Insecticidal Activity of Angelica archangelica Essential Oil and Transcriptomic Analysis of Sitophilus zeamais in Response to Oil Fumigation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. Gas Chromatography and Mass Spectrometry (GC-MS)
2.3. Insect Culture
2.4. Fumigant Toxicity
2.5. Assessment of Enzyme Activity
2.6. RNA Extraction and Sequencing
2.7. Transcript Assembly and Gene Function Annotation
2.8. Differentially Expressed Genes (DEGS) Analysis
2.9. GO and KEGG Pathway Enrichment Analysis
2.10. Real Time Quantitative Reverse Transcription PCR (qRT-PCR) Analysis
2.11. Statistical Analysis
3. Results
3.1. Chemical Composition of Essential Oil
3.2. Fumigant Toxicity of the Essential Oil
3.3. Enzyme Activity
3.4. Transcriptome Analysis
3.5. GO and KEGG Pathway Enrichment Analysis of DEGs
3.6. qRT-PCR Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kifle, F.; Girma, M.; Gebresilassie, A.; Woldehawariat, Y.; Ele, E. Chemical composition and insecticidal potential of botanical fractionation extracts for the management of Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae) in stored maize. Helicon 2025, 11, e42131. [Google Scholar] [CrossRef] [PubMed]
- Wanna, R.; Bunphan, D.; Kunlanit, B.; Khaengkhan, P.; Khaengkhan, P.; Bozdoğan, H. Chemical composition of essential oil from Apium graveolens L. and its biological activities against Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae). Plants 2025, 14, 347. [Google Scholar] [CrossRef]
- Usseglio, V.; Dambolena, J.S.; Zunino, M.P. Insect-corn kernel interaction: Chemical signaling of the grain and host recognition by Sitophilus zeamais. J. Stored Prod. Res. 2018, 79, 66–72. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Xiao, J.J.; Zhou, L.J.; Liu, Y.; Wu, X.W.; Hua, R.M.; Wang, G.R.; Cao, H.Q. Insecticidal activity of melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PLoS ONE 2016, 11, e0167748. [Google Scholar] [CrossRef]
- Nagawa, C.B.; Kitiibwa, I.S.; Kizito, S.S.; Syofuna, A.; Kyarimpa, C.M.; Omara, T. Chemical composition and insecticidal potential of Eucalyptus essential oils against Sitophilus zeamais (Motschulsky, 1855) and Acanthoscelides obtectus (Say, 1831). S. Afr. J. Bot. 2025, 179, 48–55. [Google Scholar] [CrossRef]
- Wanna, R.; Kaewduangta, W. Fumigant activity of Tridax procumbens (Asterales: Asteraceae) essential oil against Sitophilus zeamais (Coleoptera: Curculionidae) and its effects on Thai rice seed germination. J. Entomol. Sci. 2022, 57, 561–572. [Google Scholar] [CrossRef]
- Liao, M.; Li, S.N.; Wu, H.L.; Gao, Q.; Shi, S.; Huang, Y.; Cao, H.Q. Transcriptomic analysis of Sitophilus zeamais in response to limonene fumigation. Pest Manag. Sci. 2022, 78, 4774–4782. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, M.; Yang, Q.Q.; Xiao, J.J.; Hu, Z.Y.; Zhou, L.J.; Cao, H.Q. Transcriptome profiling reveals differential gene expression of detoxification enzymes in Sitophilus zeamais responding to terpinen-4-ol fumigation. Pestic. Biochem. Physiol. 2018, 149, 44–53. [Google Scholar] [CrossRef]
- Bounouira, Y.; Benyelles, N.G.; Senouci, H.; Benazzouz, F.Z.; Chaieb, I. The insecticidal activity of a formulation of ammoides verticillata essential oil and diatomaceous earth on Sitophilus zeamais. Int. J. Trop. Insect. Sci. 2022, 42, 2979–2985. [Google Scholar] [CrossRef]
- Aryal, S.; Poudel, A.; Kafle, K.; Aryal, L.N. Insecticidal toxicity of essential oil of Nepalese Acorus calamus (Acorales: Acoraceae) against Sitophilus zeamais (Coleoptera: Curculionidae). Heliyon 2023, 9, e22130. [Google Scholar] [CrossRef] [PubMed]
- Fouad, H.A.; Câmara, C.A.G.; Moraes, M.M.; Tavares, W.S.; Legaspi, J.C.; Zanuncio, J.C. Insecticidal and repellent activities of four essential oils against Sitophilus zeamais (Coleoptera: Curculionidae). Dose Response 2023, 21, 15593258231210263. [Google Scholar] [CrossRef]
- Rodríguez, A.; Beato, M.; Usseglio, V.L.; Camina, J.L.; Zygadlo, J.A.; Dambolena, J.S.; Zunino, M.P. Phenolic compounds as controllers of Sitophilus zeamais: A look at the structure-activity relationship. J. Stored Prod. Res. 2022, 99, 102038. [Google Scholar] [CrossRef]
- Pathak, S.; Wanjari, M.M.; Jain, S.K.; Tripathi, M. Evaluation of antiseizure activity of essential oil from roots of Angelica archangelica Linn. in mice. Indian J. Pharm. Sci. 2010, 73, 371–375. [Google Scholar]
- Aćimović, M.G.; Pavlović, S.D.; Varga, A.O.; Filipović, V.M.; Cvetković, M.T.; Stanković, J.M.; Čabarkapa, I.S. Chemical composition and antibacterial activity of Angelica archangelica root essential oil. Nat. Prod. Commun. 2017, 12, 205–206. [Google Scholar] [CrossRef]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food 2014, 17, 1043–1047. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Li, D.M.; Zand, M.S.; Dye, T.D.; Goniewicz, M.L.; Rahman, I.; Xie, Z.D. An evaluation of RNA-seq differential analysis methods. PLoS ONE 2022, 17, e0264246. [Google Scholar] [CrossRef] [PubMed]
- Lü, D.B.; Yan, Z.Z.; Hu, D.; Zhao, A.P.; Wei, S.J.; Wang, P.; Yuan, X.Q.; Li, Y.P. RNA Sequencing reveals the potential adaptation mechanism to different hosts of Grapholita molesta. Insects 2022, 13, 893. [Google Scholar] [CrossRef] [PubMed]
- Prentice, K.; Pertry, I.; Christiaens, O.; Bauters, L.; Bailey, A.; Niblett, C.; Ghislain, M.; Gheysen, G.; Smagghe, G. Transcriptome analysis and systemic RNAi response in the African sweetpotato weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS ONE 2015, 10, e0115336. [Google Scholar] [CrossRef]
- Wedge, D.E.; Klun, J.A.; Tabanca, N.; Demirci, B.; Ozek, T.; Baser, K.H.C.; Liu, Z.; Zhang, S.; Cantrell, C.L.; Zhang, J. Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J. Agric. Food Chem. 2009, 57, 464–470. [Google Scholar] [CrossRef]
- Zheng, R.R.; Zhao, J.Y.; Ma, L.; Qie, X.T.; Yan, X.Z.; Hao, C. Behavioral, electrophysiological, and toxicological responses of Plutella xylostella to extracts from Angelica pubescens. Insects 2023, 14, 613. [Google Scholar] [CrossRef]
- Champakaew, D.; Junkum, A.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; Sanghong, R.; Pitasawat, B. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand. Parasitol. Res. 2015, 114, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Gao, Z.; Demirci, B.; Techen, N.; Wedge, D.E.; Ali, A.; Baser, K.H.C. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species. J. Agric. Food Chem. 2014, 62, 8848–8857. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, E.H.; Lee, J.H.; Lee, Y.C.; Moon, H.I. Immunotoxicity activity from various essential oils of Angelica genus from South Korea against Aedes aegypti L. Immunopharm. Immunot. 2012, 34, 42–45. [Google Scholar]
- Pavela, R.; Vrchotová, N. Insecticidal effect of furanocoumarins from fruits of Angelica archangelica L. against larvae Spodoptera littoralis Boisd. Ind. Crop Prod. 2013, 43, 33–39. [Google Scholar] [CrossRef]
- Galeano, L.J.N.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Synergistic insecticidal activity of plant volatile compounds: Impact on neurotransmission and detoxification enzymes in Sitophilus zeamais. Insects 2025, 16, 609. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Brito, R.; de Moura Pádua, L.E.; da Silva, L.R.; Briozo, M.E.O.; Silva, P.R.R.; de Carvalho, L.F.; de França, S.M. Use of essential oils and α-pinene as insecticides against Sitophilus zeamais and their effects on maize seed germination. Agronomy 2024, 14, 2282. [Google Scholar] [CrossRef]
- Chaubey, M.K. Insecticidal property of terpenes against maize weevil, Sitophilus zeamais (Motschulsky). J. Biopestic. 2022, 15, 92. [Google Scholar] [CrossRef]
- Li, S.G.; Li, M.Y.; Huang, Y.Z.; Hua, R.M.; Lin, H.F.; He, Y.J.; Wei, L.L.; Liu, Z.Q. Fumigant activity of Illicium verum fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferase activities in adult Sitophilus zeamais. J. Pest Sci. 2013, 86, 677–683. [Google Scholar] [CrossRef]
- Shang, L.N.; Yuan, H.B.; Wei, C.Y.; Ren, B.Z. Effect of essential oil extracted from Artemisia annua L. on activities of several enzymes in Sitophihus zeamais. J. Jilin Agr. Univ. 2010, 32, 616–621. [Google Scholar]
- Chaubey, M.K. Essential oils as green pesticides of stored grain insects. Eur. J. Bio. Res. 2019, 4, 202–244. [Google Scholar]
- Bens, M.; Sahm, A.; Groth, M.; Jahn, N.; Morhart, M.; Holtze, S.; Hildebrandt, T.B.; Platzer, M.; Szafranski, K. FRAMA: From RNA-seq data to annotated mRNA assemblies. BMC Genom. 2016, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhao, J.H. Transcriptome analysis of Sitophilus zeamais by RNA-Seq. J. Environ. Entomol. 2021, 43, 1485–1492. [Google Scholar]




| Primer Name | Primer Sequence (5′-3′) |
|---|---|
| SzeaCYP6A14 | F: TCGCTGCTGGATATGAGA |
| R: TGGATTGAACTTGTCAGGAT | |
| SzeaCYP6M5 | F: CTTAGTATCAGCCATCCTAGT |
| R: TTGAGTTGCCTGTATTGTTC | |
| SzeaCYP6A19 | F: GCTAGGCGAGGAATCTTC |
| R: CGTAAGCAACAGCAGAATC | |
| SzeaCYP12V2 | F: GGCTCAGAACAACTCAAGA |
| R: GTCCAACCTCCAATTCCAA | |
| SzeaCYP6A13 | F: ACGAGAAGCGACAGGATT |
| R: GAAGAGTGGTTGCGGATG | |
| SzeaUGT2C1 | F: GTCTGTATCCTGCTCATCC |
| R: TGTCCAAGAACTCCTGTAAG | |
| SzeaUGT2C10 | F: ACCACGACAAGAACTTCA |
| R: TGGAACAGTCTGGACCTT | |
| SzeaUGT28C1 | F: GCACCTTCCATAGTGATGA |
| R: CCACGCATTAACAATTCTCT | |
| SzeaGST1 | F: TGTACGGTATTAAGGCTAGTC |
| R: CAGGAATGGTATGTTGAGGA | |
| SzeaGST2 | F: TAATCTGTCGGAGAAGGAAC |
| R: TCGGATAAAGGTCGTCATTT | |
| SzeaGST3 | F: GCTCTGGAACTTCTCAACA |
| R: TTCACCTGCGGATAGTCA | |
| SzeaCarE1 | F: CGAATCTGTTGAGCAAGG |
| R: CAGTTGAGCCGTTGTAAG | |
| SzeaCarE2 | F: AAGGAGAGTTAGGAGAATCTG |
| R: CGTGTTAGTTCATCGTCATC | |
| SzeaJHEH1 | F: GATGGTGGACTGACAAGA |
| R: GACTACAGCCAGAAGGAAT | |
| GAPDH | F: AACTTTGCCGACAGCCTTGG |
| R: GCGCCCATGTATGTAGTTGG |
| Peak NO. | AI a | Compounds | %RA b | Identification Method c |
|---|---|---|---|---|
| 1 | 918 | Tricyclene | 0.15 | MS, AI |
| 2 | 922 | Artemisia triene | 0.13 | MS, AI |
| 3 | 932 | α-Pinene | 14.96 | MS, AI, AS |
| 4 | 947 | Camphene | 1.50 | MS, AI |
| 5 | 967 | Sabinene | 0.48 | MS, AI |
| 6 | 973 | β-Pinene | 6.55 | MS, AI |
| 7 | 979 | trans-Isolimonene | 0.23 | MS, AI |
| 8 | 988 | Myrcene | 5.60 | MS, AI, AS |
| 9 | 998 | δ-2-Carene | 0.38 | MS, AI |
| 10 | 1010 | δ-3-Carene | 24.26 | MS, AI |
| 11 | 1013 | 1,4-Cineole | 1.38 | MS, AI |
| 12 | 1023 | o-Cymene | 9.94 | MS, AI |
| 13 | 1031 | Limonene | 19.81 | MS, AI, AS |
| 14 | 1068 | n-Octanol | 0.12 | MS, AI |
| 15 | 1101 | Linalool | 6.49 | MS, AI, AS |
| 16 | 1127 | cis-Limonene oxide | 0.14 | MS, AI |
| 17 | 1131 | cis-p-Mentha-2,8-dien-1-ol | 0.20 | MS, AI |
| 18 | 1140 | Camphor | 0.43 | MS, AI |
| 19 | 1165 | ρ-Mentha-1,5-dien-8-ol | 0.11 | MS, AI |
| 20 | 1181 | meta-Cymen-8-ol | 0.11 | MS, AI |
| 21 | 1189 | α-Terpineol | 0.27 | MS, AI |
| 22 | 1197 | trans-4-Caranone | 0.40 | MS, AI |
| 23 | 1213 | trans-Carveol | 0.14 | MS, AI |
| 24 | 1243 | Car-3-en-2-one | 0.19 | MS, AI |
| 25 | 1282 | Isobornyl acetate | 0.16 | MS, AI |
| 26 | 1313 | cis-2,3-Pinanediol | 0.48 | MS, AI |
| 27 | 1323 | neoiso-Verbanol acetate | 0.17 | MS, AI |
| 28 | 1379 | β-Patchoulene | 0.12 | MS, AI |
| 29 | 1386 | (2E)-Octenol butanoate | 0.15 | MS, AI |
| 30 | 1396 | Longifolene | 0.13 | MS, AI |
| 31 | 1408 | (Z)-Caryophyllene | 0.17 | MS, AI |
| 32 | 1717 | (3E)-Butylidene phthalide | 1.06 | MS, AI |
| 33 | 1944 | m-Camphorene | 0.29 | MS, Nist |
| 34 | 1980 | p-Camphorene | 0.13 | MS, Nist |
| 35 | 2126 | (Z, Z)-9,12-Octadecadienoic acid | 0.11 | MS, Nist |
| Total identified (%) | 96.94 |
| Period (h) | Corrected Mortality Rate (%) | ||||
|---|---|---|---|---|---|
| 34 | 68 | 102 | 136 | 170 | |
| 24 | 6.03 ± 1.06 a | 12.19 ± 1.20 b | 24.83 ± 1.71 c | 38.93 ± 2.46 d | 27.72 ± 2.27 e |
| 48 | 7.53 ± 1.08 a | 17.12 ± 1.98 b | 32.19 ± 1.67 c | 47.26 ± 3.17 b | 69.86 ± 3.65 e |
| 72 | 9.42 ± 1.14 a | 23.91 ± 1.62 b | 39.96 ± 2.94 c | 63.77 ± 4.13 d | 93.48 ± 1.35 e |
| Period (h) | Toxicity Regression Curves | LC50 (mg/L air) | 95% FL (mg/L) | Relative Coefficient (R2) | Chi Square (χ2) |
|---|---|---|---|---|---|
| 24 | y = 2.57x − 0.72 | 164.38 | 128.02–296.45 | 0.99 | 7.90 |
| 48 | y = 2.85x − 1.07 | 132.617 | 104.92–200.42 | 0.98 | 9.00 |
| 72 | y = 3.11x − 1.04 | 90.35 | 30.60–226.80 | 0.99 | 8.07 |
| T1 | T2 | T3 | CK1 | CK2 | CK3 | |
|---|---|---|---|---|---|---|
| Raw reads | 21,419,493 | 20,671,023 | 22,985,184 | 19,659,294 | 23,466,508 | 19,623,581 |
| Raw bases (G) | 6.43 | 6.2 | 6.9 | 5.9 | 7.04 | 5.89 |
| Clean reads | 20,560,357 | 19,958,351 | 22,158,451 | 19,235,246 | 22,500,960 | 19,227,394 |
| Clean bases (G) | 6.17 | 5.99 | 6.65 | 5.77 | 6.75 | 5.77 |
| Clean reads ratio (%) | 95.99 | 96.55 | 96.40 | 97.84 | 95.89 | 97.98 |
| Q20 | 98.43 | 98.55 | 98.59 | 98.67 | 98.61 | 98.69 |
| GC percentage (%) | 36.65 | 37.54 | 37.55 | 43.25 | 37.33 | 43.17 |
| Number of unigenes | 37,924 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Ge, X.; Lü, D.; Zhang, Z.; Wang, L.; Sun, S.; Jia, X.; Zhang, B.; Kuanysh, K.; Dani, S.; et al. Insecticidal Activity of Angelica archangelica Essential Oil and Transcriptomic Analysis of Sitophilus zeamais in Response to Oil Fumigation. Biology 2025, 14, 1606. https://doi.org/10.3390/biology14111606
Wang G, Ge X, Lü D, Zhang Z, Wang L, Sun S, Jia X, Zhang B, Kuanysh K, Dani S, et al. Insecticidal Activity of Angelica archangelica Essential Oil and Transcriptomic Analysis of Sitophilus zeamais in Response to Oil Fumigation. Biology. 2025; 14(11):1606. https://doi.org/10.3390/biology14111606
Chicago/Turabian StyleWang, Guochang, Xing Ge, Dongbiao Lü, Ziyue Zhang, Li Wang, Saili Sun, Xiaoyi Jia, Baizhong Zhang, Kassen Kuanysh, Sarsekova Dani, and et al. 2025. "Insecticidal Activity of Angelica archangelica Essential Oil and Transcriptomic Analysis of Sitophilus zeamais in Response to Oil Fumigation" Biology 14, no. 11: 1606. https://doi.org/10.3390/biology14111606
APA StyleWang, G., Ge, X., Lü, D., Zhang, Z., Wang, L., Sun, S., Jia, X., Zhang, B., Kuanysh, K., Dani, S., & Wang, H. (2025). Insecticidal Activity of Angelica archangelica Essential Oil and Transcriptomic Analysis of Sitophilus zeamais in Response to Oil Fumigation. Biology, 14(11), 1606. https://doi.org/10.3390/biology14111606

