3.39 × 10−3 | - | |
AFV16908.1 hypothetical protein BTB_c12130 | Undefined | 14.67 | 1.55 × 10−4 | - | |
AFV19008.1 hypothetical protein BTB_c33240 | Non-cytoplasmic | 2.27 | 2.21 × 10−2 | - | |
Proteins carried by the plasmid 502 and the plasmid 78 | AFV21623.1 hypothetical protein BTB_502p03180 (plasmid) | Cytoplasmic Membrane | 2.86 | 9.55 × 10−3 | - |
XIC Quantification | ||||||
---|---|---|---|---|---|---|
Biological Process | Proteins Reduced in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj | Databases | |
Flagellum assembly | AFV17374.1 flagellar hook-associated protein FlgK | Undefined | 0.07 | 3.17 × 10−2 | [1] | |
AFV17376.1 flagellar hook-associated FliD | Undefined | 0.08 | 2.28 × 10−2 | [1] | ||
AFV17387.1 flagellar hook length control protein BTB_c16930 FliK | Undefined | 0.34 | 4.77 × 10−3 | [1] | ||
Proteolysis | AFV19517.1 serine protease, subtilase family | Non-cytoplasmic | 0.21 | 2.35 × 10−3 | [2,3] | |
Bacterial toxins | Membrane-damaging toxins | AFV16409.1 phospholipase C | Extracellular | 0.38 | 3.26 × 10−3 | [1] |
AFV18240.1 hemolysin BL lytic component L1 | Extracellular | 0.64 | 1.19 × 10−2 | [1] | ||
AFV17551.1 Non-hemolytic enterotoxin lytic component L2 | Non-cytoplasmic | 0.63 | 4.17 × 10−2 | [1] | ||
AFV16857.1 gamma-hemolysin component B | Extracellular | 0.42 | 6.17 × 10−3 | [1] | ||
Extracellular matrix-damaging toxins | AFV16287.1 microbial collagenase ColA | Extracellular | 0.39 | 1.25 × 10−2 | [1] | |
Cell wall turnover | AFV16668.1 S-layer protein/N-acetylmuramoyl-L-alanine amidase | Cell wall | 0.65 | 9.49 × 10−3 | [3] | |
Unclassified | AFV16733.1 S-layer protein/peptidoglycan endo-beta-N-acetylglucosaminidase | Cell wall | 0.56 | 2.18 × 10−2 | - | |
AFV17754.1 putative murein endopeptidase | Non-cytoplasmic | 0.54 | 4.01 × 10−2 | - | ||
AFV21260.1 FMN-dependent NADH-azoreductase | Undefined | 0.21 | 1.25 × 10−3 | - | ||
AFV21027.1 cell division ATP-binding protein FtsE | Cytoplasmic Membrane | 0.45 | 7.65 × 10−3 | - | ||
AFV19126.1 viral-enhancing factor | Undefined | 0.47 | 1.82 × 10−2 | - | ||
AFV19880.1 uncharacterized protein YpuA | Non-cytoplasmic | 0.55 | 5.82 × 10−3 | - | ||
AFV19518.1 cell wall hydrolase CwlJ | Extracellular | 0.62 | 8.89 × 10−3 | - | ||
Hypothetical protein | AFV19684.1 hypothetical protein BTB_c40020 | Non-cytoplasmic | 0.39 | 2.99 × 10−2 | - | |
Proteins carried by the plasmid 502 and the plasmid 78 | AFV22044.1 hypothetical protein BTB_502p07390 (plasmid) | Undefined | 0.40 | 6.19 × 10−3 | - | |
AFV21505.1 hypothetical protein BTB_502p02000 (plasmid) | Non-cytoplasmic | 0.32 | 2.35 × 10−3 | - | ||
AFV21509.1 hypothetical protein BTB_502p02040 (plasmid) | Non-cytoplasmic | 0.40 | 2.35 × 10−3 | - | ||
AFV22043.1 hypothetical protein BTB_502p07380 (plasmid) | Non-cytoplasmic | 0.44 | 3.67 × 10−2 | - | ||
AFV21504.1 hypothetical protein BTB_502p01990 (plasmid) | Non-cytoplasmic | 0.34 | 8.76 × 10−3 | - | ||
AFV21874.1 hypothetical protein BTB_502p05690 (plasmid) | Undefined | 0.32 | 1.08 × 10−2 | - | ||
AFV21389.1 hypothetical protein BTB_502p00530 (plasmid) | Non-cytoplasmic | 0.49 | 1.72 × 10−2 | - | ||
AFV22050.1 hypothetical protein BTB_502p07450 (plasmid) | Undefined | 0.25 | 1.36 × 10−2 | - | ||
AFV22055.1 hypothetical protein BTB_502p07500 (plasmid) | Undefined | 0.42 | 3.95 × 10−2 | - | ||
AFV22068.1 hypothetical protein BTB_502p07630 (plasmid) | Cytoplasmic Membrane | 0.23 | 2.23 × 10−2 | - | ||
AFV22066.1 hypothetical protein BTB_502p07610 (plasmid) | Undefined | 0.19 | 1.36 × 10−2 | - | ||
AFV21503.1 TPR-repeat-containing protein (plasmid) | Non-cytoplasmic | 0.60 | 2.33 × 10−2 | - | ||
AFV21501.1 TPR-repeat-containing protein (plasmid) | Non-cytoplasmic | 0.35 | 1.25 × 10−3 | - | ||
AFV21346.1 single-stranded DNA-binding protein (plasmid) | Undefined | 0.12 | 4.15 × 10−3 | - | ||
AFV22042.1 hypothetical protein BTB_502p07370 (plasmid) | Non-cytoplasmic | 0.63 | 5.52 × 10−3 | - | ||
AFV21809.1 hypothetical protein BTB_502p05040 (plasmid) | Undefined | 0.60 | 7.42 × 10−3 | - | ||
AFV21822.1 hypothetical protein BTB_502p05170 (plasmid) | Extracellular | 0.49 | 5.57 × 10−3 | - | ||
AFV21341.1 hypothetical protein BTB_502p00050 (plasmid) | Cell wall | 0.40 | 1.11 × 10−2 | - | ||
AFV21896.1 hypothetical protein BTB_502p05910 (plasmid) | Undefined | 0.30 | 4.15 × 10−3 | - | ||
AFV21606.1 hypothetical protein BTB_502p03010 (plasmid) | Undefined | 0.15 | 1.72 × 10−2 | - | ||
AFV21378.1 sporulation-specific N-acetylmuramoyl-L-alanine amidase (plasmid) | Extracellular | 0.54 | 1.79 × 10−3 | - | ||
AFV22124.1 hypothetical protein BTB_78p00520 (plasmid) | Cell wall | 0.52 | 2.64 × 10−3 | - |
XIC Quantification | |||||
---|---|---|---|---|---|
Biological Process | Proteins Abundant in Bt ΔfliK Compared to Bt407 Cry- | Localization Prediction | Ratio Bt ΔfliK/ Bt407 Cry- | Padj | Databases |
Flagellum assembly | AFV17380.1 flagellar basal body rod protein FlgC | Undefined | 1.97 | 2.83 × 10−2 | [1] |
Transmembrane transport | AFV16390.1 oligopeptide-binding protein OppA | Cell wall | 2.15 | 3.85 × 10−2 | [1,2,3] |
Cell adhesion | AFV21209.1 LPXTG-motif cell wall anchor domain protein | Cell wall | 2.06 | 1.79 × 10−2 | [3] |
AFV16822.1 collagen adhesion protein | Undefined | 3.96 | 7.07 × 10−3 | [3] | |
Metabolic process | AFV17736.1 putative polysaccharide deacetylase YheN | Non-cytoplasmic | 2.25 | 7.55 × 10−3 | [2,3] |
AFV18743.1 putative polysaccharide deacetylase YheN | Non-cytoplasmic | 1.59 | 7.56 × 10−3 | [3] | |
AFV19270.1 cellulase | Undefined | 2.46 | 8.57 × 10−3 | [1,3] | |
AFV18629.1 GlcNAc-binding protein A | Non-cytoplasmic | 1.95 | 2.64 × 10−3 | [1] | |
AFV18894.1 endonuclease YhcR | Cell wall | 2.92 | 2.64 × 10−3 | [1,3] | |
AFV20100.1 superoxide dismutase SodA | Extracellular | 2.67 | 5.90 × 10−3 | [3] | |
AFV20944.1 NADH dehydrogenase-like protein YjlD | Cytoplasmic Membrane | 1.99 | 2.16 × 10−2 | [1] | |
AFV18210.1 putative agmatine deiminase AguA | Non-cytoplasmic | 1.64 | 3.24 × 10−3 | [1,3] | |
Antibiotic catabolic process | AFV18265.1 beta-lactamase Bla | Extracellular | 1.91 | 2.23 × 10−2 | [1,3] |
Cell redox homeostasis | AFV20748.1 ferredoxin--NADP reductase | Cytoplasmic Membrane | 3.59 | 2.35 × 10−3 | [3] |
Proteolysis | AFV18532.1 bacillolysin | Extracellular | 2.14 | 1.79 × 10−3 | [2,3] |
AFV16332.1 bacillolysin | Extracellular | 2.53 | 2.49 × 10−3 | [2,3] | |
AFV20341.1 putative carboxypeptidase YodJ | Cytoplasmic Membrane | 1.87 | 1.79 × 10−3 | [2,3] | |
AFV18874.1 signal peptidase I | Cell wall | 1.92 | 2.03 × 10−2 | [3] | |
Extracellular matrix-damaging toxins | AFV19160.1 collagenase | Extracellular | 1.74 | 2.85 × 10−2 | [1] |
Cell wall turnover | AFV16578.1 cell wall-binding protein YocH | Undefined | 2.21 | 3.63 × 10−3 | [2,3] |
AFV21084.1 cell wall-binding protein YocH | Non-cytoplasmic | 1.87 | 3.66 × 10−3 | [3] | |
AFV16473.1 cell wall-binding protein YocH | Non-cytoplasmic | 1.68 | 2.64 × 10−3 | [2,3] | |
AFV18765.1 cell wall-binding protein YocH | Non-cytoplasmic | 1.64 | 2.39 × 10−2 | [3] | |
AFV19520.1 lipoteichoic acid synthase-like YqgS | Cytoplasmic Membrane | 1.76 | 2.66 × 10−2 | [1] | |
Unclassified | AFV20752.1 cell surface protein | Cell wall | 1.62 | 4.97 × 10−2 | - |
AFV18997.1 surface protein, LPXTG-motif cell wall anchor domain protein | Cell wall | 1.51 | 1.91 × 10−2 | - | |
AFV17720.1 oxidoreductase, short-chain dehydrogenase/reductase family superfamily | Non-cytoplasmic | 3.08 | 2.85 × 10−3 | - | |
AFV20529.1 putative aminopeptidase YtoP | Undefined | 2.79 | 1.62 × 10−2 | - | |
AFV20471.1 putative thiol peroxidase Tpx | Undefined | 2.74 | 2.35 × 10−3 | - | |
AFV17554.1 O-GlcNAcase NagJ | Extracellular | 2.01 | 2.35 × 10−3 | - | |
AFV15863.1 heat shock protein 15 | Undefined | 2.00 | 1.19 × 10−2 | - | |
AFV19291.1 vancomycin B-type resistance protein | Non-cytoplasmic | 2.67 | 3.42 × 10−3 | - | |
AFV19051.1 extracellular ribonuclease Bsn | Extracellular | 1.50 | 2.66 × 10−2 | - | |
AFV20943.1 uncharacterized protein YjlC | Undefined | 1.81 | 4.97 × 10−2 | - | |
AFV16460.1 hypothetical protein BTB_c07420 | Non-cytoplasmic | 2.33 | 1.68 × 10−2 | - | |
AFV18460.1 hypothetical protein BTB_c27760 | Non-cytoplasmic | 2.03 | 3.79 × 10−2 | - | |
AFV19281.1 hypothetical protein BTB_c35990 | Non-cytoplasmic | 1.75 | 1.86 × 10−2 | - | |
AFV18355.1 hypothetical protein BTB_c26710 | Cytoplasmic Membrane | 1.61 | 1.66 × 10−2 | - | |
AFV18356.1 hypothetical protein BTB_c26720 | Cytoplasmic Membrane | 1.59 | 1.84 × 10−2 | - | |
Hypothetical proteins | AFV19008.1 hypothetical protein BTB_c33240 | Non-cytoplasmic | 1.52 | 1.34 × 10−2 | - |
AFV16451.1 hypothetical protein BTB_c07330 | Undefined | 1.94 | 3.01 × 10−2 | - | |
AFV19994.1 hypothetical protein BTB_c43120 | Non-cytoplasmic | 1.58 | 3.95 × 10−2 | - | |
AFV16908.1 hypothetical protein BTB_c12130 | Undefined | 2.66 | 1.07 × 10−2 | - | |
Proteins carried by the plasmid 502 and the plasmid 78 | AFV21623.1 hypothetical protein BTB_502p03180 (plasmid) | Cytoplasmic Membrane | 2.70 | 7.55 × 10−3 | - |
AFV22140.1 hypothetical protein BTB_78p00680 (plasmid) | Non-cytoplasmic | 2.10 | 5.06 × 10−3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouawad, C.; Awad, M.K.; Rodrigues-Machado, C.; Henry, C.; Sanchis-Borja, V.; El Chamy, L. High-Throughput Analysis of the Flagella FliK-Dependent Surfaceome and Secretome in Bacillus thuringiensis. Biology 2025, 14, 525. https://doi.org/10.3390/biology14050525
Mouawad C, Awad MK, Rodrigues-Machado C, Henry C, Sanchis-Borja V, El Chamy L. High-Throughput Analysis of the Flagella FliK-Dependent Surfaceome and Secretome in Bacillus thuringiensis. Biology. 2025; 14(5):525. https://doi.org/10.3390/biology14050525
Chicago/Turabian StyleMouawad, Carine, Mireille Kallassy Awad, Carine Rodrigues-Machado, Céline Henry, Vincent Sanchis-Borja, and Laure El Chamy. 2025. "High-Throughput Analysis of the Flagella FliK-Dependent Surfaceome and Secretome in Bacillus thuringiensis" Biology 14, no. 5: 525. https://doi.org/10.3390/biology14050525
APA StyleMouawad, C., Awad, M. K., Rodrigues-Machado, C., Henry, C., Sanchis-Borja, V., & El Chamy, L. (2025). High-Throughput Analysis of the Flagella FliK-Dependent Surfaceome and Secretome in Bacillus thuringiensis. Biology, 14(5), 525. https://doi.org/10.3390/biology14050525