Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review
Simple Summary
Abstract
1. Introduction
- Species identification using convolutional neural networks (CNNs) for image recognition.
- Bioacoustic analysis for detecting species presence through underwater sound recordings.
- Predictive habitat modeling for assessing ecosystem changes due to climate variability.
- Ecological risk assessment to evaluate pollution impact and detect environmental threats [9].
- Remote sensing AI for large-scale biodiversity monitoring using satellite and drone imagery.
- Systematically analyze AI-based methodologies applied to freshwater biodiversity monitoring and conservation.
- Categorize AI applications into key areas, such as species identification, habitat modeling, ecological risk assessment, and conservation strategies.
- Evaluate methodological strengths and limitations, including risk of bias, data quality issues [11], and validation challenges.
- Identify citation trends and geographical contributions in AI-driven biodiversity research.
- Highlight knowledge gaps and propose future research directions to improve AI’s role in freshwater biodiversity conservation.
2. Methodology (PRISMA Framework)
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection (PRISMA Flow Diagram)
2.4. Assessment of Risk of Bias
- Selection bias: evaluated based on transparency in inclusion criteria and representativeness of study populations.
- Information bias: assessed through data source reliability and robustness of AI methodologies.
- Measurement bias: analyzed through the consistency and repeatability of AI model performance.
- Patient selection was interpreted as the data sampling strategy, including whether datasets were balanced, representative, and clearly defined.
- The index test corresponded to the AI model itself, including algorithm specification, tuning procedures, and availability of implementation details.
- The reference standard referred to the ground truth quality—i.e., how labels were obtained and whether they were verified by domain experts.
- Flow and timing were aligned with temporal consistency in data collection and model evaluation procedures.
- Bias due to missing data (e.g., unreported performance metrics);
- Bias in outcome measurement (e.g., lack of precision/recall/F1-score reporting);
- Selective reporting (e.g., absence of comparison with baseline models).
2.5. Data Extraction and Analysis
- AI advancements in species identification and biodiversity assessment.
- Habitat modeling and ecological impact prediction.
- Ethical and regulatory considerations of AI applications in conservation.
2.6. Citation Trends
3. AI Applications in Aquatic Biodiversity Research
3.1. AI for Species Identification
3.1.1. Image-Based Species Recognition Using Computer Vision
3.1.2. Bioacoustic Monitoring with Deep Learning
3.1.3. DNA and eDNA-Based Species Identification
3.2. AI for Habitat and Ecological Risk Assessment
3.2.1. Predictive Habitat Modeling
3.2.2. Machine Learning in Ecological Risk Assessment
3.2.3. AI-Based Water Quality Monitoring
3.3. AI in Remote Sensing for Freshwater Biodiversity Monitoring
3.3.1. Satellite- and Drone-Based AI Applications
3.3.2. Pollution Detection via Remote Sensing and AI
3.3.3. Land–Water Interface Analysis
3.4. AI in Conservation and Management Strategies
3.4.1. AI-Powered Decision Support Tools
3.4.2. AI-Assisted Conservation Planning
3.4.3. Citizen Science and AI Integration
3.5. Certainty of Evidence
- (a)
- Transparent reporting of model hyperparameters and training procedures,
- (b)
- Consistent use of external and multi-environmental validation,
- (c)
- Open-source publication of datasets and models where feasible,
- (d)
- Adoption of cross-domain benchmarks to enable systematic comparisons.
3.6. Classification and Evaluation of AI Methods
Detailed Evaluation Insights
- A.
- B.
- C.
- D.
- Transformer models are emerging as promising alternatives for sequence-based ecological data (e.g., DNA, multi-sensor fusion), offering improved context modeling and parallelization advantages. Nevertheless, their application is currently limited by computational demands and the scarcity of domain-specific pre-training corpora [53,54].
- E.
- Hybrid and explainable AI (XAI) approaches represent a critical future direction, aiming to bridge the gap between predictive accuracy and ecological interpretability. Examples include post hoc explanations using SHAP (Shapley Additive Explanations) or integrating feature attribution into CNN outputs.
3.7. Case Studies: Real-World Applications of AI in Aquatic Biodiversity Monitoring
3.7.1. Case Study 1: Real-Time Catch Estimation in Demersal Trawl Fisheries
3.7.2. Case Study 2: Lightweight Fish Species Identification on Embedded Systems
3.7.3. Case Study 3: Biodiversity Text Mining with Domain-Specific Language Models
4. Challenges and Limitations
4.1. Data Quality, Availability, and Bias in AI Models
4.2. Model Transferability and Generalization Issues
4.3. Computational and Infrastructure Constraints
4.4. Lack of Standardized AI Methodologies in Biodiversity Research
4.5. Ethical and Policy Challenges in AI-Driven Conservation
5. Future Perspectives and Research Directions
5.1. Need for Standardized AI Frameworks in Aquatic Ecology
5.2. Enhancing AI Interpretability and Explainability in Conservation
5.3. Integration of AI with Citizen Science and Big Data
5.4. AI in Policymaking for Biodiversity and Environmental Protection
5.5. Future AI Trends in Freshwater Biodiversity Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CNN | Convolutional neural network |
DL | Deep learning |
eDNA | Environmental DNA |
EIA | Environmental impact assessment |
GAN | Generative adversarial network |
GPS | Global Positioning System |
ML | Machine learning |
NLP | Natural language processing |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
QUADAS-2 | Quality Assessment of Diagnostic Accuracy Studies-2 |
RNN | Recurrent neural network |
RoB 2 | Risk of Bias 2 Tool |
SHAP | Shapley Additive Explanations |
SVM | Support Vector Machine |
UAV | Unmanned aerial vehicle |
XAI | Explainable artificial intelligence |
YOLO | You Only Look Once (Object Detection Algorithm) |
References
- Rizqi Basuki, N.A. You Only Look Once v8 for Fish Species Identification. IAES Int. J. Artif. Intell. 2024, 13, 3314–3321. [Google Scholar] [CrossRef]
- Smith, J.; Wycherley, A.; Mulvaney, J.; Lennane, N.; Reynolds, E.; Monks, C.-A.; Evans, T.; Mooney, T.; Fancourt, B. Man versus Machine: Cost and Carbon Emission Savings of 4G-Connected Artificial Intelligence Technology for Classifying Species in Camera Trap Images. Sci. Rep. 2024, 14, 14530. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Wu, R.; Chakravorty, B.; Polya, D.A. Groundwater Arsenic Distribution in India by Machine Learning Geospatial Modeling. Int. J. Environ. Res. Public Health 2020, 17, 7119. [Google Scholar] [CrossRef]
- Song, Y.; Pan, Y.; Xiang, M.; Yang, W.; Zhan, D.; Wang, X.; Lu, M. A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China. Remote Sens. 2024, 16, 1948. [Google Scholar] [CrossRef]
- Barone, M.; Mollen, F.H.; Giles, J.L.; Marshall, L.J.; Villate-Moreno, M.; Mazzoldi, C.; Pérez-Costas, E.; Heine, J.; Guisande, C. Performance of iSharkFin in the Identification of Wet Dorsal Fins from Priority Shark Species. Ecol. Inform. 2022, 68, 101514. [Google Scholar] [CrossRef]
- Beloiu, M.; Heinzmann, L.; Rehush, N.; Gessler, A.; Griess, V.C. Individual Tree-Crown Detection and Species Identification in Heterogeneous Forests Using Aerial RGB Imagery and Deep Learning. Remote Sens. 2023, 15, 1463. [Google Scholar] [CrossRef]
- Moe, S.J.; Carriger, J.F.; Glendell, M. Increased Use of Bayesian Network Models Has Improved Environmental Risk Assessments. Integr. Environ. Assess. Manag. 2021, 17, 53–61. [Google Scholar] [CrossRef]
- Imani, M.; Hasan, M.M.; Bittencourt, L.F.; McClymont, K.; Kapelan, Z. A Novel Machine Learning Application: Water Quality Resilience Prediction Model. Sci. Total Environ. 2021, 768, 144459. [Google Scholar] [CrossRef]
- Uddin, M.G.; Imran, M.H.; Sajib, A.M.; Hasan, M.A.; Diganta, M.T.M.; Dabrowski, T.; Olbert, A.I.; Moniruzzaman, M. Assessment of Human Health Risk from Potentially Toxic Elements and Predicting Groundwater Contamination Using Machine Learning Approaches. J. Contam. Hydrol. 2024, 261, 104307. [Google Scholar] [CrossRef]
- Sörensen, J.; Nilsson, E.; Nilsson, D.; Gröndahl, E.; Rehn, D.; Giertz, T. Evaluation of ANN Model for Pipe Status Assessment in Drinking Water Management. Water Supply 2024, 24, 1985–1998. [Google Scholar] [CrossRef]
- Alfwzan, W.F.; Selim, M.M.; Almalki, A.S.; Alharbi, I.S. Water Quality Assessment Using Bi-LSTM and Computational Fluid Dynamics (CFD) Techniques. Alex. Eng. J. 2024, 97, 346–359. [Google Scholar] [CrossRef]
- Domisch, S.; Kakouei, K.; Martínez-López, J.; Bagstad, K.J.; Magrach, A.; Balbi, S.; Villa, F.; Funk, A.; Hein, T.; Borgwardt, F.; et al. Social Equity Shapes Zone-Selection: Balancing Aquatic Biodiversity Conservation and Ecosystem Services Delivery in the transboundary Danube River Basin. Sci. Total Environ. 2019, 656, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Barua, B.; Osman, A.; Abozariba, R.; Taufiq Asyhari, A. Performance of MobileNetV3 Transfer Learning on Handheld Device-Based Real-Time Tree Species Identification. In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021. [Google Scholar]
- Di Marco, M. Reptile Research Shows New Avenues and Old Challenges for Extinction Risk Modelling. PLoS Biol. 2022, 20, e3001719. [Google Scholar] [CrossRef]
- Alghanmi, A.F.; Aljahdali, B.M.; Sulaimani, H.T.; Turan, O.; Alshareef, M.H. An Innovative Deep-Learning Technique for Fuel Demand Estimation in Maritime Transportation: A Step Toward Sustainable Development and Environmental Impact Mitigation. Water 2024, 16, 3325. [Google Scholar] [CrossRef]
- Buters, T.M.; Bateman, P.W.; Robinson, T.; Belton, D.; Dixon, K.W.; Cross, A.T. Methodological Ambiguity and Inconsistency Constrain Unmanned Aerial Vehicles as a Silver Bullet for Monitoring Ecological Restoration. Remote Sens. 2019, 11, 1180. [Google Scholar] [CrossRef]
- Cabrera-Ariza, A.M.; Peralta-Aguilera, M.; Henríquez-Hernández, P.V.; Santelices-Moya, R. Using UAVs and Machine Learning for Nothofagus Alessandrii Species Identification in Mediterranean Forests. Drones 2023, 7, 668. [Google Scholar] [CrossRef]
- Burroughs, R.W.; Parham, J.F.; Stuart, B.L.; Smits, P.D.; Angielczyk, K.D. Morphological Species Delimitation in The Western Pond Turtle (Actinemys): Can Machine Learning Methods Aid in Cryptic Species Identification? Integr. Org. Biol. 2024, 6, obae010. [Google Scholar] [CrossRef]
- Schneider, S.; Taylor, G.W.; Kremer, S.C.; Fryxell, J.M. Getting the Bugs out of AI: Advancing Ecological Research on Arthropods through Computer Vision. Ecol. Lett. 2023, 26, 1247–1258. [Google Scholar] [CrossRef]
- Spiesman, B.J.; Gratton, C.; Hatfield, R.G.; Hsu, W.H.; Jepsen, S.; McCornack, B.; Patel, K.; Wang, G. Assessing the Potential for Deep Learning and Computer Vision to Identify Bumble Bee Species from Images. Sci. Rep. 2021, 11, 7580. [Google Scholar] [CrossRef]
- Yuan, F.; Huang, Y.; Chen, X.; Cheng, E. A Biological Sensor System Using Computer Vision for Water Quality Monitoring. IEEE Access 2018, 6, 61535–61546. [Google Scholar] [CrossRef]
- Rocha, P.C.; Romano, P.S.R. The Shape of Sound: A New R Package That Crosses the Bridge between Bioacoustics and Geometric Morphometrics. Methods Ecol. Evol. 2021, 12, 1115–1121. [Google Scholar] [CrossRef]
- Liu, Y.; Che, S.; Ai, L.; Song, C.; Zhang, Z.; Zhou, Y.; Yang, X.; Xian, C. Camouflage Detection: Optimization-Based Computer Vision for Alligator Sinensis with Low Detectability in Complex Wild Environments. Ecol. Inform. 2024, 83, 102802. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Sumod, M.; Jayaraj, R.; Sujanapal, P.; Dev, S.A. The Efficacy of Machine Learning Algorithm for Raw Drug Authentication in Coscinium fenestratum (Gaertn.) Colebr. Employing a DNA Barcode Database. Physiol. Mol. Biol. Plants 2021, 27, 605–617. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Fagundes, J.M.G.; Digiampietri, L.A.; Francoy, T.M.; Bíscaro, H.H. A Fully Automatic Classification of Bee Species from Wing Images. Apidologie 2021, 52, 1060–1074. [Google Scholar] [CrossRef]
- Brito de Jesus, S.; Vieira, D.; Gheller, P.; Cunha, B.P.; Gallucci, F.; Fonseca, G. Machine Learning Algorithms Accurately Identify Free-Living Marine Nematode Species. PeerJ 2023, 11, e16216. [Google Scholar] [CrossRef] [PubMed]
- Kulits, P.; Wall, J.; Bedetti, A.; Henley, M.; Beery, S. ElephantBook: A Semi-Automated Human-in-the-Loop System for Elephant Re-Identification. In Proceedings of the 4th ACM SIGCAS Conference on Computing and Sustainable Societies, Virtual, 28 June–2 July 2021; pp. 88–98. [Google Scholar]
- Huang, L.; Zhang, Z.; Xing, H.; Luo, Y.; Yang, J.; Sui, X.; Wang, Y. Risk Assessment Based on Dose-Responsive and Time-Responsive Genes to Build PLS-DA Models for Exogenously Induced Lung Injury. Ecotoxicol. Environ. Saf. 2023, 256, 114891. [Google Scholar] [CrossRef]
- Anderson, C.B. The CCB-ID Approach to Tree Species Mapping with Airborne Imaging Spectroscopy. PeerJ 2018, 2018, e5666. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Efficient Data-Driven Machine Learning Models for Water Quality Prediction. Computation 2023, 11, 16. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.-W.; Duan, H.-F. Machine Learning Based Marine Water Quality Prediction for Coastal Hydro-Environment Management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, Y.; Yang, L.; Yuan, X.; Yan, L.; Zhang, Y.; Zhang, H.; Xu, M.; Song, X.; Tang, J.; et al. Improving Prediction for Potential Spawning Areas from a Two-Step Perspective: A Comparison of Multi-Model Approaches for Sparse Egg Distribution. J. Sea Res. 2024, 197, 102460. [Google Scholar] [CrossRef]
- Albraikan, A.A.; Aljebreen, M.; Alzahrani, J.S.; Othman, M.; Mohammed, G.P.; Ibrahim Alsaid, M. Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture. Appl. Sci. 2022, 12, 12828. [Google Scholar] [CrossRef]
- Chowdury, M.S.U.; Emran, T.B.; Ghosh, S.; Pathak, A.; Alam, M.M.; Absar, N.; Andersson, K.; Hossain, M.S. IoT Based Real-Time River Water Quality Monitoring System. Procedia Comput. Sci. 2019, 155, 161–168. [Google Scholar] [CrossRef]
- Nazarov, D.; Sulimin, V.; Shvedov, V. Advancing Environmental Stewardship: The Role of Automation in Enhanced Environmental Monitoring. E3S Web Conf. 2024, 542, 05005. [Google Scholar] [CrossRef]
- Upton, A.; Jefferson, B.; Moore, G.; Jarvis, P. Rapid Gravity Filtration Operational Performance Assessment and Diagnosis for Preventative Maintenance from On-Line Data. Chem. Eng. J. 2017, 313, 250–260. [Google Scholar] [CrossRef]
- Sinha, K.; Srivastava, D.K.; Bhatnagar, R. Water Quality Management through Data Driven Intelligence System in Barmer Region, Rajasthan. Procedia Comput. Sci. 2018, 132, 314–322. [Google Scholar] [CrossRef]
- Guisasola, A.; Baeza, J.A. Smart-Plant Decision Support System (SP-DSS): Defining a Multi-Criteria Decision-Making Framework for the Selection of WWTP Configurations with Resource Recovery. J. Clean. Prod. 2022, 367, 132873. [Google Scholar] [CrossRef]
- Almodfer, R.; Mudhsh, M.; Zhao, J. Pyramided and Optimized Blurred Shape Model for Plant Leaf Classification. IET Image Process. 2023, 17, 2838–2854. [Google Scholar] [CrossRef]
- Habib, S.; Ahmad, M.; Haq, Y.U.; Sana, R.; Muneer, A.; Waseem, M.; Pathan, M.S.; Dev, S. Advancing Taxonomic Classification through Deep Learning: A Robust Artificial Intelligence Framework for Species Identification Using Natural Images. IEEE Access 2024, 12, 146718–146732. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Yang, C.-Q.; Wang, Y.; Orr, M.C.; Wang, H.; Zhang, A.-B. Identification of Species by Combining Molecular and Morphological Data Using Convolutional Neural Networks. Syst. Biol. 2022, 71, 690–705. [Google Scholar] [CrossRef]
- Hou, Y. Implementation of Water Quality Management by Fish School Detection Based on Computer Vision Technology. Adv. J. Food Sci. Technol. 2015, 9, 422–427. [Google Scholar] [CrossRef]
- Piechaud, N.; Hunt, C.; Culverhouse, P.F.; Foster, N.L.; Howell, K.L. Automated Identification of Benthic Epifauna with Computer Vision. Mar. Ecol. Prog. Ser. 2019, 615, 15–30. [Google Scholar] [CrossRef]
- Woo, D.K.; Ji, J.; Song, H. Subsurface Drainage Pipe Detection Using an Ensemble Learning Approach and Aerial Images. Agric. Water Manag. 2023, 287, 108455. [Google Scholar] [CrossRef]
- Blair, J.D.; Gaynor, K.M.; Palmer, M.S.; Marshall, K.E. A Gentle Introduction to Computer Vision-Based Specimen Classification in Ecological Datasets. J. Anim. Ecol. 2024, 93, 147–158. [Google Scholar] [CrossRef]
- Ficsór, M.; Csabai, Z. Machine Learning Model Ensemble Based on Multi-Scale Predictors Confirms Ecological Segregation and Accurately Predicts the Occurrence of Net-Spinning Caddisfly Larvae Species Groups (Trichoptera: Hydropsychidae) at Catchment-Scale. Ecol. Indic. 2023, 146, 109769. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.; Wang, L.; Liu, Y.; Li, R.; Lu, X.; Lu, J.; Shen, J. Multi-Species Identification and Number Counting of Fish Passing through Fishway at Hydropower Stations with LigTraNet. Ecol. Inform. 2024, 82, 102704. [Google Scholar] [CrossRef]
- Norman, D.L.; Bischoff, P.H.; Wearn, O.R.; Ewers, R.M.; Rowcliffe, J.M.; Evans, B.; Sethi, S.; Chapman, P.M.; Freeman, R. Can CNN-Based Species Classification Generalise across Variation in Habitat within a Camera Trap Survey? Methods Ecol. Evol. 2023, 14, 242–251. [Google Scholar] [CrossRef]
- Robillard, A.J.; Trizna, M.G.; Ruiz-Tafur, M.; Dávila Panduro, E.L.; de Santana, C.D.; White, A.E.; Dikow, R.B.; Deichmann, J.L. Application of a Deep Learning Image Classifier for Identification of Amazonian Fishes. Ecol. Evol. 2023, 13, 9987. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Mata, G.; Mata-Montero, E.; Valverde-Otárola, J.C.; Arias-Aguilar, D.; Zamora-Villalobos, N. Using Deep Learning to Identify Costa Rican Native Tree Species From Wood Cut Images. Front. Plant Sci. 2022, 13, 789227. [Google Scholar] [CrossRef]
- Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically Identifying, Counting, and Describing Wild Animals in Camera-Trap Images with Deep Learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–E5725. [Google Scholar] [CrossRef]
- Alhashmi, F.; Alhefeiti, M.; Mirza, S.B.; Ridouane, F.L. Efficient Dorsal Fin-Based Classification of Risso’s and Common Bottlenose Dolphins Using YOLOv7 and YOLOv8 Models for Real-Time Applications. Int. J. Adv. Technol. Eng. Explor. 2024, 11, 875–887. [Google Scholar] [CrossRef]
- Cau, A.; Sbrana, A.; Franceschini, S.; Fiorentino, F.; Follesa, M.C.; Galgani, F.; Garofalo, G.; Gerigny, O.; Profeta, A.; Rinelli, P.; et al. What, Where, and When: Spatial-Temporal Distribution of Macro-Litter on the Seafloor of the Western and Central Mediterranean Sea. Environ. Pollut. 2024, 342, 123028. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; Patel, S.; Singh, A. Low-Cost Real-Time Aerial Object Detection and GPS Location Tracking Pipeline. ISPRS Open J. Photogramm. Remote Sens. 2024, 13, 100069. [Google Scholar] [CrossRef]
- Norouzzadeh, M.S.; Morris, D.; Beery, S.; Joshi, N.; Jojic, N.; Clune, J. A Deep Active Learning System for Species Identification and Counting in Camera Trap Images. Methods Ecol. Evol. 2021, 12, 150–161. [Google Scholar] [CrossRef]
- Xhina, E.; Bilo, I.; Ktona, A.; Paparisto, A.; Liçi, O.; Qirinxhi, X.; Haxhiu, D. Machine learning methods for understanding biodiversity and its conservation. Int. J. Ecosyst. Ecol. Sci. 2023, 13, 39–44. [Google Scholar] [CrossRef]
- Yang, S.; Liang, R.; Chen, J.; Wang, Y.; Li, K. Estimating the Water Quality Index Based on Interpretable Machine Learning Models. Water Sci. Technol. 2024, 89, 1340–1356. [Google Scholar] [CrossRef] [PubMed]
- Ntalaperas, D.; Christophoridis, C.; Angelidis, I.; Iossifidis, D.; Touloupi, M.-F.; Vergeti, D.; Politi, E. Intelligent Tools to Monitor, Control and Predict Wastewater Reclamation and Reuse. Sensors 2022, 22, 3068. [Google Scholar] [CrossRef]
- Cha, S.; Lee, J.; Choi, E.; Lim, J. Unveiling the Past: Deep-Learning-Based Estimation of Historical Peatland Distribution. Land 2024, 13, 328. [Google Scholar] [CrossRef]
- Dema, T.; Zhang, L.; Towsey, M.; Truskinger, A.; Sherub, S.; Zhang, J.; Brereton, M.; Roe, P. An Investigation into Acoustic Analysis Methods for Endangered Species Monitoring: A Case of Monitoring the Critically Endangered White-Bellied Heron in Bhutan. In Proceedings of the 2017 IEEE 13th International Conference on e-Science (e-Science), Auckland, New Zealand, 24–27 October 2017; pp. 177–186. [Google Scholar]
- Clements, E.; Thompson, K.A.; Hannoun, D.; Dickenson, E.R.V. Classification Machine Learning to Detect de Facto Reuse and Cyanobacteria at a Drinking Water Intake. Sci. Total Environ. 2024, 948, 174690. [Google Scholar] [CrossRef]
- Alric, B.; Dézerald, O.; Meyer, A.; Billoir, E.; Coulaud, R.; Larras, F.; Mondy, C.P.; Usseglio-Polatera, P. How Diatom-, Invertebrate- and Fish-Based Diagnostic Tools Can Support the Ecological Assessment of Rivers in a Multi-Pressure Context: Temporal Trends over the Past Two Decades in France. Sci. Total Environ. 2021, 762, 143915. [Google Scholar] [CrossRef]
- Neupane, N.; Goswami, R.; Harrison, K.; Oberhauser, K.; Ries, L.; McCormick, C. Artificial Intelligence Correctly Classifies Developmental Stages of Monarch Caterpillars Enabling Better Conservation through the Use of Community Science Photographs. Sci. Rep. 2024, 14, 27039. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G.; Abba, S.I.; Algarni, A.D.; Mnzool, M.; Nour, A.H. Performance Evaluation of Hydroponic Wastewater Treatment Plant Integrated with Ensemble Learning Techniques: A Feature Selection Approach. Processes 2023, 11, 478. [Google Scholar] [CrossRef]
- Dubinsky, E.A.; Butkus, S.R.; Andersen, G.L. Microbial Source Tracking in Impaired Watersheds Using PhyloChip and Machine-Learning Classification. Water Res. 2016, 105, 56–64. [Google Scholar] [CrossRef]
- Anees, S.A.; Mehmood, K.; Khan, W.R.; Sajjad, M.; Alahmadi, T.A.; Alharbi, S.A.; Luo, M. Integration of Machine Learning and Remote Sensing for above Ground Biomass Estimation through Landsat-9 and Field Data in Temperate Forests of the Himalayan Region. Ecol. Inform. 2024, 82, 102732. [Google Scholar] [CrossRef]
- Li, C.; Ma, X.; Teng, Y.; Li, S.; Jin, Y.; Du, J.; Jiang, L. Quantitative Analysis of Forest Water COD Value Based on UV–Vis and FLU Spectral Information Fusion. Forests 2023, 14, 1361. [Google Scholar] [CrossRef]
- Stefanni, S.; Mirimin, L.; Stanković, D.; Chatzievangelou, D.; Bongiorni, L.; Marini, S.; Modica, M.V.; Manea, E.; Bonofiglio, F.; del Rio Fernandez, J.; et al. Framing Cutting-Edge Integrative Deep-Sea Biodiversity Monitoring via Environmental DNA and Optoacoustic Augmented Infrastructures. Front. Mar. Sci. 2022, 8, 797140. [Google Scholar] [CrossRef]
- Hartvig, I.; Czako, M.; Kjær, E.D.; Nielsen, L.R.; Theilade, I. The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.). PLoS ONE 2015, 10, e0138231. [Google Scholar] [CrossRef]
- Meher, P.K.; Sahu, T.K.; Gahoi, S.; Tomar, R.; Rao, A.R. FunbarRF: DNA Barcode-Based Fungal Species Prediction Using Multiclass Random Forest Supervised Learning Model. BMC Genet. 2019, 20, 2. [Google Scholar] [CrossRef]
- Paylar, B.; Längkvist, M.; Jass, J.; Olsson, P.-E. Utilization of Computer Classification Methods for Exposure Prediction and Gene Selection in Daphnia Magna Toxicogenomics. Biology 2023, 12, 692. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.; Ghaith, M.; Yosri, A.; Li, Z.; El-Dakhakhni, W. Genetic Programming Expressions for Effluent Quality Prediction: Towards AI-Driven Monitoring and Management of Wastewater Treatment Plants. J. Environ. Manag. 2024, 356, 120510. [Google Scholar] [CrossRef]
- Cai, R. Automating Bird Species Classification: A Deep Learning Approach with CNNs. J. Phys. Conf. Ser. 2023, 2664, 012007. [Google Scholar] [CrossRef]
- Duong, T.K.C.; Tran, V.L.; Nguyen, T.B.; Nguyen, T.T.; Ho, N.T.K.; Nguyen, T.Q. Ensemble Learning-Based Approach for Automatic Classification of Termite Mushrooms. Front. Genet. 2023, 14, 1208695. [Google Scholar] [CrossRef] [PubMed]
- Pasanisi, E.; Pace, D.S.; Orasi, A.; Vitale, M.; Arcangeli, A. A Global Systematic Review of Species Distribution Modelling Approaches for Cetaceans and Sea Turtles. Ecol. Inform. 2024, 82, 102700. [Google Scholar] [CrossRef]
- Bernardelli, A.; Marsili-Libelli, S.; Manzini, A.; Stancari, S.; Tardini, G.; Montanari, D.; Anceschi, G.; Gelli, P.; Venier, S. Real-Time Model Predictive Control of a Wastewater Treatment Plant Based on Machine Learning. Water Sci. Technol. 2020, 81, 2391–2400. [Google Scholar] [CrossRef]
- Meshgi, B.; Hanafi-Bojd, A.A.; Fathi, S.; Modabbernia, G.; Meshgi, K.; Shadman, M. Multi-Scale Habitat Modeling Framework for Predicting the Potential Distribution of Sheep Gastrointestinal Nematodes across Iran’s Three Distinct Climatic Zones: A MaxEnt Machine-Learning Algorithm. Sci. Rep. 2024, 14, 2828. [Google Scholar] [CrossRef] [PubMed]
- Gebler, D.; Kolada, A.; Pasztaleniec, A.; Szoszkiewicz, K. Modelling of Ecological Status of Polish Lakes Using Deep Learning Techniques. Environ. Sci. Pollut. Res. 2021, 28, 5383–5397. [Google Scholar] [CrossRef] [PubMed]
- Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep Learning Habitat Modeling for Moving Organisms in Rapidly Changing Estuarine Environments: A Case of Two Fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [Google Scholar] [CrossRef]
- Abdulkareem, S.A.; Augustijn, E.-W.; Filatova, T.; Musial, K.; Mustafa, Y.T. Risk Perception and Behavioral Change during Epidemics: Comparing Models of Individual and Collective Learning. PLoS ONE 2020, 15, e0226483. [Google Scholar] [CrossRef]
- O’Malley, D.; Delorey, A.A.; Guiltinan, E.J.; Ma, Z.; Kadeethum, T.; Lackey, G.; Lee, J.; Santos, J.E.; Follansbee, E.; Nair, M.C.; et al. Unlocking Solutions: Innovative Approaches to Identifying and Mitigating the Environmental Impacts of Undocumented Orphan Wells in the United States. Environ. Sci. Technol. 2024, 58, 19584–19594. [Google Scholar] [CrossRef]
- Satish, N.; Anmala, J.; Rajitha, K.; Varma, M.R.R. A Stacking ANN Ensemble Model of ML Models for Stream Water Quality Prediction of Godavari River Basin, India. Ecol. Inform. 2024, 80, 102500. [Google Scholar] [CrossRef]
- Msaddek, M.H.; Moumni, Y.; Zouhri, L.; Chenini, I.; Zghibi, A. Groundwater Quality Evaluation of Fractured Aquifers Using Machine Learning Models and Hydrogeochemical Approaches to Sustainable Water-Irrigation Security in Arid Climate (Central Tunisia). Water 2023, 15, 3332. [Google Scholar] [CrossRef]
- Araya, D.; Podgorski, J.; Berg, M. Groundwater Salinity in the Horn of Africa: Spatial Prediction Modeling and Estimated People at Risk. Environ. Int. 2023, 176, 107925. [Google Scholar] [CrossRef] [PubMed]
- Maddikunta, P.K.R.; Srivastava, G.; Gadekallu, T.R.; Deepa, N.; Boopathy, P. Predictive Model for Battery Life in IoT Networks. IET Intell. Transp. Syst. 2020, 14, 1388–1395. [Google Scholar] [CrossRef]
- Eze, E.; Halse, S.; Ajmal, T. Developing a Novel Water Quality Prediction Model for a South African Aquaculture Farm. Water 2021, 13, 1782. [Google Scholar] [CrossRef]
- Koudenoukpo, Z.C.; Odountan, O.H.; Agboho, P.A.; Dalu, T.; Van Bocxlaer, B.; Janssens de Bistoven, L.; Chikou, A.; Backeljau, T. Using Self–Organizing Maps and Machine Learning Models to Assess Mollusc Community Structure in Relation to Physicochemical Variables in a West Africa River–Estuary System. Ecol. Indic. 2021, 126, 107706. [Google Scholar] [CrossRef]
- Kukartsev, V.; Orlov, V.; Semenova, E.; Rozhkova, A. Optimizing Water Quality Classification Using Random Forest and Machine Learning. BIO Web Conf. 2024, 130, 03007. [Google Scholar] [CrossRef]
- Luzorata, J.G.; Bocobo, A.E.; Detera, L.M.; Pocong, N.J.B.; Sajonia, A.P. Assessment of Land Use Land Cover Classification Using Support Vector Machine and Random Forest Techniques in the Agusan River Basin through Geospatial Techniques. In Proceedings of the International Exchange and Innovation Conference on Engineering & Sciences (IEICES), Fukuoka, Japan, 19–20 October 2023; Volume 9, pp. 240–246. [Google Scholar]
- Rather, T.A.; Kumar, S.; Khan, J.A. Multi-Scale Habitat Modelling and Predicting Change in the Distribution of Tiger and Leopard Using Random Forest Algorithm. Sci. Rep. 2020, 10, 11473. [Google Scholar] [CrossRef] [PubMed]
- Soumya, S.; Tamatgar, N.; Dilli, R.; Kanthi, M. Deployment of Random Forest Algorithm for Prediction of Ammonia in River Water. In Proceedings of the 2024 13th International Conference on Software and Computer Applications, Bali Island, Indonesia, 1–3 February 2024; pp. 18–23. [Google Scholar]
- Jose, A.; Yasala, S. Machine Learning-Based Ensemble Model for Groundwater Quality Prediction: A Case Study. Water Pract. Technol. 2024, 19, 2364–2375. [Google Scholar] [CrossRef]
- Chung, J.; Yoo, G.; Jo, J.-S.; Choi, J.; Lee, J.-H. Development of a Machine Learning Model to Estimate the Biotic Ligand Model–Based Predicted No-Effect Concentrations for Copper in Freshwater. Environ. Toxicol. Chem. 2023, 42, 2271–2283. [Google Scholar] [CrossRef]
- Fan, J.; Li, M.; Guo, F.; Yan, Z.; Zheng, X.; Zhang, Y.; Xu, Z.; Wu, F. Priorization of River Restoration by Coupling Soil and Water Assessment Tool (SWAT) and Support Vector Machine (SVM) Models in the Taizi River Basin, Northern China. Int. J. Environ. Res. Public Health 2018, 15, 2090. [Google Scholar] [CrossRef]
- Morovati, M.; Karami, P.; Amjas, F.B. Accessing Habitat Suitability and Connectivity for the Westernmost Population of Asian Black Bear (Ursus Thibetanus Gedrosianus, Blanford, 1877) Based on Climate Changes Scenarios in Iran. PLoS ONE 2020, 15, e0242432. [Google Scholar] [CrossRef]
- Shi, K.; Han, J.-C.; Wang, P. Near Real-Time Retrieval of Lake Surface Water Temperature Using Himawari-8 Satellite Imagery and Machine Learning Techniques: A Case Study in the Yangtze River Basin. Front. Environ. Sci. 2023, 11, 1335725. [Google Scholar] [CrossRef]
- Kuang, L.; Shi, P.; Hua, C.; Chen, B.; Zhu, H. An Enhanced Extreme Learning Machine for Dissolved Oxygen Prediction in Wireless Sensor Networks. IEEE Access 2020, 8, 198730–198739. [Google Scholar] [CrossRef]
- Tiyasha, T.; Tung, T.M.; Bhagat, S.K.; Tan, M.L.; Jawad, A.H.; Mohtar, W.H.M.W.; Yaseen, Z.M. Functionalization of Remote Sensing and On-Site Data for Simulating Surface Water Dissolved Oxygen: Development of Hybrid Tree-Based Artificial Intelligence Models. Mar. Pollut. Bull. 2021, 170, 112639. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, J.; Feng, J.; Sun, Z.; Sun, T.; Liu, D.; Xi, M.; Li, R.; Wang, X. The Estimation of Chemical Oxygen Demand of Erhai Lake Basin and Its Links with Dom Fluorescent Components Using Machine Learning. Water 2021, 13, 3629. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Nation-Wide Estimation of Groundwater Redox Conditions and Nitrate Concentrations through Machine Learning. Environ. Res. Lett. 2020, 15, 064004. [Google Scholar] [CrossRef]
- Qiao, Z.; Sun, S.; Jiang, Q.; Xiao, L.; Wang, Y.; Yan, H. Retrieval of Total Phosphorus Concentration in the Surface Water of Miyun Reservoir Based on Remote Sensing Data and Machine Learning Algorithms. Remote Sens. 2021, 13, 4662. [Google Scholar] [CrossRef]
- Ju, F. Mapping the Knowledge Structure of Image Recognition in Cultural Heritage: A Scientometric Analysis Using CiteSpace, VOSviewer, and Bibliometrix. J. Imaging 2024, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, F.; Calderón-Loor, M.; Rosero, P.; Calispa, M.; Zisling, H.; Pérez-Castillo, Y.; Echevarría, G.; Ríos-Touma, B. Seasonally Flooded Landscape Connectivity and Implications for Fish in the Napo Moist Forest: A High-Resolution Mapping Approach. Glob. Ecol. Conserv. 2024, 56, e03257. [Google Scholar] [CrossRef]
- Cushman, S.A.; Kilshaw, K.; Campbell, R.D.; Kaszta, Z.; Gaywood, M.; Macdonald, D.W. Comparing the Performance of Global, Geographically Weighted and Ecologically Weighted Species Distribution Models for Scottish Wildcats Using GLM and Random Forest Predictive Modeling. Ecol. Model. 2024, 492, 110691. [Google Scholar] [CrossRef]
- Bartkiewicz, E.; Zimoch, I. Analysis of the Risk of Pipe Breaks Based on Hydraulic Model. In Safety and Reliability—Safe Societies in a Changing World; CRC Press: Boca Raton, FL, USA, 2018; pp. 1511–1516. [Google Scholar]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I.; Singh, S. Modeling Framework for Representing Long-Term Effectiveness of Best Management Practices in Addressing Hydrology and Water Quality Problems: Framework Development and Demonstration Using a Bayesian Method. J. Hydrol. 2018, 560, 530–545. [Google Scholar] [CrossRef]
- Sun, X.; Cao, W.; Pan, D.; Li, Y.; Ren, Y.; Nan, T. Assessment of Aquifer Specific Vulnerability to Total Nitrate Contamination Using Ensemble Learning and Geochemical Evidence. Sci. Total Environ. 2024, 912, 169497. [Google Scholar] [CrossRef]
- Aswal, R.S.; Prasad, M.; Singh, J.; Singh, H.; Shrivastava, U.; Wadhwa, M.; Pandey, O.P.; Egbueri, J.C. Spatial Analysis and Soft Computational Modeling for Hazard Assessment of Potential Toxic Elements in Potable Groundwater. Sci. Rep. 2024, 14, 25473. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, M.; Zhang, S.; Gao, J.; Zhang, X.; Li, R.; Lin, X.; Wang, S. Mining Soil Heavy Metal Inversion Based on Levy Flight Cauchy Gaussian Perturbation Sparrow Search Algorithm Support Vector Regression (LSSA-SVR). Ecotoxicol. Environ. Saf. 2024, 287, 117295. [Google Scholar] [CrossRef]
- Batchelor, J.L.; Hudak, A.T.; Gould, P.; Moskal, L.M. Terrestrial and Airborne Lidar to Quantify Shrub Cover for Canada Lynx (Lynx canadensis) Habitat Using Machine Learning. Remote Sens. 2023, 15, 4434. [Google Scholar] [CrossRef]
- Karimzadeh Motlagh, Z.; Derakhshani, R.; Sayadi, M.H. Groundwater Vulnerability Assessment in Central Iran: Integration of GIS-Based DRASTIC Model and a Machine Learning Approach. Groundw. Sustain. Dev. 2023, 23, 101037. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; dos Santos Vianna, M.; Behrend, D.; Hueging, H.; Schleip, I.; Mosebach, P.; Haub, A.; Behrendt, A.; Gaiser, T. Integration of UAV-Sensed Features Using Machine Learning Methods to Assess Species Richness in Wet Grassland Ecosystems. Ecol. Inform. 2024, 83, 102813. [Google Scholar] [CrossRef]
- Banerjee, P.; Ghose, M.K.; Pradhan, R. AHP-Based Spatial Analysis of Water Quality Impact Assessment Due to Change in Vehicular Traffic Caused by Highway Broadening in Sikkim Himalaya. Appl. Water Sci. 2018, 8, 72. [Google Scholar] [CrossRef]
- Shamsuddin, I.I.S.; Othman, Z.; Sani, N.S. Water Quality Index Classification Based on Machine Learning: A Case from the Langat River Basin Model. Water 2022, 14, 2939. [Google Scholar] [CrossRef]
- Fuentes-Pérez, J.F.; Sanz-Ronda, F.J. A Custom Sensor Network for Autonomous Water Quality Assessment in Fish Farms. Electronics 2021, 10, 2192. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
- Karthick, K.; Krishnan, S.; Manikandan, R. Water Quality Prediction: A Data-Driven Approach Exploiting Advanced Machine Learning Algorithms with Data Augmentation. J. Water Clim. Change 2024, 15, 431–452. [Google Scholar] [CrossRef]
- Stoica, C.; Camejo, J.; Banciu, A.; Nita-Lazar, M.; Paun, I.; Cristofor, S.; Pacheco, O.R.; Guevara, M. Water Quality of Danube Delta Systems: Ecological Status and Prediction Using Machine-Learning Algorithms. Water Sci. Technol. 2016, 73, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
- Razzano, F.; Di Stasio, P.; Mauro, F.; Meoni, G.; Esposito, M.; Schirinzi, G.; Ullo, S.L. AI Techniques for Near Real-Time Monitoring of Contaminants in Coastal Waters on Board Future Φsat-2 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16755–16766. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, I.W.-H.; Chen, Y.; Wang, Y.; Lin, Y. Real-Time Water Quality Monitoring and Estimation in AIoT for Freshwater Biodiversity Conservation. IEEE Internet Things J. 2022, 9, 14366–14374. [Google Scholar] [CrossRef]
- Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images with Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9132–9146. [Google Scholar] [CrossRef]
- Chojnacki, A.; Dai, C.; Farahi, A.; Shi, G.; Webb, J.; Zhang, D.T.; Abernethy, J.; Schwartz, E. A Data Science Approach to Understanding Residential Water Contamination in Flint. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–15 August 2017; Volume F129685; pp. 1407–1416. [Google Scholar]
- Fan, R.; Deng, Y.; Du, Y.; Xie, X. Predicting Geogenic Groundwater Arsenic Contamination Risk in Floodplains Using Interpretable Machine-Learning Model. Environ. Pollut. 2024, 340, 122787. [Google Scholar] [CrossRef]
- Kumar, S.; Pati, J. Assessment of Groundwater Arsenic Contamination Using Machine Learning in Varanasi, Uttar Pradesh, India. J. Water Health 2022, 20, 829–848. [Google Scholar] [CrossRef]
- Lu, H.; Ding, A.; Zheng, Y.; Jiang, J.; Zhang, J.; Zhang, Z.; Xu, P.; Zhao, X.; Quan, F.; Gao, C.; et al. Securing Drinking Water Supply in Smart Cities: An Early Warning System Based on Online Sensor Network and Machine Learning. Aqua Water Infrastruct. Ecosyst. Soc. 2023, 72, 721–738. [Google Scholar] [CrossRef]
- Blazejewski, A.; Pecolt, S.; Królikowski, T.; Grunt, M.; Bielicki, F. Project of Innovative Open Multi-Domain Early Warning Platform Enviwise for Adverse Events in Water Bodies and Streams. Procedia Comput. Sci. 2023, 225, 2743–2753. [Google Scholar] [CrossRef]
- Li, X.; Liang, G.; Wang, L.; Yang, Y.; Li, Y.; Li, Z.; He, B.; Wang, G. Identifying the Spatial Pattern and Driving Factors of Nitrate in Groundwater Using a Novel Framework of Interpretable Stacking Ensemble Learning. Environ. Geochem. Health 2024, 46, 482. [Google Scholar] [CrossRef]
- Jeong, B.; Chapeta, M.R.; Kim, M.; Kim, J.; Shin, J.; Cha, Y.K. Machine Learning-Based Prediction of Harmful Algal Blooms in Water Supply Reservoirs. Water Qual. Res. J. 2022, 57, 304–318. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D. Improved Prediction of Harmful Algal Blooms in Four Major South Korea’s Rivers Using Deep Learning Models. Int. J. Environ. Res. Public Health 2018, 15, 1322. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Baek, J.; Kim, J.; You, K.; Kim, K. Deep Learning-Based Algal Detection Model Development Considering Field Application. Water 2022, 14, 1275. [Google Scholar] [CrossRef]
- Yi, H.-S.; Park, S.; An, K.-G.; Kwak, K.-C. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. Int. J. Environ. Res. Public Health 2018, 15, 2078. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Walingo, T. Smart Water Quality Monitoring with IoT Wireless Sensor Networks. Sensors 2024, 24, 2871. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, L.; Usta, D.B.; Duran-Llacer, I.; Alvarez, L.B.; Yépez, S.; Bourrel, L.; Frappart, F.; Urrutia, R. Estimation of Water Quality Parameters through a Combination of Deep Learning and Remote Sensing Techniques in a Lake in Southern Chile. Remote Sens. 2023, 15, 4157. [Google Scholar] [CrossRef]
- Bekmurzaeva, R.; Kalimullin, R.; Aguzarova, F. Application of Drones and Artificial Intelligence to Monitor and Protect Natural Ecosystems. BIO Web Conf. 2024, 140, 01008. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, Y.; Yin, G.; Zhang, X.; Shi, Y.; Hao, F.; Fu, Y. UAV Multispectral Image-Based Urban River Water Quality Monitoring Using Stacked Ensemble Machine Learning Algorithms—A Case Study of the Zhanghe River, China. Remote Sens. 2022, 14, 3272. [Google Scholar] [CrossRef]
- El Din, E.S.; Zhang, Y. Improving the Accuracy of Extracting Surface Water Quality Levels (SWQLs) Using Remote Sensing and Artificial Neural Network: A Case Study in the Saint John River, Canada. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 245–249. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, A.; Rivard, B.; Wright, J.; Feng, J.-L.; Li, P.; Chong, M.M.; Bohlman, S.A. Estimation of the Distribution of Tabebuia Guayacan (Bignoniaceae) Using High-Resolution Remote Sensing Imagery. Sensors 2011, 11, 3831–3851. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Dabrowski, T.; Olbert, A.I. Data-Driven Modelling for Assessing Trophic Status in Marine Ecosystems Using Machine Learning Approaches. Environ. Res. 2024, 242, 117755. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Hogue, D.; Mondal, I.; Xu, T.; Boyer, T.H.; Hamilton, K.A.; Richard, R.; Hamilton, K.A. High Resolution Data Visualization and Machine Learning Prediction of Free Chlorine Residual in a Green Building Water System. Water Res. X 2024, 24, 100244. [Google Scholar] [CrossRef] [PubMed]
- Redoloza, F.S.; Williamson, T.N.; Headman, A.O.; Allred, B.J. Machine-Learning Model to Delineate Sub-Surface Agricultural Drainage from Satellite Imagery. J. Environ. Qual. 2023, 52, 907–921. [Google Scholar] [CrossRef]
- Tripathi, R.N.; Ramachandran, A.; Agarwal, K.; Tripathi, V.; Badola, R.; Hussain, S.A. UAV and Deep Learning: Detection of Selected Riparian Species along the Ganga River. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2024, 48, 637–642. [Google Scholar] [CrossRef]
- Wang, H.; Feng, C.; Li, X.; Yang, Y.; Zhang, Y.; Su, J.; Luo, D.; Wei, D.; He, Y. Plant Species Diversity Assessment in the Temperate Grassland Region of China Using UAV Hyperspectral Remote Sensing. Diversity 2024, 16, 775. [Google Scholar] [CrossRef]
- Moura, M.M.; de Oliveira, L.E.S.; Sanquetta, C.R.; Bastos, A.; Mohan, M.; Corte, A.P.D. Towards Amazon Forest Restoration: Automatic Detection of Species from Uav Imagery. Remote Sens. 2021, 13, 2627. [Google Scholar] [CrossRef]
- Ou, J.; Tian, Y.; Zhang, Q.; Xie, X.; Zhang, Y.; Tao, J.; Lin, J. Coupling UAV Hyperspectral and LiDAR Data for Mangrove Classification Using XGBoost in China’s Pinglu Canal Estuary. Forests 2023, 14, 1838. [Google Scholar] [CrossRef]
- Nasim, S.; Oussalah, M.; Klöve, B.; Haghighi, A.T. Vegetation Height Estimation Using Ubiquitous Foot-Based Wearable Platform. Environ. Monit. Assess. 2020, 192, 774. [Google Scholar] [CrossRef]
- Abad-Uribarren, A.; Prado, E.; Sierra, S.; Cobo, A.; Rodríguez-Basalo, A.; Gómez-Ballesteros, M.; Sánchez, F. Deep Learning-Assisted High Resolution Mapping of Vulnerable Habitats within the Capbreton Canyon System, Bay of Biscay. Estuar. Coast. Shelf Sci. 2022, 275, 107957. [Google Scholar] [CrossRef]
- Detka, J.; Coyle, H.; Gomez, M.; Gilbert, G.S. A Drone-Powered Deep Learning Methodology for High Precision Remote Sensing in California’s Coastal Shrubs. Drones 2023, 7, 421. [Google Scholar] [CrossRef]
- Xie, Y.; Xiang, J.; Li, X.; Yang, C. An Intelligent Fishery Detection Method Based on Cross-Domain Image Feature Fusion. Fishes 2024, 9, 338. [Google Scholar] [CrossRef]
- Aguilar-Amuchastegui, N.; Riveros, J.C.; Forrest, J.L. Identifying Areas of Deforestation Risk for REDD+ Using a Species Modeling Tool. Carbon Balance Manag. 2014, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Yanes Luis, S.; Gutiérrez-Reina, D.; Toral Marín, S. Censored Deep Reinforcement Patrolling with Information Criterion for Monitoring Large Water Resources Using Autonomous Surface Vehicles. Appl. Soft Comput. 2023, 132, 109874. [Google Scholar] [CrossRef]
- Mert, B.K.; Kasapoğulları, D. A Case Study of Using Artificial Neural Networks to Predict Heavy Metal Pollution in Lake Iznik. Environ. Monit. Assess. 2024, 196, 586. [Google Scholar] [CrossRef]
- Shao, W.; Liu, J.; Zhang, H.; Yan, D.; Li, W. Countermeasure Analysis on Promoting Drinking Water Safety in Shanshan County, Xinjiang Autonomous Region, China. Water 2018, 10, 1022. [Google Scholar] [CrossRef]
- Perivolioti, T.-M.; Tušer, M.; Frouzova, J.; Znachor, P.; Rychtecký, P.; Mouratidis, A.; Terzopoulos, D.; Bobori, D. Estimating Environmental Preferences of Freshwater Pelagic Fish Using Hydroacoustics and Satellite Remote Sensing. Water 2019, 11, 2226. [Google Scholar] [CrossRef]
- Coffer, M.M.; Nezlin, N.P.; Bartlett, N.; Pasakarnis, T.; Lewis, T.N.; DiGiacomo, P.M. Satellite Imagery as a Management Tool for Monitoring Water Clarity across Freshwater Ponds on Cape Cod, Massachusetts. J. Environ. Manag. 2024, 355, 120334. [Google Scholar] [CrossRef]
- Liao, K.; Song, Y.; Nie, X.; Liu, L.; Qi, S. Suspended Sediment Concentrate Estimation From Landsat Imagery and Hydrological Station in Poyang Lake Using Machine Learning. IEEE Access 2024, 12, 85411–85422. [Google Scholar] [CrossRef]
- Liang, C.-P.; Sun, C.-C.; Suk, H.; Wang, S.-W.; Chen, J.-S. A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan’s Lanyang Plain. Int. J. Environ. Res. Public Health 2021, 18, 11385. [Google Scholar] [CrossRef]
- Bourillon, B.; Feunteun, E.; Acou, A.; Trancart, T.; Teichert, N.; Belpaire, C.; Dufour, S.; Bustamante, P.; Aarestrup, K.; Walker, A.; et al. Anthropogenic Contaminants Shape the Fitness of the Endangered European Eel: A Machine Learning Approach. Fishes 2022, 7, 274. [Google Scholar] [CrossRef]
- Arrighi, C.; Castelli, F. Prediction of Ecological Status of Surface Water Bodies with Supervised Machine Learning Classifiers. Sci. Total Environ. 2023, 857, 159655. [Google Scholar] [CrossRef] [PubMed]
- Nasiri Khiavi, A.; Tavoosi, M.; Khodamoradi, H.; Kuriqi, A. Integration of Watershed Eco-Physical Health through Algorithmic Game Theory and Supervised Machine Learning. Groundw. Sustain. Dev. 2024, 26, 101216. [Google Scholar] [CrossRef]
- Al-Najjar, H.; Ceribasi, G.; Ceyhunlu, A.I. Effect of Unconventional Water Resources Interventions on the Management of Gaza Coastal Aquifer in Palestine. Water Supply 2021, 21, 4205–4218. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. Optimal Control towards Sustainable Wastewater Treatment Plants Based on Multi-Agent Reinforcement Learning. Chemosphere 2021, 279, 130498. [Google Scholar] [CrossRef]
- Laneve, G.; Téllez, A.; Kallikkattil Kuruvila, A.; Bruno, M.; Messineo, V. Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sens. 2024, 16, 1792. [Google Scholar] [CrossRef]
- Al-Sulttani, A.O.; Al-Mukhtar, M.; Roomi, A.B.; Farooque, A.A.; Khedher, K.M.; Yaseen, Z.M. Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction. IEEE Access 2021, 9, 108527–108541. [Google Scholar] [CrossRef]
- Khan, Y.; See, C.S. Predicting and Analyzing Water Quality Using Machine Learning: A Comprehensive Model. In Proceedings of the 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 29 April 2016. [Google Scholar]
- Liu, Y.; Tian, W.; Xie, J.; Huang, W.; Xin, K. LSTM-Based Model-Predictive Control with Rationality Verification for Bioreactors in Wastewater Treatment. Water 2023, 15, 1779. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Lim, C.K.; Mokhtar, M.B.; Khirotdin, R.P.K. Predicting Arsenic (As) Exposure on Human Health for Better Management of Drinking Water Sources. Int. J. Environ. Res. Public Health 2021, 18, 7997. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Maqsoom, A.; Cheema, A.H.; Ullah, F.; Alharbi, A.; Imran, M. Water Quality Management Using Hybrid Machine Learning and Data Mining Algorithms: An Indexing Approach. IEEE Access 2022, 10, 119692–119705. [Google Scholar] [CrossRef]
- Landuyt, D.; Lemmens, P.; D’hondt, R.; Broekx, S.; Liekens, I.; De Bie, T.; Declerck, S.A.J.; De Meester, L.; Goethals, P.L.M. An Ecosystem Service Approach to Support Integrated Pond Management: A Case Study Using Bayesian Belief Networks—Highlighting Opportunities and Risks. J. Environ. Manag. 2014, 145, 79–87. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Muthivhi, F.F.; Dondofema, F.; Munyai, L.F.; Dalu, T. Chlorophyll-a Unveiled: Unlocking Reservoir Insights through Remote Sensing in a Subtropical Reservoir. Environ. Monit. Assess. 2024, 196, 401. [Google Scholar] [CrossRef]
- Chang, N.-B.; Wei, X.; Mostafiz, C.; Yang, Y.J.; Weiss, J.; Belavel, M. Reconstruction of Sea-Land Interactions between Terrestrial Vegetation Cover and Water Quality Constituents in the Mattapoisett Harbor Area during the 1991 Hurricane Bob Event. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101929. [Google Scholar] [CrossRef] [PubMed]
- Yanes Luis, S.; Shutin, D.; Marchal Gómez, J.; Gutiérrez Reina, D.; Toral Marín, S. Deep Reinforcement Multiagent Learning Framework for Information Gathering with Local Gaussian Processes for Water Monitoring. Adv. Intell. Syst. 2024, 6, 202300850. [Google Scholar] [CrossRef]
- Brehob, M.M.; Pennino, M.J.; Handler, A.M.; Compton, J.E.; Lee, S.S.; Sabo, R.D. Estimates of Lake Nitrogen, Phosphorus, and Chlorophyll-a Concentrations to Characterize Harmful Algal Bloom Risk Across the United States. Earth’s Future 2024, 12, e2024EF004493. [Google Scholar] [CrossRef]
- Kimothi, S.; Thapliyal, A.; Singh, R.; Rashid, M.; Gehlot, A.; Akram, S.V.; Javed, A.R. Comprehensive Database Creation for Potential Fish Zones Using IoT and ML with Assimilation of Geospatial Techniques. Sustainability 2023, 15, 1062. [Google Scholar] [CrossRef]
- El Morabet, R.; Barhazi, L.; Bouhafa, S.; Dahim, M.A.; Khan, R.A.; Khan, N.A. Geospatial Distribution and Machine Learning Algorithms for Assessing Water Quality in Surface Water Bodies of Morocco. Sci. Rep. 2023, 13, 20599. [Google Scholar] [CrossRef]
- Booth, N.L.; Everman, E.J.; Kuo, I.-L.; Sprague, L.; Murphy, L. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions. J. Am. Water Resour. Assoc. 2011, 47, 1136–1150. [Google Scholar] [CrossRef]
- Tal-maon, M.; Ostfeld, A. Developing Water Quality Formulations for a Semi-Distributed Rainfall–Runoff Model. Water 2024, 16, 2072. [Google Scholar] [CrossRef]
- Falconí-López, A.; Mitesser, O.; Martin Schaefer, H.; Blüthgen, N.; Busse, A.; Feldhaar, H.; Freile, J.; Gelis, R.; Grella, N.; Heibl, C.; et al. Habitat Niches of Bird Species along a Recovery Gradient in the Chocó Tropical Forest. Ecol. Indic. 2024, 166, 112260. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Roche, L.M.; O’Geen, A.T.; Dahlgren, R.A. Understanding Spatial Variability of Forage Production in California Grasslands: Delineating Climate, Topography and Soil Controls. Environ. Res. Lett. 2021, 16, 014043. [Google Scholar] [CrossRef]
- Dinar, A.; Quinn, N.W.T. Developing a Decision Support System for Regional Agricultural Nonpoint Salinity Pollution Management: Application to the San Joaquin River, California. Water 2022, 14, 2384. [Google Scholar] [CrossRef]
- Cojbasic, S.; Dmitrasinovic, S.; Kostic, M.; Sekulic, M.T.; Radonic, J.; Dodig, A.; Stojkovic, M. Application of Machine Learning in River Water Quality Management: A Review. Water Sci. Technol. 2023, 88, 2297–2308. [Google Scholar] [CrossRef]
- Derdour, A.; Jodar-Abellan, A.; Pardo, M.Á.; Ghoneim, S.S.M.; Hussein, E.E. Designing Efficient and Sustainable Predictions of Water Quality Indexes at the Regional Scale Using Machine Learning Algorithms. Water 2022, 14, 2801. [Google Scholar] [CrossRef]
- Mallya, G.; Hantush, M.M.; Govindaraju, R.S. A Machine Learning Approach to Predict Watershed Health Indices for Sediments and Nutrients at Ungauged Basins. Water 2023, 15, 586. [Google Scholar] [CrossRef]
- Di, Z.; Chang, M.; Guo, P. Water Quality Evaluation of the Yangtze River in China Using Machine Learning Techniques and Data Monitoring on Different Time Scales. Water 2019, 11, 339. [Google Scholar] [CrossRef]
- Lundström, J.; Öhman, K.; Laudon, H. Comparing Buffer Zone Alternatives in Forest Planning Using a Decision Support System. Scand. J. For. Res. 2018, 33, 493–501. [Google Scholar] [CrossRef]
- Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M. A Low-Complexity Machine Learning Nitrate Loss Predictive Model-Towards Proactive Farm Management in a Networked Catchment. IEEE Access 2019, 7, 26707–26720. [Google Scholar] [CrossRef]
- Li, R.; Yan, T.; Zhao, Y.; Zhang, J.; Zhang, L. A Reinforcement Learning-Based Approach for Active Optimization of High Proportional Distributed Power Supply Access to Rural Distribution Networks. J. Phys. Conf. Ser. 2023, 2465, 012033. [Google Scholar] [CrossRef]
- Lima Silva, S.L.D.; Leite, M.S.; Fernandes, T.C.R.L.; Silva, S.K.D.; Araújo, A.C.B.D. Optimal operation of domestic and industrial sewage treatment plants using machine learning methods. Rev. Gest. Soc. Ambient. 2023, 17, e04124. [Google Scholar] [CrossRef]
- Doherty, K.E.; Evans, J.S.; Coates, P.S.; Juliusson, L.M.; Fedy, B.C. Importance of Regional Variation in Conservation Planning: A Rangewide Example of the Greater Sage-Grouse. Ecosphere 2016, 7, 1462. [Google Scholar] [CrossRef]
- Er-Rousse, O.; Qafas, A. Artificial Intelligence for the Optimization of Marine Aquaculture. E3S Web Conf. 2024, 477, 00102. [Google Scholar] [CrossRef]
- Fischer, A.; ter Laak, T.; Bronders, J.; Desmet, N.; Christoffels, E.; van Wezel, A.; van der Hoek, J.P. Decision Support for Water Quality Management of Contaminants of Emerging Concern. J. Environ. Manag. 2017, 193, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Huang, Y.; Santiago, P.J.; Labachyan, K.E.; Ronaghi, S.; Magana, M.P.B.; Huang, Y.-H.; Jiang, S.C.; Hochbaum, A.I.; Ragan, R. Decoding the Metabolic Response of Escherichia Coli for Sensing Trace Heavy Metals in Water. Proc. Natl. Acad. Sci. USA 2023, 120, 2210061120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bostic, J.T.; Sabo, R.D. Regional Patterns and Drivers of Total Nitrogen Trends in the Chesapeake Bay Watershed: Insights from Machine Learning Approaches and Management Implications. Water Res. 2022, 218, 118443. [Google Scholar] [CrossRef]
- Duan, L.; Yang, L.; Guo, Y. SIAlex: Species Identification and Monitoring Based on Bird Sound Features. Ecol. Inform. 2024, 81, 102637. [Google Scholar] [CrossRef]
- Mäder, P.; Boho, D.; Rzanny, M.; Seeland, M.; Wittich, H.C.; Deggelmann, A.; Wäldchen, J. The Flora Incognita App–Interactive Plant Species Identification. Methods Ecol. Evol. 2021, 12, 1335–1342. [Google Scholar] [CrossRef]
- Nokelainen, O.; Schiestl-Aalto, P.; Lauha, P.; Somervuo, P.; Andrejeff, S.; Sundell, J.; Hänninen, J.; Talaskivi, J.; Inkinen, J.; Vallinmäki, M.; et al. A Mobile Application–Based Citizen Science Product to Compile Bird Observations. Citiz. Sci. Theory Pract. 2024, 9, 710. [Google Scholar] [CrossRef]
- Mahecha, M.D.; Rzanny, M.; Kraemer, G.; Mäder, P.; Seeland, M.; Wäldchen, J. Crowd-Sourced Plant Occurrence Data Provide a Reliable Description of Macroecological Gradients. Ecography 2021, 44, 1131–1142. [Google Scholar] [CrossRef]
- Thornhill, I.; Batty, L.; Death, R.G.; Friberg, N.R.; Ledger, M.E. Local and Landscape Scale Determinants of Macroinvertebrate Assemblages and Their Conservation Value in Ponds across an Urban Land-Use Gradient. Biodivers. Conserv. 2017, 26, 1065–1086. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, J.; Li, M.; Han, Q.; Gruen, A.; Li, D.; Zhong, J. Advancing Coral Structural Connectivity Analysis through Deep Learning and Remote Sensing: A Case Study of South Pacific Tetiaroa Island. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2024, XLVIII-2-2, 471–476. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A Sophisticated Model for Rating Water Quality. Sci. Total Environ. 2023, 868, 161614. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Álvarez-Taboada, F.; Govedarica, M. Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario. Remote Sens. 2024, 16, 68. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; McCosker, K.; Northey, A. Assessing Water Quality for Cropping Management Practices: A New Approach for Dissolved Inorganic Nitrogen Discharged to the Great Barrier Reef. J. Environ. Manag. 2022, 321, 115932. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, Y.; Wang, P.; Xu, Z.; Wang, Y.; Zhang, Y. Long-Term Water Quality Prediction Using Integrated Water Quality Indices and Advanced Deep Learning Models: A Case Study of Chaohu Lake, China, 2019–2022. Appl. Sci. 2022, 12, 11329. [Google Scholar] [CrossRef]
- Duttagupta, S.; Bhanja, S.N.; Dutta, A.; Sarkar, S.; Chakraborty, M.; Ghosh, A.; Mondal, D.; Mukherjee, A. Impact of COVID-19 Lockdown on Availability of Drinking Water in the Arsenic-Affected Ganges River Basin. Int. J. Environ. Res. Public Health 2021, 18, 2832. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wu, N.; Zou, Q.; Zou, H.; Zhu, L.; Wei, J.; Huang, H. Data Modeling of Sewage Treatment Plant Based on Long Short-Term Memory with Multilayer Perceptron Network. Water 2023, 15, 1472. [Google Scholar] [CrossRef]
- Sáinz-Pardo Díaz, J.; Castrillo, M.; López García, Á. Deep Learning Based Soft-Sensor for Continuous Chlorophyll Estimation on Decentralized Data. Water Res. 2023, 246, 120726. [Google Scholar] [CrossRef]
- Utku, A.; Ayaz, Z.; Ciftci, D.; Ali Akcayol, M. Deep Learning Based Classification for Hoverflies (Diptera: Syrphidae). J. Entomol. Res. Soc. 2023, 25, 529–544. [Google Scholar] [CrossRef]
- Pérez-Girón, J.C.; Díaz-Varela, E.R.; Álvarez-Álvarez, P.; Hernández Palacios, O.; Ballesteros, F.; López-Bao, J.V. Linking Landscape Structure and Vegetation Productivity with Nut Consumption by the Cantabrian Brown Bear during Hyperphagia. Sci. Total Environ. 2022, 813, 152610. [Google Scholar] [CrossRef]
- Pukhrambam, B.; Sahayadhas, A. Advanced Medicinal Plant Classification and Bioactivity Identification Based on Dense Net Architecture. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 104–109. [Google Scholar] [CrossRef]
- Rahman, D.A.; Sitorus, A.B.Y.; Condro, A.A. From Coastal to Montane Forest Ecosystems, Using Drones for Multi-Species Research in the Tropics. Drones 2022, 6, 6. [Google Scholar] [CrossRef]
- Shao, X.; Chen, H.; Magson, K.; Wang, J.; Song, J.; Chen, J.; Sasaki, J. Deep Learning for Multilabel Classification of Coral Reef Conditions in the Indo-Pacific Using Underwater Photo Transect Method. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, 4241. [Google Scholar] [CrossRef]
- Li, S.; Xu, S.; Song, K.; Kutser, T.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Tao, H.; Wang, X.; et al. Remote Quantification of the Trophic Status of Chinese Lakes. Hydrol. Earth Syst. Sci. 2023, 27, 3581–3599. [Google Scholar] [CrossRef]
- Saha, G.K.; Rahmani, F.; Shen, C.; Li, L.; Cibin, R. A Deep Learning-Based Novel Approach to Generate Continuous Daily Stream Nitrate Concentration for Nitrate Data-Sparse Watersheds. Sci. Total Environ. 2023, 878, 162930. [Google Scholar] [CrossRef]
- Xu, X.; Yang, C.-C.; Xiao, Y.; Kong, J.-L. A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation. Int. J. Environ. Res. Public Health 2023, 20, 4924. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Padhy, N.; Dey, N.; Bhattacharya, S.; Tavares, J.M.R.S. Deep Transfer Learning-Based Automated Identification of Bird Song. Int. J. Interact. Multimed. Artif. Intell. 2023, 8, 33–45. [Google Scholar] [CrossRef]
- Kaufman, D.E.; Shenk, G.W.; Bhatt, G.; Asplen, K.W.; Devereux, O.H.; Rigelman, J.R.; Ellis, J.H.; Hobbs, B.F.; Bosch, D.J.; Van Houtven, G.L.; et al. Supporting Cost-Effective Watershed Management Strategies for Chesapeake Bay Using a Modeling and Optimization Framework. Environ. Model. Softw. 2021, 144, 105141. [Google Scholar] [CrossRef]
- Rasheed Abdul Haq, K.P.; Harigovindan, V.P. Water Quality Prediction for Smart Aquaculture Using Hybrid Deep Learning Models. IEEE Access 2022, 10, 60078–60098. [Google Scholar] [CrossRef]
- Zhang, Z.; Hörmann, G.; Huang, J.; Fohrer, N. A Grid-Based Interpretable Machine Learning Method to Understand the Spatial Relationships between Watershed Properties and Water Quality. Ecol. Indic. 2023, 154, 110627. [Google Scholar] [CrossRef]
- Krivek, G.; Gillert, A.; Harder, M.; Fritze, M.; Frankowski, K.; Timm, L.; Meyer-Olbersleben, L.; von Lukas, U.F.; Kerth, G.; van Schaik, J. BatNet: A Deep Learning-Based Tool for Automated Bat Species Identification from Camera Trap Images. Remote Sens. Ecol. Conserv. 2023, 9, 759–774. [Google Scholar] [CrossRef]
- Mahbub, T.; Bhagwagar, A.; Chand, P.; Zualkernan, I.; Judas, J.; Dghaym, D. Bat2Web: A Framework for Real-Time Classification of Bat Species Echolocation Signals Using Audio Sensor Data. Sensors 2024, 24, 2899. [Google Scholar] [CrossRef]
- Liu, M.; Min, L.; Shen, Y.; Wu, L. Evaluating the Impact of Alternative Cropping Systems on Groundwater Consumption and Nitrate Leaching in the Piedmont Area of the North China Plain. Agronomy 2020, 10, 1635. [Google Scholar] [CrossRef]
- Niyongabo, A.; Zhang, D.; Guan, Y.; Wang, Z.; Imran, M.; Nicayenzi, B.; Guyasa, A.K.; Hatungimana, P. Predicting Urban Water Consumption and Health Using Artificial Intelligence Techniques in Tanganyika Lake, East Africa. Water 2024, 16, 1793. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, X.; Jiang, B. An Empirical Study on JIT Defect Prediction Based on BERT-Style Model. arXiv 2024, arXiv:2403.11158. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 12. [Google Scholar] [CrossRef]
- Saha, S.; Ahmad, T. Federated Transfer Learning: Concept and Applications. Intell. Artif. 2021, 15, 35–44. [Google Scholar] [CrossRef]
- Masood, A.; Niazkar, M.; Zakwan, M.; Piraei, R. A Machine Learning-Based Framework for Water Quality Index Estimation in the Southern Bug River. Water 2023, 15, 3543. [Google Scholar] [CrossRef]
- Soriano, M.A.; Deziel, N.C.; Saiers, J.E. Regional Scale Assessment of Shallow Groundwater Vulnerability to Contamination from Unconventional Hydrocarbon Extraction. Environ. Sci. Technol. 2022, 56, 12126–12136. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Jiang, Y.; Wang, Z.; Zhang, Y.; Zhang, L.-L. Wild Bird Species Identification Based on a Lightweight Model with Frequency Dynamic Convolution. IEEE Access 2023, 11, 54352–54362. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, S. Quantitative Analysis and Management of Sustainable Development of Ecological Water Resources and Digital Financial System Based on an Intelligent Algorithm. Water Supply 2023, 23, 2881–2898. [Google Scholar] [CrossRef]
- Mounce, S.R.; Ellis, K.; Edwards, J.M.; Speight, V.L.; Jakomis, N.; Boxall, J.B. Ensemble Decision Tree Models Using RUSBoost for Estimating Risk of Iron Failure in Drinking Water Distribution Systems. Water Resour. Manag. 2017, 31, 1575–1589. [Google Scholar] [CrossRef]
- Khatun, R.; Talukdar, S.; Pal, S.; Saha, T.K.; Mahato, S.; Debanshi, S.; Mandal, I. Integrating Remote Sensing with Swarm Intelligence and Artificial Intelligence for Modelling Wetland Habitat Vulnerability in Pursuance of Damming. Ecol. Inform. 2021, 64, 101349. [Google Scholar] [CrossRef]
- Wege, M.; Salas, L.; LaRue, M. Citizen Science and Habitat Modelling Facilitates Conservation Planning for Crabeater Seals in the Weddell Sea. Divers. Distrib. 2020, 26, 1291–1304. [Google Scholar] [CrossRef]
- Tripathi, R.N.; Ramachandran, A.; Tripathi, V.; Badola, R.; Hussain, S.A. Optimizing Riparian Habitat Conservation: A Spatial Approach Using Aerial and Space Technologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16932–16943. [Google Scholar] [CrossRef]
- Hou, Z.; Ren, H.; Murray, C.J.; Song, X.; Fang, Y.; Arntzen, E.V.; Chen, X.; Stegen, J.C.; Huang, M.; Gomez-Velez, J.D.; et al. A Novel Construct for Scaling Groundwater-River Interactions Based on Machine-Guided Hydromorphic Classification. Environ. Res. Lett. 2021, 16, 104016. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, D.; Lin, J.; Peng, Q.; Lei, X.; Jin, T.; Wang, J.; Yuan, R. Prediction of Phytoplankton Biomass and Identification of Key Influencing Factors Using Interpretable Machine Learning Models. Ecol. Indic. 2024, 158, 111320. [Google Scholar] [CrossRef]
- Kouadri, S.; Elbeltagi, A.; Islam, A.R.M.T.; Kateb, S. Performance of Machine Learning Methods in Predicting Water Quality Index Based on Irregular Data Set: Application on Illizi Region (Algerian Southeast). Appl. Water Sci. 2021, 11, 190. [Google Scholar] [CrossRef]
- Ahkola, H.; Kotamäki, N.; Siivola, E.; Tiira, J.; Imoscopi, S.; Riva, M.; Tezel, U.; Juntunen, J. Uncertainty in Environmental Micropollutant Modeling. Environ. Manag. 2024, 74, 380–398. [Google Scholar] [CrossRef] [PubMed]
- Achee, N.L. The Remote Emerging Disease Intelligence—NETwork. Front. Microbiol. 2022, 13, 961065. [Google Scholar] [CrossRef]
- Erichsen, A.C.; Middelboe, A.L. Introduction to the Special Series, “The Future of Marine Environmental Monitoring and Assessment”. Integr. Environ. Assess. Manag. 2022, 18, 888–891. [Google Scholar] [CrossRef]
- Sakti, A.D.; Adillah, K.P.; Santoso, C.; Faruqi, I.A.; Hendrawan, V.S.A.; Sofan, P.; Fauzi, A.I.; Setiawan, Y.; Utami, I.; Zain, A.F.M.; et al. Modeling Proboscis Monkey Conservation Sites on Borneo Using Ensemble Machine Learning. Glob. Ecol. Conserv. 2024, 54, e03101. [Google Scholar] [CrossRef]
- Veiga, R.J.M.; Rodrigues, J.M.F. Fine-Grained Fish Classification From Small to Large Datasets With Vision Transformers. IEEE Access 2024, 12, 113642–113660. [Google Scholar] [CrossRef]
- Szomolányi, O.; Clement, A. Use of Random Forest for Assessing the Effect of Water Quality Parameters on the Biological Status of Surface Waters. GEM Int. J. Geomath. 2023, 14, 20. [Google Scholar] [CrossRef]
- Derville, S.; Torres, L.G.; Iovan, C.; Garrigue, C. Finding the Right Fit: Comparative Cetacean Distribution Models Using Multiple Data Sources and Statistical Approaches. Divers. Distrib. 2018, 24, 1657–1673. [Google Scholar] [CrossRef]
- Chambault, P.; Fossette, S.; Heide-Jørgensen, M.P.; Jouannet, D.; Vély, M. Predicting Seasonal Movements and Distribution of the Sperm Whale Using Machine Learning Algorithms. Ecol. Evol. 2021, 11, 1432–1445. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, S.; Wang, J.; Lu, Y.; Ma, L.; Jiao, L.; Guo, J.; Yin, Y.; He, T. Opening the Black Box: Explainable Deep-Learning Classification of Wood Microscopic Image of Endangered Tree Species. Plant Methods 2024, 20, 56. [Google Scholar] [CrossRef]
- Caniani, D.; Esposito, G.; Gori, R.; Mannina, G. Towards a New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emission. Water 2015, 7, 5599–5616. [Google Scholar] [CrossRef]
- Shekar, P.R.; Mathew, A.; Pandey, A.; Bhosale, A. A Comparison of the Performance of SWAT and Artificial Intelligence Models for Monthly Rainfall–Runoff Analysis in the Peddavagu River Basin, India. Aqua Water Infrastruct. Ecosyst. Soc. 2023, 72, 1707–1730. [Google Scholar] [CrossRef]
- Pang, P.K.; Lim, K.H. Review on Automatic Plant Identification Using Computer Vision Approaches. IOP Conf. Ser. Mater. Sci. Eng. 2019, 495, 012032. [Google Scholar] [CrossRef]
- Vilas, C.; Antelo, L.T.; Martin-Rodriguez, F.; Morales, X.; Perez-Martin, R.I.; Alonso, A.A.; Valeiras, J.; Abad, E.; Quinzan, M.; Barral-Martinez, M. Use of Computer Vision Onboard Fishing Vessels to Quantify Catches: The iObserver. Mar. Policy 2020, 116, 103714. [Google Scholar] [CrossRef]
- Nemčić-Jurec, J.; Ruk, D.; Oreščanin, V.; Kovač, I.; Ujević Bošnjak, M.; Kinsela, A.S. Groundwater Contamination in Public Water Supply Wells: Risk Assessment, Evaluation of Trends and Impact of Rainfall on Groundwater Quality. Appl. Water Sci. 2022, 12, 172. [Google Scholar] [CrossRef]
- Ruan, J.; Cui, Y.; Meng, D.; Wang, J.; Song, Y.; Mao, Y. Integrated Prediction of Water Pollution and Risk Assessment of Water System Connectivity Based on Dynamic Model Average and Model Selection Criteria. PLoS ONE 2023, 18, 0287209. [Google Scholar] [CrossRef] [PubMed]
- Lobo, G.P.; Laraway, J.; Gadgil, A.J. Identifying Schools at High-Risk for Elevated Lead in Drinking Water Using Only Publicly Available Data. Sci. Total Environ. 2022, 803, 150046. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Li, C.; Wang, K.; He, K.; Wang, X.; Yu, W. A Fast and Accurate Identification Model for Rhinolophus Bats Based on Fine-Grained Information. Sci. Rep. 2023, 13, 16375. [Google Scholar] [CrossRef]
- Santana, F.S.; Costa, A.H.R.; Truzzi, F.S.; Silva, F.L.; Santos, S.L.; Francoy, T.M.; Saraiva, A.M. A Reference Process for Automating Bee Species Identification Based on Wing Images and Digital Image Processing. Ecol. Inform. 2014, 24, 248–260. [Google Scholar] [CrossRef]
- Cheng, S.-T.; Tsai, W.-P.; Yu, T.-C.; Herricks, E.E.; Chang, F.-J. Signals of Stream Fish Homogenization Revealed by AI-Based Clusters. Sci. Rep. 2018, 8, 15960. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, L.; Wang, B.; He, X.; Duan, L.; Yu, G. Uncovering Global Risk to Human and Ecosystem Health from Pesticides in Agricultural Surface Water Using a Machine Learning Approach. Environ. Int. 2024, 194, 109154. [Google Scholar] [CrossRef]
- Wieland, R.; Kuhls, K.; Lentz, H.H.K.; Conraths, F.; Kampen, H.; Werner, D. Combined Climate and Regional Mosquito Habitat Model Based on Machine Learning. Ecol. Model. 2021, 452, 109594. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Ryzhkov, S.; Nechai, O.; Topalov, A.; Zivenko, O.; Babchuk, S.; Harasymiv, T. Computer system for forecasting water quality parameters based on machine learning. Comptes Rendus L’Academie Bulg. Sci. 2024, 77, 1629–1638. [Google Scholar] [CrossRef]
- Choden, Y.; Chokden, S.; Rabten, T.; Chhetri, N.; Aryan, K.R.; Al Abdouli, K.M. Performance Assessment of Data Driven Water Models Using Water Quality Parameters of Wangchu River, Bhutan. SN Appl. Sci. 2022, 4, 290. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L. Research on Sustainable Green Building Space Design Model Integrating IoT Technology. PLoS ONE 2024, 19, 0298982. [Google Scholar] [CrossRef] [PubMed]
- Guilbault, E.; Renner, I.; Beh, E.J.; Mahony, M. A Practical Approach to Making Use of Uncertain Species Presence-Only Data in Ecology: Reclassification, Regularization Methods and Observer Bias. Ecol. Inform. 2023, 77, 102155. [Google Scholar] [CrossRef]
- Mz, Y.; Rahayu, S. Decision Support System for Urban River Water Quality as a Source of Clean Water Using the SMART Method. IOP Conf. Ser. Earth Environ. Sci. 2024, 1372, 012038. [Google Scholar] [CrossRef]
- Molina, J.-L.; Pulido-Velázquez, M.; Llopis-Albert, C.; Peña-Haro, S. Stochastic Hydro-Economic Model for Groundwater Quality Management Using Bayesian Networks. Water Sci. Technol. 2013, 67, 579–586. [Google Scholar] [CrossRef]
- Visser, H.; Evers, N.; Bontsema, A.; Rost, J.; de Niet, A.; Vethman, P.; Mylius, S.; van der Linden, A.; van den Roovaart, J.; van Gaalen, F.; et al. What Drives the Ecological Quality of Surface Waters? A Review of 11 Predictive Modeling Tools. Water Res. 2022, 208, 117851. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, S.; Lu, Y.; Song, C.; Huang, R.; Yu, K. Deep Learning-Based Automatic Estimation of Live Coral Cover from Underwater Video for Coral Reef Health Monitoring. J. Mar. Sci. Eng. 2024, 12, 1980. [Google Scholar] [CrossRef]
- Jia, B.; Wang, C.; Qiu, E.; Qie, G. The Status and Trend on the Urban Tree Canopy Research. Shengtai Xuebao/Acta Ecol. Sin. 2013, 33, 23–32. [Google Scholar] [CrossRef]
- Lee, J.M.; Ko, K.-S.; Yoo, K. A Machine Learning-Based Approach to Predict Groundwater Nitrate Susceptibility Using Field Measurements and Hydrogeological Variables in the Nonsan Stream Watershed, South Korea. Appl. Water Sci. 2023, 13, 242. [Google Scholar] [CrossRef]
- Chen, K.; Shi, X.; Zhang, Z.; Chen, S.; Ma, J.; Zheng, T.; Alfonso, L. Using Unsupervised Learning to Classify Inlet Water for More Stable Design of Water Reuse in Industrial Parks. Water Sci. Technol. 2024, 89, 1757–1770. [Google Scholar] [CrossRef]
- Ewusi, A.; Ahenkorah, I.; Aikins, D. Modelling of Total Dissolved Solids in Water Supply Systems Using Regression and Supervised Machine Learning Approaches. Appl. Water Sci. 2021, 11, 13. [Google Scholar] [CrossRef]
- Ma, D.; Wei, J.; Zhu, L.; Zhao, F.; Wu, H.; Chen, X.; Li, Y.; Liu, M. Semi-Supervised Learning Advances Species Recognition for Aquatic Biodiversity Monitoring. Front. Mar. Sci. 2024, 11, 1373755. [Google Scholar] [CrossRef]
- Balajee, J.; Saleem Durai, M.A. Smart Survey on Recent Trends in Water Level, Drought and Water Quality Analysis System. IOP Conf. Ser. Earth Environ. Sci. 2021, 1964, 042052. [Google Scholar] [CrossRef]
- Sajib, A.M.; Diganta, M.T.M.; Moniruzzaman, M.; Rahman, A.; Dabrowski, T.; Uddin, M.G.; Olbert, A.I. Assessing Water Quality of an Ecologically Critical Urban Canal Incorporating Machine Learning Approaches. Ecol. Inform. 2024, 80, 102514. [Google Scholar] [CrossRef]
- Smedley, P.L.; Allen, G.; Baptie, B.J.; Fraser-Harris, A.P.; Ward, R.S.; Chambers, R.M.; Gilfillan, S.M.V.; Hall, J.A.; Hughes, A.G.; Manning, D.A.C.; et al. Equipping for Risk: Lessons Learnt from the UK Shale-Gas Experience on Assessing Environmental Risks for the Future Geoenergy Use of the Deep Subsurface. Sci. Total Environ. 2024, 921, 171036. [Google Scholar] [CrossRef] [PubMed]
- Awwad, A.; Husseini, G.A.; Albasha, L. AI-Aided Robotic Wide-Range Water Quality Monitoring System. Sustainability 2024, 16, 9499. [Google Scholar] [CrossRef]
- Panigrahi, S.; Maski, P.; Thondiyath, A. Real-Time Biodiversity Analysis Using Deep-Learning Algorithms on Mobile Robotic Platforms. PeerJ Comput. Sci. 2023, 9, 1502. [Google Scholar] [CrossRef]
- Reynaert, E.; Steiner, P.; Yu, Q.; D’Olif, L.; Joller, N.; Schneider, M.Y.; Morgenroth, E. Predicting Microbial Water Quality in On-Site Water Reuse Systems with Online Sensors. Water Res. 2023, 240, 120075. [Google Scholar] [CrossRef]
- Zia, H.; Harris, N.; Merrett, G. A Low Complexity Data Driven Model of Environmental Discharge Dynamics for Wireless Sensor Network Applications. Procedia Eng. 2014, 87, 544–547. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, X.; Wu, H.; Gao, H.; Wang, G.; Ni, G.; Cao, T. Visible/near-Infrared Hyperspectral Imaging Combined with Machine Learning for Identification of Ten Dalbergia Species. Front. Plant Sci. 2024, 15, 1413215. [Google Scholar] [CrossRef]
- Wong, J.J.N.; Fadzly, N. Development of Species Recognition Models Using Google Teachable Machine on Shorebirds and Waterbirds. J. Taibah Univ. Sci. 2022, 16, 1096–1111. [Google Scholar] [CrossRef]
- Marquez, L.; Fragkopoulou, E.; Cavanaugh, K.C.; Houskeeper, H.F.; Assis, J. Artificial Intelligence Convolutional Neural Networks Map Giant Kelp Forests from Satellite Imagery. Sci. Rep. 2022, 12, 22196. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, A.; Engala, S.R.; Nallapuraju, A. Towards Sustainable Development: A Novel Integrated Machine Learning Model for Holistic Environmental Health Monitoring. In Proceedings of the 2023 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 6–8 October 2023. [Google Scholar]
- Martínez, R.; Felis, I.; Navarro, M.; Sanz-González, J.C. Time Series Modelling and Predictive Analytics for Sustainable Environmental Management—A Case Study in El Mar Menor (Spain). Eng. Proc. 2023, 58, 32. [Google Scholar] [CrossRef]
- McLoughlin, C.A.; Riddell, E.S.; Petersen, R.M.; Venter, J. Adaptive and Transformative Learning in Environmental Water Management: Implementing the Crocodile River’s Ecological Reserve in Kruger National Park, South Africa. Koedoe 2021, 63, 1663. [Google Scholar] [CrossRef]
- Marre, G.; De Almeida Braga, C.; Ienco, D.; Luque, S.; Holon, F.; Deter, J. Deep Convolutional Neural Networks to Monitor Coralligenous Reefs: Operationalizing Biodiversity and Ecological Assessment. Ecol. Inform. 2020, 59, 101110. [Google Scholar] [CrossRef]
- McClanahan, T.R. Local Heterogeneity of Coral Reef Diversity and Environmental Stress Provides Opportunities for Small-Scale Conservation. Divers. Distrib. 2023, 29, 1324–1340. [Google Scholar] [CrossRef]
- Hee Shim, S.; Hyun Choi, J. Building an XGBoost Model Based on Landscape Metrics and Meteorological Data for Nonpoint Source Pollution Management in the Nakdong River Watershed. Ecol. Indic. 2024, 165, 112156. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Sola, E. Comparing Modeled Predictions of Coral Reef Diversity along a Latitudinal Gradient in Mozambique. Front. Ecol. Evol. 2024, 12, 1450383. [Google Scholar] [CrossRef]
- Kadoya, S.-S.; Nishimura, O.; Kato, H.; Sano, D. Predictive Water Virology Using Regularized Regression Analyses for Projecting Virus Inactivation Efficiency in Ozone Disinfection. Water Res. X 2021, 11, 100093. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Z.; Li, S.; Kang, P.; Zhu, S. Multi-Feature-Based Identification of Subtropical Evergreen Tree Species Using Gaofen-2 Imagery and Algorithm Comparison. Forests 2023, 14, 292. [Google Scholar] [CrossRef]
- Jongjaraunsuk, R.; Taparhudee, W.; Suwannasing, P. Comparison of Water Quality Prediction for Red Tilapia Aquaculture in an Outdoor Recirculation System Using Deep Learning and a Hybrid Model. Water 2024, 16, 907. [Google Scholar] [CrossRef]
- Carretta, J.V. A Machine-Learning Approach to Assign Species to “unidentified” Entangled Whales. Endanger. Species Res. 2018, 36, 89–98. [Google Scholar] [CrossRef]
- Pittman, S.J.; Brown, K.A. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes. PLoS ONE 2011, 6, 0020583. [Google Scholar] [CrossRef]
- Su, X.; Zhou, D.; Wang, H.; Xu, J. Research on the Scaling Mechanism and Countermeasures of Tight Sandstone Gas Reservoirs Based on Machine Learning. Processes 2024, 12, 527. [Google Scholar] [CrossRef]
- Dias, D.F.C.; Abily, M.; Ribeiro, J.M.; Jouhara, H.; Katsou, E. Screening Rainwater Harvesting Potentialities in the EU Industrial Sector: A Framework for Site-Specific Assessment. Water 2024, 16, 1758. [Google Scholar] [CrossRef]
- Eastwood, N.; Zhou, J.; Derelle, R.; Abdallah, M.A.-E.; Stubbings, W.A.; Jia, Y.; Crawford, S.E.; Davidson, T.A.; Colbourne, J.K.; Creer, S.; et al. 100 Years of Anthropogenic Impact Causes Changes in Freshwater Functional Biodiversity. eLife 2023, 12, 86576. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Cai, J.; Zeng, D.; Yan, X.; Gong, W.; Wang, L. Deep Reinforcement Learning Based Valve Scheduling for Pollution Isolation in Water Distribution Network. Math. Biosci. Eng. 2020, 17, 105–121. [Google Scholar] [CrossRef]
- Doña, C.; Chang, N.-B.; Caselles, V.; Sánchez, J.M.; Camacho, A.; Delegido, J.; Vannah, B.W. Integrated Satellite Data Fusion and Mining for Monitoring Lake Water Quality Status of the Albufera de Valencia in Spain. J. Environ. Manag. 2015, 151, 416–426. [Google Scholar] [CrossRef]
- Dolph, C.L.; Cho, S.J.; Finlay, J.C.; Hansen, A.T.; Dalzell, B. Predicting High Resolution Total Phosphorus Concentrations for Soils of the Upper Mississippi River Basin Using Machine Learning. Biogeochemistry 2023, 163, 289–310. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Yao, R.; Wei, C.; Luo, M.; Yang, C.; Chen, S.; Huang, X. Groundwater Suitability Assessment for Irrigation and Drinking Purposes by Integrating Spatial Analysis, Machine Learning, Water Quality Index, and Health Risk Model. Environ. Sci. Pollut. Res. 2024, 31, 39155–39176. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, 0091001. [Google Scholar] [CrossRef]
- Egbemhenghe, A.U.; Ojeyemi, T.; Iwuozor, K.O.; Emenike, E.C.; Ogunsanya, T.I.; Anidiobi, S.U.; Adeniyi, A.G. Revolutionizing Water Treatment, Conservation, and Management: Harnessing the Power of AI-Driven ChatGPT Solutions. Environ. Chall. 2023, 13, 100782. [Google Scholar] [CrossRef]
- Alamanos, A. Simple Hydro-Economic Tools for Supporting Small Water Supply Agencies on Sustainable Irrigation Water Management. Water Supply 2022, 22, 1810–1819. [Google Scholar] [CrossRef]
- Kadiyala, L.A.; Mermer, O.; Samuel, D.J.; Sermet, Y.; Demir, I. The Implementation of Multimodal Large Language Models for Hydrological Applications: A Comparative Study of GPT-4 Vision, Gemini, LLaVa, and Multimodal-GPT. Hydrology 2024, 11, 148. [Google Scholar] [CrossRef]
- Barcala, V.; Rozemeijer, J.; Ouwerkerk, K.; Gerner, L.; Osté, L. Value and Limitations of Machine Learning in High-Frequency Nutrient Data for Gap-Filling, Forecasting, and Transport Process Interpretation. Environ. Monit. Assess. 2023, 195, 892. [Google Scholar] [CrossRef]
Risk Level | Criteria (Example) |
---|---|
Low risk | Publicly available dataset, clear model architecture, external validation present |
Some concerns | Model details incomplete, internal validation only, unclear label derivation |
High risk | Proprietary dataset, no model transparency, no validation steps reported |
AI Application | Methods Used | Key Benefits |
---|---|---|
Species Identification [157] | Computer Vision (CNNs) [158,159,160], Bioacoustics [161], eDNA-based AI [162,163] | Automated classification [164], high accuracy, scalable monitoring [165,166] |
Habitat and Ecological Risk Assessment [167] | Predictive Habitat Mapping, ML-based Ecological Risk Models, AI-driven Water Quality Monitoring [168,169] | Predicts ecosystem changes, identifies threats, supports mitigation [170,171] |
Remote Sensing for Biodiversity Monitoring | Satellites/Drones with AI, Deep Learning for Land–Water Interface Analysis [172] | Large-scale monitoring, real-time analysis, improved data accessibility [173,174,175] |
AI in Conservation and Management Strategies [176] | AI-powered Decision Support Systems, AI-driven Conservation Planning, Citizen Science Integration [177] | Optimizes conservation decisions, enhances public participation, enables proactive strategies |
AI Method Type | Example Algorithms | Data Modality | ML Task | Strengths | Limitations |
---|---|---|---|---|---|
Traditional ML | Random Forests (RFs), Support Vector Machines (SVMs), k-Nearest Neighbors (k-NNs) | Structured tabular data (e.g., environmental variables, genetic markers) | Classification, Regression | Interpretable; robust to overfitting; low computational cost | Requires feature engineering; sensitive to class imbalance; limited flexibility |
Deep Learning (CNNs) | ResNet, YOLO, VGGNet | Images (e.g., species photos, satellite and drone imagery) | Image Classification, Object Detection | High accuracy; automatic feature extraction; scalable to large datasets | Data-hungry; requires extensive labeling; low interpretability without XAI tools |
Deep Learning (RNNs) | LSTMs, GRUs | Sequential/Temporal Data (e.g., acoustic signals, water quality time series) | Time-Series Classification, Forecasting | Captures temporal dependencies; effective for sequential patterns | Prone to overfitting; training instability; high computational resource demand |
Transformer Models | BERT, DNABERT, Vision Transformer (ViT) | Genomic sequences, multi-modal data | Sequence Classification, Multi-Modal Fusion | Context-aware modeling; superior scalability; transferable across domains | High computational demand; scarce applications in aquatic field studies |
Hybrid and XAI Systems | CNNs + SHAP, RFs + LIMEs | Various | Classification, Interpretation | Balances predictive performance with interpretability; enhances model trust | Experimental; limited standardization; low adoption in operational projects |
Challenge | Proposed Solution |
---|---|
Data Quality and Bias | Develop comprehensive, diverse datasets, improve data-sharing frameworks |
Model Transferability | Use transfer learning and domain adaptation techniques to enhance generalization |
Computational Constraints | Implement lightweight AI models, invest in cloud and edge computing |
Lack of Standardization | Establish standardized benchmarks and protocols for biodiversity AI |
Ethical and Policy Concerns | Develop transparent governance, apply ethical AI principles, engage stakeholders |
Research Direction | Expected Impact |
---|---|
Standardized AI Frameworks | Ensures comparability and reproducibility of studies across ecosystems |
AI Interpretability and Explainability | Improves trust and usability of AI-driven insights for conservation |
Integration with Citizen Science and Big Data | Expands data collection and analysis through crowdsourcing and automation |
AI in Policymaking | Enhances evidence-based conservation policies and decision-making |
Emerging AI Trends | Explores novel AI methodologies to advance biodiversity research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, T.; Michoński, G.; Durlik, I.; Kozlovska, P.; Biczak, P. Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review. Biology 2025, 14, 520. https://doi.org/10.3390/biology14050520
Miller T, Michoński G, Durlik I, Kozlovska P, Biczak P. Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review. Biology. 2025; 14(5):520. https://doi.org/10.3390/biology14050520
Chicago/Turabian StyleMiller, Tymoteusz, Grzegorz Michoński, Irmina Durlik, Polina Kozlovska, and Paweł Biczak. 2025. "Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review" Biology 14, no. 5: 520. https://doi.org/10.3390/biology14050520
APA StyleMiller, T., Michoński, G., Durlik, I., Kozlovska, P., & Biczak, P. (2025). Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review. Biology, 14(5), 520. https://doi.org/10.3390/biology14050520