Cultivation of Bdelloid Rotifer Adineta vaga with Synthetic Medium and Characterization of Associated Bacteria
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bdelloid Rotifer
2.2. Culture Media and Culture Methods
- (1)
- SRM:
- (2)
- Lettuce juice:
- (3)
- Flour medium:
2.3. Evaluation Indices
2.4. Isolation and Identification of A. vaga-Associated Bacteria
2.5. Antibiotics Treatment
2.6. Statistical Analysis
3. Results
3.1. Establishment of Synthetic Media and Corresponding Culture Methods for Bdelloid Rotifer A. vaga
3.2. Isolation and Identification of Bdelloid Rotifer-Associated Bacteria
3.3. Effect of Antibiotic Treatment on Bdelloid Rotifers and Their Associated Bacteria
4. Discussion
4.1. Advantages and Applications of the SRM
4.2. The Limitations of SRM and Future Directions
4.3. Potential Functions of A. vaga-Associated Bacteria
4.4. Development Attempts of Axenic A. vaga and Its Significance in Rotifer–Microbe Interaction Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricci, C.; Melone, G. Key to the identification of the genera of bdelloid rotifers. Hydrobiologia 2000, 418, 73–80. [Google Scholar] [CrossRef]
- Ricci, C. Bdelloid rotifers: ‘sleeping beauties’ and ‘evolutionary scandals’, but not only. Hydrobiologia 2017, 796, 277–285. [Google Scholar] [CrossRef]
- Ricci, C.; Boschetti, C. Bdelloid rotifers as model system to study developmental biology in space. Adv. Space Biol. Med. 2003, 9, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Shmakova, L.; Malavin, S.; Iakovenko, N.; Vishnivetskaya, T.; Shain, D.; Plewka, M.; Rivkina, E. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 2021, 31, R712–R713. [Google Scholar] [CrossRef]
- Moris, V.C.; Bruneau, L.; Berthe, J.; Heuskin, A.C.; Penninckx, S.; Ritter, S.; Weber, U.; Durante, M.; Danchin, E.G.J.; Hespeels, B.; et al. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol. 2024, 22, 11. [Google Scholar] [CrossRef]
- Nowell, R.W.; Rodriguez, F.; Hecox-Lea, B.J.; Mark Welch, D.B.; Arkhipova, I.R.; Barraclough, T.G.; Wilson, C.G. Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat. Commun. 2024, 15, 5787. [Google Scholar] [CrossRef]
- Raymond, J.A. A horizontally transferred bacterial gene aids the freezing tolerance of Antarctic bdelloid rotifers. Proc. Natl. Acad. Sci. USA 2025, 122, e2421910122. [Google Scholar] [CrossRef]
- Devetter, M. Spatiotemporal dynamics of soil rotifers in a South-Bohemian beech forest. Pesqui. Agropecu. Bras. 2009, 44, 1027–1032. [Google Scholar] [CrossRef]
- Köninger, J.; Ballabio, C.; Panagos, P.; Jones, A.; Schmid, M.W.; Orgiazzi, A.; Briones, M.J. Ecosystem type drives soil eukaryotic diversity and composition in Europe. Glob. Change Biol. 2023, 29, 5706–5719. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N. The use of bdelloids in reference to rotifer biocoenotic indices as an indicator of the ecological state of small field water bodies: The effect of macrophytes, shading and trophic state of water. Ecol. Indic. 2018, 89, 576–583. [Google Scholar] [CrossRef]
- Olah, Z.; Bush, A.I.; Aleksza, D.; Galik, B.; Ivitz, E.; Macsai, L.; Janka, Z.; Karman, Z.; Kalman, J.; Datki, Z. Novel in vivo experimental viability assays with high sensitivity and throughput capacity using a bdelloid rotifer. Ecotox. Environ. Saf. 2017, 144, 115–122. [Google Scholar] [CrossRef]
- Nowell, R.W.; Almeida, P.; Wilson, C.G.; Smith, T.P.; Fontaneto, D.; Crisp, A.; Micklem, G.; Tunnacliffe, A.; Boschetti, C.; Barraclough, T.G. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS. Biol. 2018, 16, e2004830. [Google Scholar] [CrossRef]
- Vakhrusheva, O.A.; Mnatsakanova, E.A.; Galimov, Y.R.; Neretina, T.V.; Gerasimov, E.S.; Naumenko, S.A.; Ozerova, S.G.; Zalevsky, A.O.; Yushenova, I.A.; Rodriguez, F.; et al. Genomic signatures of recombination in a natural population of the bdelloid rotifer Adineta vaga. Nat. Commun. 2020, 11, 6421. [Google Scholar] [CrossRef]
- Ricci, C. Culturing of some bdelloid rotifers. Hydrobiologia 1984, 112, 45–51. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Shen, C.; Yi, X.; Li, X.; Huang, X.; Oh, K.; Ding, G. Innovative method of culturing bdelloid rotifers for the application of wastewater biological treatment. Front. Env. Sci. Eng. 2022, 16, 43. [Google Scholar] [CrossRef]
- Devetter, M. Clearance rates of the bdelloid rotifer, Habrotrocha thienemanni, a tree-hole inhabitant. Aquat. Ecol. 2009, 43, 85–89. [Google Scholar] [CrossRef]
- Dekić, S.; Hrenović, J.; Herlyn, H.; Špoljar, M.; Ivanković, T. Impact of biotic interactions on the survival of emerging pathogen Acinetobacter baumannii in aquatic media. Water Sci. Technol. 2019, 79, 1597–1604. [Google Scholar] [CrossRef]
- Wilson, C.G.; Pieszko, T.; Nowell, R.W.; Barraclough, T.G. Recombination in bdelloid rotifer genomes: Asexuality, transfer and stress. Trends Genet. 2024, 40, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Eckert, E.M.; Anicic, N.; Fontaneto, D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol. Ecol. 2021, 30, 1545–1558. [Google Scholar] [CrossRef]
- Eckert, E.M.; Cancellario, T.; Bodelier, P.L.; Declerck, S.A.; Diwen, L.; Samad, S.; Winder, M.; Zhou, L.; Fontaneto, D. A combination of host ecology and habitat but not evolutionary history explains differences in the microbiomes associated with rotifers. Hydrobiologia 2023, 850, 3813–3821. [Google Scholar] [CrossRef]
- Gladyshev, E.A.; Meselson, M.; Arkhipova, I.R. Massive horizontal gene transfer in bdelloid rotifers. Science 2008, 320, 1210–1213. [Google Scholar] [CrossRef]
- Eyres, I.; Boschetti, C.; Crisp, A.; Smith, T.P.; Fontaneto, D.; Tunnacliffe, A.; Barraclough, T.G. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol. 2015, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y.; Örstan, A.; He, Z.; Wang, Q. Species diversity of bdelloid rotifer (Rotifera, Bdelloidea) in different areas in China, with a description of two new species. ZooKeys 2025, 1229, 1–23. [Google Scholar] [CrossRef]
- Dias, P.; Siatka, T.; Vopršalová, M.; Moravcová, M.; Pourová, J.; Přívratská, N.; Krčmová, L.K.; Javorská, L.; Mladěnka, P. Biological properties of vitamins of the B-complex, part 2—Vitamins B6 and B7 (biotin, vitamin H). Nutr. Res. Rev. 2025, 1–34, Online ahead of print. [Google Scholar] [CrossRef]
- Xiang, X.; Jiang, R.; Tao, Y.; Chen, Y.; Xi, Y. Differences in life history characteristics among three sympatric evolutionary species of the Rotaria rotatoria complex. J. Freshw. Ecol. 2016, 31, 351–360. [Google Scholar] [CrossRef]
- Brondani, G.E.; Oliveira, L.S.; Bergonci, T.; Brondani, A.E.; França, F.A.M.; Silva, A.L.L.; Gonçalves, A.N. Chemical sterilization of culture médium: A low cost alternative to in vitro establishment of plants. Sci. For. 2013, 14, 257–267. [Google Scholar]
- Tao, J.; Wang, S.; Liao, T.; Luo, H. Evolutionary origin and ecological implication of a unique nif island in free-living Bradyrhizobium lineages. ISME J. 2021, 15, 3195–3206. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Montero-Pau, J.; Gómez, A.; Muñoz, J. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanogr. Methods 2008, 6, 218–222. [Google Scholar] [CrossRef]
- Govendir, M.; Norris, J.M.; Hansen, T.; Wigney, D.I.; Muscatello, G.; Trott, D.J.; Malik, R. Susceptibility of rapidly growing mycobacteria and Nocardia isolates from cats and dogs to pradofloxacin. Vet. Microbiol. 2011, 153, 240–245. [Google Scholar] [CrossRef]
- Zhang, J.M.; Li, N.; Wu, Q.P.; Gu, Q.H.; Zhang, Y.X.; Cai, S.Z.; Bai, J.L. Characteristic Nucleotide Sequence for Detecting Pseudomonas Bacteria and Its Specific Primers, Kit, and Detection Method. CN109593868A, 9 April 2019. [Google Scholar]
- Leung, K.T.; Chang, Y.J.; Gan, Y.D.; Peacock, A.; Macnaughton, S.J.; Stephen, J.R.; Burkhalter, R.S.; Flemming, C.A.; White, D.C. Detection of Sphingomonas spp in soil by PCR and sphingolipid biomarker analysis. J. Ind. Microbiol. Biotechnol. 1999, 23, 252–260. [Google Scholar] [CrossRef]
- Simion, P.; Narayan, J.; Houtain, A.; Derzelle, A.; Baudry, L.; Nicolas, E.; Arora, R.; Cariou, M.; Cruaud, C.; Gaudray, F.R.; et al. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. Sci. Adv. 2021, 7, eabg4216. [Google Scholar] [CrossRef]
- Marotta, R.; Uggetti, A.; Ricci, C.; Leasi, F.; Melone, G. Surviving starvation: Changes accompanying starvation tolerance in a bdelloid rotifer. J. Morphol. 2012, 273, 1–7. [Google Scholar] [CrossRef]
- Latta, L.C.; Tucker, K.N.; Haney, R.A. The relationship between oxidative stress, reproduction, and survival in a bdelloid rotifer. BMC Ecol. 2019, 19, 7. [Google Scholar] [CrossRef]
- Xiang, X.; Li, M.; Feng, S.; Zhu, L.; Hong, T.; Xu, Q.; Xi, Y. Ecological response of Rotaria rotatoria (Bdelloid Rotifera) to unbalanced nitrogen in food: Experimental insights from life history strategy and feeding behavior. Ecoscience 2023, 30, 147–157. [Google Scholar] [CrossRef]
- Li, M.; Gao, F.; Zhu, L.; Li, J.; Xiang, J.; Xi, Y.; Xiang, X. Geographic origin shapes the adaptive divergences of Rotaria rotatoria (Rotifera, Bdelloidea) to thermal stress: Insights from ecology and transcriptomics. Ecol. Evol. 2024, 14, e11307. [Google Scholar] [CrossRef]
- Cakil, Z.V.; Garlasché, G.; Iakovenko, N.; Di Cesare, A.; Eckert, E.M.; Guidetti, R.; Hamdan, L.; Janko, K.; Lukashanets, D.; Rebecchi, L.; et al. Comparative phylogeography reveals consistently shallow genetic diversity in a mitochondrial marker in Antarctic bdelloid rotifers. J. Biogeogr. 2021, 48, 1797–1809. [Google Scholar] [CrossRef]
- Walczyńska, A.; Fontaneto, D.; Kordbacheh, A.; Hamil, S.; Jimenez-Santos, M.A.; Paraskevopoulou, S.; Pociecha, A.; Zhang, W. Niche differentiation in rotifer cryptic species complexes: A review of environmental effects. Hydrobiologia 2024, 851, 2909–2926. [Google Scholar] [CrossRef]
- Wilson, C.G.; Sherman, P.W. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 2010, 327, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Viveros-Legorreta, J.L.; Sarma, S.S.S.; Castellanos Páez, M.E.; Nandini, S. Allelopathic effects from the macrophyte Myriophyllum aquaticum on the population growth and demography of Brachionus havanaensis (Rotifera). Allelopath. J. 2020, 50, 213–224. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, J.; Ni, Z.; Zheng, J.; Gu, H. Dinoflagellate Karenia mikimotoi on the growth performance, antioxidative responses, and physiological activities of the rotifer Brachionus plicatilis. Ecotoxicology 2023, 32, 768–781. [Google Scholar] [CrossRef]
- Hespeels, B.; Li, X.; Flot, J.F.; Pigneur, L.M.; Malaisse, J.; Da Silva, C.; Van Doninck, K. Against all odds: Trehalose-6-phosphate synthase and trehalase genes in the bdelloid rotifer Adineta vaga were acquired by horizontal gene transfer and are upregulated during desiccation. PLoS ONE 2015, 10, e0131313. [Google Scholar] [CrossRef]
- Datki, Z.; Galik-Olah, Z.; Bohar, Z.; Zadori, D.; Fulop, F.; Szatmari, I.; Galik, B.; Kalman, J.; Vecsei, L. Kynurenic acid and its analogs are beneficial physiologic attenuators in bdelloid rotifers. Molecules 2019, 24, 2171. [Google Scholar] [CrossRef]
- Baeza, M.J.; Walsh, E.J. Does pigmentation provide protection to bdelloid rotifers in a high ultraviolet B environment? Limnol. Oceanogr. 2024, 69, 2688–2701. [Google Scholar] [CrossRef]
- McCarthy, J.S.; Brown, K.E.; King, C.K.; Nielsen, U.N.; Plaisted, K.; Wallace, S.; Reichman, S.M. Population growth of two limno-terrestrial Antarctic microinvertebrates in different aqueous soil media. Environ. Sci. Pollut. Res. 2024, 31, 33086–33097. [Google Scholar] [CrossRef] [PubMed]
- Meadow, N.D.; Barrows, C.H., Jr. Studies on aging in a bdelloid rotifer. I. The effect of various culture systems on longevity and fecundity. J. Exp. Zool. 1971, 176, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Snell, T.W.; King, C.E. Lifespan and fecundity patterns in rotifers: The cost of reproduction. Evolution 1977, 31, 882–890. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; US Environmental Protection Agency US EPA: Washington, DC, USA, 2002.
- Pajdak-Stós, A.; Ważny, R.; Fiałkowska, E. Can a predatory fungus (Zoophagus sp.) endanger the rotifer populations in activated sludge? Fungal Ecol. 2016, 23, 75–78. [Google Scholar] [CrossRef]
- Dirksen, P.; Marsh, S.A.; Braker, I.; Heitland, N.; Wagner, S.; Nakad, R.; Mader, S.; Petersen, C.; Kowallik, V.; Rosenstiel, P.; et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 2016, 14, 38. [Google Scholar] [CrossRef]
- Guégan, M.; Zouache, K.; Démichel, C.; Minard, G.; Tran Van, V.; Potier, P.; Mavingui, P.; Valiente Moro, C. The mosquito holobiont: Fresh insight into mosquito-microbiota interactions. Microbiome 2018, 6, 49. [Google Scholar] [CrossRef]
- Ge, S.X.; Shi, F.M.; Pei, J.H.; Hou, Z.H.; Zong, S.X.; Ren, L.L. Gut bacteria associated with Monochamus saltuarius (Coleoptera: Cerambycidae) and their possible roles in host plant adaptations. Front. Microbiol. 2021, 12, 687211. [Google Scholar] [CrossRef]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 2020, 40, 138–152. [Google Scholar] [CrossRef]
- Ohbayashi, T.; Futahashi, R.; Terashima, M.; Barrière, Q.; Lamouche, F.; Takeshita, K.; Meng, X.Y.; Mitani, Y.; Sone, T.; Shigenobu, S.; et al. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME J. 2019, 13, 1469–1483. [Google Scholar] [CrossRef] [PubMed]
- Kaltenpoth, M.; Flórez, L.V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 2020, 65, 145–170. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Ohbayashi, T.; Jang, S.; Mergaert, P. Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J. 2020, 14, 1627–1638. [Google Scholar] [CrossRef]
- Shu, L.; Zhang, B.; Queller, D.C.; Strassmann, J.E. Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts. ISME J. 2018, 12, 1977–1993. [Google Scholar] [CrossRef]
- Sallinger, E.; Robeson, M.S.; Haselkorn, T.S. Characterization of the bacterial microbiomes of social amoebae and exploration of the roles of host and environment on microbiome composition. Environ. Microbiol. 2021, 23, 126–142. [Google Scholar] [CrossRef]
- DiSalvo, S.; Haselkorn, T.S.; Bashir, U.; Jimenez, D.; Brock, D.A.; Queller, D.C.; Strassmann, J.E. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, E5029–E5037. [Google Scholar] [CrossRef]
- Chernitsyna, S.M.; Khalzov, I.A.; Sitnikova, T.Y.; Naumova, T.V.; Khabuev, A.V.; Zemskaya, T.I. Microbial communities associated with bentic invertebrates of Lake Baikal. Curr. Microbiol. 2021, 78, 3020–3031. [Google Scholar] [CrossRef] [PubMed]
- Michalik, K.; Szklarzewicz, T.; Kalandyk-Kołodziejczyk, M.; Michalik, A. Bacterial associates of Orthezia urticae, Matsucoccus pini, and Steingelia gorodetskia-scale insects of archaeoccoid families Ortheziidae, Matsucoccidae, and Steingeliidae (Hemiptera, Coccomorpha). Protoplasma 2019, 256, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Monroy-Dosta, M.D.C.; De Lara-Andrade, R.; Castro-Mejia, J.; Castro-Mejia, G.; Coelho-Emerenciano, M.G. Microbiology community composition and abundance associated to biofloc in tilapia aquaculture. Rev. Biol. Mar. Oceanogr. 2013, 48, 511–520. [Google Scholar] [CrossRef]
- Schuster, J.; Purswani, J.; Breuer, U.; Pozo, C.; Harms, H.; Müller, R.H.; Rohwerder, T. Constitutive expression of the cytochrome P450 EthABCD monooxygenase system enables degradation of synthetic dialkyl ethers in Aquincola tertiaricarbonis L108. Appl. Environ. Microbiol. 2013, 79, 2321–2327. [Google Scholar] [CrossRef]
- Yu, D.; Xia, M.; Zhang, L.; Song, Y.; Duan, Y.; Yuan, T.; Yao, M.; Wu, L.; Tian, C.; Wu, Z.; et al. RpoN (σ54) is required for floc formation but not for extracellular polysaccharide biosynthesis in a floc-forming Aquincola tertiaricarbonis strain. Appl. Environ. Microbiol. 2017, 83, e00709-17. [Google Scholar] [CrossRef] [PubMed]
- Francis, I.M.; Bergin, D.; Deflandre, B.; Gupta, S.; Salazar, J.J.; Villagrana, R.; Stulanovic, N.; Monteiro, S.R.; Kerff, F.; Loria, R.; et al. Role of alternative elicitor transporters in the onset of plant host colonization by Streptomyces scabiei 87-22. Biology 2023, 12, 234. [Google Scholar] [CrossRef]
- Shu, L.; Brock, D.A.; Geist, K.S.; Miller, J.W.; Queller, D.C.; Strassmann, J.E.; DiSalvo, S. Symbiont location, host fitness, and possible coadaptation in a symbiosis between social amoebae and bacteria. eLife 2018, 7, e42660. [Google Scholar] [CrossRef]
- Amin, S.A.; Hmelo, L.R.; van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Djunaedi, B.; et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, J.E.; Matilla, M.A.; Salmond, G.P. The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans. Front. Microbiol. 2015, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liang, M.; Zeng, J.; Wang, Z.; Zhang, L.; He, Z.; Li, M.; Shu, L.; Ying, G. Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. Environ. Sci. Technol. 2024, 58, 21475–21488. [Google Scholar] [CrossRef]
- Mejias, C.; Riquelme, C.; Sayes, C.; Plaza, J.; Silva-Aciares, F. Production of the rotifer Brachionus plicatilis (Müller 1786) in closed outdoor systems fed with the microalgae Nannochloropsis gaditana and supplemented with probiotic bacteria Pseudoalteromonas sp.(SLP1). Aquac. Int. 2018, 26, 869–884. [Google Scholar] [CrossRef]
- Munro, P.D.; Birkbeck, T.H.; Barbour, A. Bacterial flora of rotifers (Brachionus plicatilis): Evidence for a major location on the external surface and methods for reducing the rotifer bacterial load. In Fish Farming Technology, 1st ed.; Reinersten, H., Dahle, L.A., Jorgensen, L., Eds.; CRC Press: London, UK, 1993; Volume 2, pp. 93–100. [Google Scholar]






| Component Category | Compound Name | Stock Solution Concentration (g/L) | Working Concentration (g/L) | The Dosage Required to Prepare 1 L Working Solution (mL) | Preparation Method | 
|---|---|---|---|---|---|
| Basic components | NaNO3 (Analytical reagent, Aladdin®, Shanghai, China) | 150 | 1.5 | 10 | Stock solutions were prepared separately, stored at 4 °C protected from light, and appropriate amounts were aliquoted to prepare the working solution prior to use. | 
| K2HPO4 (Analytical reagent, Aladdin®) | 40 | 0.04 | 1 | ||
| MgSO4·7H2O (Analytical reagent, Aladdin®) | 75 | 0.075 | 1 | ||
| CaCl2·2H2O (Analytical reagent, Aladdin®) | 36 | 0.036 | 1 | ||
| Na2CO3 (Analytical reagent, Aladdin®) | 20 | 0.02 | 1 | ||
| citric acid (Analytical reagent, Aladdin®) | 6 | 0.006 | 1 | ||
| ferric ammonium citrate (Analytical reagent, Aladdin®) | 6 | 0.006 | 1 | ||
| trace elements | H3BO3 (Analytical reagent, Aladdin®) | 2.86 | 0.00286 | 1 | Individual components were weighed, dissolved in 1 L of pure water with stirring to prepare the stock solution, from which 1 mL was aliquoted into another 1 L of pure water to prepare the working solution. | 
| MnCl2·4H2O (Analytical reagent, Aladdin®) | 1.81 | 0.00181 | 1 | ||
| ZnSO4·7H2O (Analytical reagent, Aladdin®) | 0.222 | 0.000222 | 1 | ||
| Na2MoO4·2H2O (Analytical reagent, Aladdin®) | 0.39 | 0.00039 | 1 | ||
| CuSO4·5H2O (Analytical reagent, Aladdin®) | 0.079 | 0.000079 | 1 | ||
| Co(NO3)2·6H2O (Analytical reagent, Aladdin®) | 0.0494 | 0.0000494 | 1 | ||
| Carbon Sources | glucose (99%, Macklin®, Shanghai, China) | / | 1 | / | The working solution was prepared by directly adding appropriate amounts of these components, omitting the pre-preparation of stock solutions. | 
| sucrose (99%, Macklin®) | / | 1 | / | ||
| fructose (99%, Macklin®) | / | 1 | / | ||
| Vitamins | vitamin B1 (98%, Macklin®) | / | 0.005 | / | |
| vitamin B6 (99%, Macklin®) | / | 0.005 | / | ||
| D-biotin (98%, Macklin®) | / | 0.005 | / | 
| Primer | Target Bacteria | Reference | 
|---|---|---|
| 16S_F (5′-CGGCCCAGACTCCTACGGGAGGCAGCAG-3′) 16S_R (5′-GCGTGGACTACCAGGGTATCTAATCC-3′) | all bacteria | Govendir et al. [30] | 
| sucD F (5′-CGTCCTGATCAATAAAGACACC-3′) sucD R (5′-GATGCAGACGATCAGCTTG-3′) | Pseudomonas | Zhang et al. [31] | 
| SPF_190 (5′-MRGWCCAAAGATTTATCG-3′) SPr1-852 (5′-CMAADCACCAWGTGMCCKGA-3′) | Sphingomonas | Leung et al. [32] | 
| Location | Family/Genus | Top-Hit Taxon | Number of Strain | Similarity (%) | 
|---|---|---|---|---|
| Endozoic bacteria | Lentzea | Lentzea aerocolonigenes | 2 | 99.06–99.21 | 
| Streptomyces | Streptomyces griseiscabiei | 2 | 99.71–99.78 | |
| Burkholderiaceae | Burkholderia orbicola/Burkholderia ubonensis/Burkholderia singularis | 3 | 75.37–93.43 | |
| Sphingomonas | Sphingomonas sanguinis | 3 | 99.78 | |
| Spirosoma | AB681463_s | 1 | 99.34 | |
| Epizoic bacteria | Pseudomonas | Pseudomonas rhodesiae | 5 | 99.85–99.86 | 
| Aquincola | MIMtkpLc11 | 4 | 99.86–99.78 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; He, Z.; Wang, Q.; Yang, Y. Cultivation of Bdelloid Rotifer Adineta vaga with Synthetic Medium and Characterization of Associated Bacteria. Biology 2025, 14, 1507. https://doi.org/10.3390/biology14111507
Wang W, He Z, Wang Q, Yang Y. Cultivation of Bdelloid Rotifer Adineta vaga with Synthetic Medium and Characterization of Associated Bacteria. Biology. 2025; 14(11):1507. https://doi.org/10.3390/biology14111507
Chicago/Turabian StyleWang, Wenbo, Zhili He, Qing Wang, and Yufeng Yang. 2025. "Cultivation of Bdelloid Rotifer Adineta vaga with Synthetic Medium and Characterization of Associated Bacteria" Biology 14, no. 11: 1507. https://doi.org/10.3390/biology14111507
APA StyleWang, W., He, Z., Wang, Q., & Yang, Y. (2025). Cultivation of Bdelloid Rotifer Adineta vaga with Synthetic Medium and Characterization of Associated Bacteria. Biology, 14(11), 1507. https://doi.org/10.3390/biology14111507
 
        

 
       