Targeting C3a and C5a Signaling—A Game Changer for Cancer Therapy?
Simple Summary
Abstract
1. Introduction
2. Generation of Anaphylatoxins C3a and C5a in the TME
3. Anaphylatoxins Directly Drive Tumor Cell Proliferation and Progression
4. Anaphylatoxin Signaling Pathways Contribute to Tumor Progression by Regulating Immune Responses in the TME
4.1. The C3a/C3aR Axis Contributes to Cancer Progression by Regulating Immune Responses in TME
4.2. The C5a/C5aR Axis Contributes to Cancer Progression by Modulating Immune Cell Functions in TME
5. Anaphylatoxin Signaling Pathways Inhibit Tumor Progression by Modulating Immune Cell Functions Within the TME
6. Perspectives and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Chang, S.H.; Mirabolfathinejad, S.G.; Katta, H.; Cumpian, A.M.; Gong, L.; Caetano, M.S.; Moghaddam, S.J.; Dong, C. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl. Acad. Sci. USA 2014, 111, 5664–5669. [Google Scholar] [CrossRef] [PubMed]
- Houghton, A.M.; Rzymkiewicz, D.M.; Ji, H.; Gregory, A.D.; Egea, E.E.; Metz, H.E.; Stolz, D.B.; Land, S.R.; Marconcini, L.A.; Kliment, C.R.; et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 2010, 16, 219–223. [Google Scholar] [CrossRef]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Mastellos, D.C.; Hajishengallis, G.; Lambris, J.D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 2024, 24, 118–141. [Google Scholar] [CrossRef]
- Sayegh, E.T.; Bloch, O.; Parsa, A.T. Complement anaphylatoxins as immune regulators in cancer. Cancer Med. 2014, 3, 747–758. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; He, Y.W. The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy. Front. Immunol. 2019, 10, 1574. [Google Scholar] [CrossRef]
- Markiewski, M.M.; DeAngelis, R.A.; Benencia, F.; Ricklin-Lichtsteiner, S.K.; Koutoulaki, A.; Gerard, C.; Coukos, G.; Lambris, J.D. Modulation of the antitumor immune response by complement. Nat. Immunol. 2008, 9, 1225–1235. [Google Scholar] [CrossRef]
- Ding, P.; Xu, Y.; Li, L.; Lv, X.; Li, L.; Chen, J.; Zhou, D.; Wang, X.; Wang, Q.; Zhang, W.; et al. Intracellular complement C5a/C5aR1 stabilizes beta-catenin to promote colorectal tumorigenesis. Cell Rep. 2022, 39, 110851. [Google Scholar] [CrossRef]
- O’Brien, R.M.; Lynam-Lennon, N.; Olcina, M.M. Thinking inside the box: Intracellular roles for complement system proteins come into focus. Br. J. Cancer 2023, 128, 165–167. [Google Scholar] [CrossRef]
- Kim, D.Y.; Martin, C.B.; Lee, S.N.; Martin, B.K. Expression of complement protein C5a in a murine mammary cancer model: Tumor regression by interference with the cell cycle. Cancer Immunol. Immunother. 2005, 54, 1026–1037. [Google Scholar] [CrossRef]
- Gunn, L.; Ding, C.; Liu, M.; Ma, Y.; Qi, C.; Cai, Y.; Hu, X.; Aggarwal, D.; Zhang, H.G.; Yan, J. Opposing roles for complement component C5a in tumor progression and the tumor microenvironment. J. Immunol. 2012, 189, 2985–2994. [Google Scholar] [CrossRef]
- Akhir, F.N.M.; Noor, M.H.M.; Leong, K.W.K.; Nabizadeh, J.A.; Manthey, H.D.; Sonderegger, S.E.; Fung, J.N.T.; McGirr, C.E.; Shiels, I.A.; Mills, P.C.; et al. An Immunoregulatory Role for Complement Receptors in Murine Models of Breast Cancer. Antibodies 2021, 10, 2. [Google Scholar] [CrossRef]
- Bandini, S.; Curcio, C.; Macagno, M.; Quaglino, E.; Arigoni, M.; Lanzardo, S.; Hysi, A.; Barutello, G.; Consolino, L.; Longo, D.L.; et al. Early onset and enhanced growth of autochthonous mammary carcinomas in C3-deficient Her2/neu transgenic mice. Oncoimmunology 2013, 2, e26137. [Google Scholar] [CrossRef] [PubMed]
- Ajona, D.; Ortiz-Espinosa, S.; Moreno, H.; Lozano, T.; Pajares, M.J.; Agorreta, J.; Bertolo, C.; Lasarte, J.J.; Vicent, S.; Hoehlig, K.; et al. A Combined PD-1/C5a Blockade Synergistically Protects against Lung Cancer Growth and Metastasis. Cancer Discov. 2017, 7, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Wang, C.; Wu, Y.; Qiao, L.; Deng, G.; Liang, N.; Chen, F.; Liu, L.; Chen, Y.; Yang, Y.; et al. Targeting complement C5a to improve radiotherapy sensitivity in non-small cell lung cancer. Transl. Lung Cancer Res. 2023, 12, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Pio, R.; Ajona, D.; Lambris, J.D. Complement inhibition in cancer therapy. Semin. Immunol. 2013, 25, 54–64. [Google Scholar] [CrossRef]
- Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef]
- Magrini, E.; Di Marco, S.; Mapelli, S.N.; Perucchini, C.; Pasqualini, F.; Donato, A.; Guevara Lopez, M.L.; Carriero, R.; Ponzetta, A.; Colombo, P.; et al. Complement activation promoted by the lectin pathway mediates C3aR-dependent sarcoma progression and immunosuppression. Nat. Cancer 2021, 2, 218–232. [Google Scholar] [CrossRef]
- Ah-Pine, F.; Malaterre-Septembre, A.; Bedoui, Y.; Khettab, M.; Neal, J.W.; Freppel, S.; Gasque, P. Complement Activation and Up-Regulated Expression of Anaphylatoxin C3a/C3aR in Glioblastoma: Deciphering the Links with TGF-beta and VEGF. Cancers 2023, 15, 2647. [Google Scholar] [CrossRef]
- Selander, B.; Martensson, U.; Weintraub, A.; Holmstrom, E.; Matsushita, M.; Thiel, S.; Jensenius, J.C.; Truedsson, L.; Sjoholm, A.G. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J. Clin. Investig. 2006, 116, 1425–1434. [Google Scholar] [CrossRef]
- Zhang, M.; Takahashi, K.; Alicot, E.M.; Vorup-Jensen, T.; Kessler, B.; Thiel, S.; Jensenius, J.C.; Ezekowitz, R.A.; Moore, F.D.; Carroll, M.C. Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion injury. J. Immunol. 2006, 177, 4727–4734. [Google Scholar] [CrossRef] [PubMed]
- Corrales, L.; Ajona, D.; Rafail, S.; Lasarte, J.J.; Riezu-Boj, J.I.; Lambris, J.D.; Rouzaut, A.; Pajares, M.J.; Montuenga, L.M.; Pio, R. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J. Immunol. 2012, 189, 4674–4683. [Google Scholar] [CrossRef] [PubMed]
- Wetsel, R.A.; Kolb, W. Expression of C5a-like biological activities by the fifth component of human complement (C5) upon limited digestion with noncomplement enzymes without release of polypeptide fragments. J. Exp. Med. 1983, 157, 2029–2048. [Google Scholar] [CrossRef] [PubMed]
- Amara, U.; Rittirsch, D.; Flierl, M.; Bruckner, U.; Klos, A.; Gebhard, F.; Lambris, J.D.; Huber-Lang, M. Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 2008, 632, 71–79. [Google Scholar]
- Huber-Lang, M.; Younkin, E.M.; Sarma, J.V.; Riedemann, N.; McGuire, S.R.; Lu, K.T.; Kunkel, R.; Younger, J.G.; Zetoune, F.S.; Ward, P.A. Generation of C5a by phagocytic cells. Am. J. Pathol. 2002, 161, 1849–1859. [Google Scholar] [CrossRef]
- Ding, P.; Li, L.; Li, L.; Lv, X.; Zhou, D.; Wang, Q.; Chen, J.; Yang, C.; Xu, E.; Dai, W.; et al. C5aR1 is a master regulator in Colorectal Tumorigenesis via Immune modulation. Theranostics 2020, 10, 8619–8632. [Google Scholar] [CrossRef]
- Medler, T.R.; Murugan, D.; Horton, W.; Kumar, S.; Cotechini, T.; Forsyth, A.M.; Leyshock, P.; Leitenberger, J.J.; Kulesz-Martin, M.; Margolin, A.A.; et al. Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 2018, 34, 561–578.e6. [Google Scholar] [CrossRef]
- Krisinger, M.J.; Goebeler, V.; Lu, Z.; Meixner, S.C.; Myles, T.; Pryzdial, E.L.; Conway, E.M. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood 2012, 120, 1717–1725. [Google Scholar] [CrossRef]
- Amara, U.; Flierl, M.A.; Rittirsch, D.; Klos, A.; Chen, H.; Acker, B.; Bruckner, U.B.; Nilsson, B.; Gebhard, F.; Lambris, J.D.; et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 2010, 185, 5628–5636. [Google Scholar] [CrossRef]
- Turpin, B.; Miller, W.; Rosenfeldt, L.; Kombrinck, K.; Flick, M.J.; Steinbrecher, K.A.; Harmel-Laws, E.; Mullins, E.S.; Shaw, M.; Witte, D.P.; et al. Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Res. 2014, 74, 3020–3030. [Google Scholar] [CrossRef]
- Huber-Lang, M.; Sarma, J.V.; Zetoune, F.S.; Rittirsch, D.; Neff, T.A.; McGuire, S.R.; Lambris, J.D.; Warner, R.L.; Flierl, M.A.; Hoesel, L.M.; et al. Generation of C5a in the absence of C3: A new complement activation pathway. Nat. Med. 2006, 12, 682–687. [Google Scholar] [CrossRef]
- Nunez-Cruz, S.; Gimotty, P.A.; Guerra, M.W.; Connolly, D.C.; Wu, Y.Q.; DeAngelis, R.A.; Lambris, J.D.; Coukos, G.; Scholler, N. Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia 2012, 14, 994–1004. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Z.H.; Chen, L.Y.; Xu, F.; Zhao, Y.P.; Li, G.Q.; Tang, M.; Li, Y.; Zheng, Q.Y.; Wang, S.F.; et al. C5aR deficiency attenuates the breast cancer development via the p38/p21 axis. Aging 2020, 12, 14285–14299. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, X.B. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation. Oncol. Rep. 2014, 32, 2817–2823. [Google Scholar] [CrossRef]
- Xiong, J.; Kuang, X.; Lu, T.; Yu, K.; Liu, X.; Zhang, Z.; Wang, W.; Zhao, L.; Fang, Q.; Wu, D.; et al. C3a and C5a facilitates the metastasis of myeloma cells by activating Nrf2. Cancer Gene Ther. 2021, 28, 265–278, Erratum in Cancer Gene Ther. 2021, 28, 1227. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Geng, T.; Wang, H.; Wu, Z.; Xu, L.; Zhang, M.; Niu, X.; Zhao, C.; Shang, J.; et al. C5AR1-induced TLR1/2 pathway activation drives proliferation and metastasis in anaplastic thyroid cancer. Mol. Carcinog. 2024, 63, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Guo, D.; Zheng, C.; Ma, Z.; Zhang, J.; Qu, Y.; Li, X.; Li, G.; Zhang, L.; Wang, Y. Complement C3a activates astrocytes to promote medulloblastoma progression through TNF-alpha. J. Neuroinflamm. 2022, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Zwirner, J.; Fayyazi, A.; Gotze, O. Expression of the anaphylatoxin C5a receptor in non-myeloid cells. Mol. Immunol. 1999, 36, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Buchner, R.R.; Hugli, T.E.; Ember, J.A.; Morgan, E.L. Expression of functional receptors for human C5a anaphylatoxin (CD88) on the human hepatocellular carcinoma cell line HepG2. Stimulation of acute-phase protein-specific mRNA and protein synthesis by human C5a anaphylatoxin. J. Immunol. 1995, 155, 308–315. [Google Scholar] [CrossRef]
- Nitta, H.; Wada, Y.; Kawano, Y.; Murakami, Y.; Irie, A.; Taniguchi, K.; Kikuchi, K.; Yamada, G.; Suzuki, K.; Honda, J.; et al. Enhancement of human cancer cell motility and invasiveness by anaphylatoxin C5a via aberrantly expressed C5a receptor (CD88). Clin. Cancer Res. 2013, 19, 2004–2013. [Google Scholar] [CrossRef]
- Imamura, T.; Yamamoto-Ibusuki, M.; Sueta, A.; Kubo, T.; Irie, A.; Kikuchi, K.; Kariu, T.; Iwase, H. Influence of the C5a-C5a receptor system on breast cancer progression and patient prognosis. Breast Cancer 2016, 23, 876–885. [Google Scholar] [CrossRef]
- Yoneda, M.; Imamura, R.; Nitta, H.; Taniguchi, K.; Saito, F.; Kikuchi, K.; Ogi, H.; Tanaka, T.; Katabuchi, H.; Nakayama, H.; et al. Enhancement of cancer invasion and growth via the C5a-C5a receptor system: Implications for cancer promotion by autoimmune diseases and association with cervical cancer invasion. Oncol. Lett. 2019, 17, 913–920. [Google Scholar] [CrossRef]
- Imamura, R.; Kitagawa, S.; Kubo, T.; Irie, A.; Kariu, T.; Yoneda, M.; Kamba, T.; Imamura, T. Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD-L1 expression by C5a. Prostate 2021, 81, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Senent, Y.; Ajona, D.; Gonzalez-Martin, A.; Pio, R.; Tavira, B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers 2021, 13, 3806. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Lambris, J.D. Complement in immune and inflammatory disorders: Pathophysiological mechanisms. J. Immunol. 2013, 190, 3831–3838. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Assiri, A.M.; Broering, D.C. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J. Biomed. Sci. 2015, 22, 58. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76. [Google Scholar] [CrossRef]
- Rutkowski, M.J.; Sughrue, M.E.; Kane, A.J.; Ahn, B.J.; Fang, S.; Parsa, A.T. The complement cascade as a mediator of tissue growth and regeneration. Inflamm. Res. 2010, 59, 897–905. [Google Scholar] [CrossRef]
- Rutkowski, M.J.; Sughrue, M.E.; Kane, A.J.; Mills, S.A.; Fang, S.; Parsa, A.T. Complement and the central nervous system: Emerging roles in development, protection and regeneration. Immunol. Cell Biol. 2010, 88, 781–786. [Google Scholar] [CrossRef]
- Rutkowski, M.J.; Sughrue, M.E.; Kane, A.J.; Mills, S.A.; Parsa, A.T. Cancer and the complement cascade. Mol. Cancer Res. 2010, 8, 1453–1465. [Google Scholar] [CrossRef]
- Laoui, D.; Movahedi, K.; Van Overmeire, E.; Van den Bossche, J.; Schouppe, E.; Mommer, C.; Nikolaou, A.; Morias, Y.; De Baetselier, P.; Van Ginderachter, J.A. Tumor-associated macrophages in breast cancer: Distinct subsets, distinct functions. Int. J. Dev. Biol. 2011, 55, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, J.A.; Manthey, H.D.; Steyn, F.J.; Chen, W.; Widiapradja, A.; Md Akhir, F.N.; Boyle, G.M.; Taylor, S.M.; Woodruff, T.M.; Rolfe, B.E. The Complement C3a Receptor Contributes to Melanoma Tumorigenesis by Inhibiting Neutrophil and CD4+ T Cell Responses. J. Immunol. 2016, 196, 4783–4792. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.; Efremova, M.; Riedel, A.; Mahata, B.; Pramanik, J.; Huuhtanen, J.; Kar, G.; Vento-Tormo, R.; Hagai, T.; Chen, X.; et al. Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth. Cell Rep. 2020, 31, 107628. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zha, H.; Long, H.; Wang, X.; Yang, F.; Gao, J.; Hu, C.; Zhou, L.; Guo, B.; Zhu, B. C3a-C3aR signaling promotes breast cancer lung metastasis via modulating carcinoma associated fibroblasts. J. Exp. Clin. Cancer Res. 2020, 39, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.N.; Liu, Q.; Yu, Y.Y.; Guo, J.; Wang, K.; Xing, B.C.; Zheng, Q.F.; Campa, M.J.; Patz, E.F., Jr.; et al. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression. Cancer Discov. 2016, 6, 1022–1035. [Google Scholar] [CrossRef]
- Zha, H.; Wang, X.; Zhu, Y.; Chen, D.; Han, X.; Yang, F.; Gao, J.; Hu, C.; Shu, C.; Feng, Y.; et al. Intracellular Activation of Complement C3 Leads to PD-L1 Antibody Treatment Resistance by Modulating Tumor-Associated Macrophages. Cancer Immunol. Res. 2019, 7, 193–207. [Google Scholar] [CrossRef]
- Jackson, W.D.; Gulino, A.; Fossati-Jimack, L.; Castro Seoane, R.; Tian, K.; Best, K.; Kohl, J.; Belmonte, B.; Strid, J.; Botto, M. C3 Drives Inflammatory Skin Carcinogenesis Independently of C5. J. Investig. Dermatol. 2021, 141, 404–414.e6. [Google Scholar] [CrossRef]
- Vadrevu, S.K.; Chintala, N.K.; Sharma, S.K.; Sharma, P.; Cleveland, C.; Riediger, L.; Manne, S.; Fairlie, D.P.; Gorczyca, W.; Almanza, O.; et al. Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res. 2014, 74, 3454–3465. [Google Scholar] [CrossRef]
- Luan, X.; Lei, T.; Fang, J.; Liu, X.; Fu, H.; Li, Y.; Chu, W.; Jiang, P.; Tong, C.; Qi, H.; et al. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8(+) T cell activity. Mol. Ther. 2024, 32, 469–489. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Wu, P.; Zha, C.; Han, B.; Li, L.; Sun, N.; Qi, T.; Qin, J.; Zhang, Y.; et al. Glioblastoma Cell-Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance. Cancer Immunol. Res. 2021, 9, 1383–1399. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, L.X.; Ao, Y.Q.; Jin, C.; Zhang, P.F.; Wang, H.K.; Wang, S.; Lin, M.; Jiang, J.H.; Ding, J.Y. Elevated circASCC3 limits antitumor immunity by sponging miR-432-5p to upregulate C5a in non-small cell lung cancer. Cancer Lett. 2022, 543, 215774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cao, K.; Yang, M.; Wang, Y.; He, M.; Lu, J.; Huang, Y.; Zhang, G.; Liu, H. C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer. Oncoimmunology 2023, 12, 2261242. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Espinosa, S.; Morales, X.; Senent, Y.; Alignani, D.; Tavira, B.; Macaya, I.; Ruiz, B.; Moreno, H.; Remirez, A.; Sainz, C.; et al. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Lett. 2022, 529, 70–84. [Google Scholar] [CrossRef]
- Strainic, M.G.; Liu, J.; Huang, D.; An, F.; Lalli, P.N.; Muqim, N.; Shapiro, V.S.; Dubyak, G.R.; Heeger, P.S.; Medof, M.E. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 2008, 28, 425–435. [Google Scholar] [CrossRef]
- Lalli, P.N.; Strainic, M.G.; Yang, M.; Lin, F.; Medof, M.E.; Heeger, P.S. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood 2008, 112, 1759–1766. [Google Scholar] [CrossRef]
- Liu, J.; Lin, F.; Strainic, M.G.; An, F.; Miller, R.H.; Altuntas, C.Z.; Heeger, P.S.; Tuohy, V.K.; Medof, M.E. IFN-gamma and IL-17 production in experimental autoimmune encephalomyelitis depends on local APC-T cell complement production. J. Immunol. 2008, 180, 5882–5889. [Google Scholar] [CrossRef]
- Weaver, D.J., Jr.; Reis, E.S.; Pandey, M.K.; Kohl, G.; Harris, N.; Gerard, C.; Kohl, J. C5a receptor-deficient dendritic cells promote induction of Treg and Th17 cells. Eur. J. Immunol. 2010, 40, 710–721. [Google Scholar] [CrossRef]
- Strainic, M.G.; Shevach, E.M.; An, F.; Lin, F.; Medof, M.E. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat. Immunol. 2013, 14, 162–171. [Google Scholar] [CrossRef]
- Kohl, J.; Wills-Karp, M. Complement regulates inhalation tolerance at the dendritic cell/T cell interface. Mol. Immunol. 2007, 44, 44–56. [Google Scholar] [CrossRef]
- Karp, C.L.; Grupe, A.; Schadt, E.; Ewart, S.L.; Keane-Moore, M.; Cuomo, P.J.; Kohl, J.; Wahl, L.; Kuperman, D.; Germer, S.; et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat. Immunol. 2000, 1, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Hao, L.; Madri, J.A.; Su, X.; Elias, J.A.; Stahl, G.L.; Squinto, S.; Wang, Y. Role of C5 in the development of airway inflammation, airway hyperresponsiveness, and ongoing airway response. J. Clin. Investig. 2005, 115, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Hawlisch, H.; Belkaid, Y.; Baelder, R.; Hildeman, D.; Gerard, C.; Kohl, J. C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 2005, 22, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Glovsky, M.M.; Hugli, T.E.; Ishizaka, T.; Lichtenstein, L.M.; Erickson, B.W. Anaphylatoxin-induced histamine release with human leukocytes: Studies of C3a leukocyte binding and histamine release. J. Clin. Investig. 1979, 64, 804–811. [Google Scholar] [CrossRef]
- Daffern, P.J.; Pfeifer, P.H.; Ember, J.A.; Hugli, T.E. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J. Exp. Med. 1995, 181, 2119–2127. [Google Scholar] [CrossRef]
- Klos, A.; Bank, S.; Gietz, C.; Bautsch, W.; Kohl, J.; Burg, M.; Kretzschmar, T. C3a receptor on dibutyryl-cAMP-differentiated U937 cells and human neutrophils: The human C3a receptor characterized by functional responses and 125I-C3a binding. Biochemistry 1992, 31, 11274–11282. [Google Scholar] [CrossRef]
- Zwirner, J.; Werfel, T.; Wilken, H.C.; Theile, E.; Gotze, O. Anaphylatoxin C3a but not C3a(desArg) is a chemotaxin for the mouse macrophage cell line J774. Eur. J. Immunol. 1998, 28, 1570–1577. [Google Scholar] [CrossRef]
- Gutzmer, R.; Lisewski, M.; Zwirner, J.; Mommert, S.; Diesel, C.; Wittmann, M.; Kapp, A.; Werfel, T. Human monocyte-derived dendritic cells are chemoattracted to C3a after up-regulation of the C3a receptor with interferons. Immunology 2004, 111, 435–443. [Google Scholar] [CrossRef]
- Chenoweth, D.E.; Hugli, T.E. Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 1978, 75, 3943–3947. [Google Scholar] [CrossRef]
- Chenoweth, D.E.; Goodman, M.G. The C5a receptor of neutrophils and macrophages. Agents Actions Suppl. 1983, 12, 252–273. [Google Scholar]
- Gerard, N.P.; Hodges, M.K.; Drazen, J.M.; Weller, P.F.; Gerard, C. Characterization of a receptor for C5a anaphylatoxin on human eosinophils. J. Biol. Chem. 1989, 264, 1760–1766. [Google Scholar] [CrossRef]
- Werfel, T.; Oppermann, M.; Begemann, G.; Gotze, O.; Zwirner, J. C5a receptors are detectable on mast cells in normal human skin and in psoriatic plaques but not in weal and flare reactions or in uticaria pigmentosa by immunohistochemistry. Arch. Dermatol. Res. 1997, 289, 83–86. [Google Scholar] [CrossRef]
- Morelli, A.; Larregina, A.; Chuluyan, I.; Kolkowski, E.; Fainboim, L. Expression and modulation of C5a receptor (CD88) on skin dendritic cells. Chemotactic effect of C5a on skin migratory dendritic cells. Immunology 1996, 89, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Li, K.; Anderson, K.; Farrar, C.A.; Lu, B.; Smith, R.A.; Sacks, S.H.; Zhou, W. Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a-C3aR interaction. Blood 2008, 111, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Patel, H.; Li, K.; Peng, Q.; Villiers, M.B.; Sacks, S.H. Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells. Blood 2006, 107, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Soruri, A.; Kim, S.; Kiafard, Z.; Zwirner, J. Characterization of C5aR expression on murine myeloid and lymphoid cells by the use of a novel monoclonal antibody. Immunol. Lett. 2003, 88, 47–52. [Google Scholar] [CrossRef]
- Nataf, S.; Davoust, N.; Ames, R.S.; Barnum, S.R. Human T cells express the C5a receptor and are chemoattracted to C5a. J. Immunol. 1999, 162, 4018–4023. [Google Scholar] [CrossRef]
- Connelly, M.A.; Moulton, R.A.; Smith, A.K.; Lindsey, D.R.; Sinha, M.; Wetsel, R.A.; Jagannath, C. Mycobacteria-primed macrophages and dendritic cells induce an up-regulation of complement C5a anaphylatoxin receptor (CD88) in CD3+ murine T cells. J. Leukoc. Biol. 2007, 81, 212–220. [Google Scholar] [CrossRef]
- Li, K.; Anderson, K.J.; Peng, Q.; Noble, A.; Lu, B.; Kelly, A.P.; Wang, N.; Sacks, S.H.; Zhou, W. Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood 2008, 112, 5084–5094. [Google Scholar] [CrossRef]
- Zhou, W. The new face of anaphylatoxins in immune regulation. Immunobiology 2012, 217, 225–234. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, X.; Miwa, T.; Song, W.C. Complement promotes the development of inflammatory T-helper 17 cells through synergistic interaction with Toll-like receptor signaling and interleukin-6 production. Blood 2009, 114, 1005–1015. [Google Scholar] [CrossRef]
- Hashimoto, M.; Hirota, K.; Yoshitomi, H.; Maeda, S.; Teradaira, S.; Akizuki, S.; Prieto-Martin, P.; Nomura, T.; Sakaguchi, N.; Kohl, J. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 2010, 207, 1135–1143. [Google Scholar] [CrossRef]
- O’Brien, R.M.; Meltzer, S.; Buckley, C.E.; Heeran, A.B.; Nugent, T.S.; Donlon, N.E.; Reynolds, J.V.; Ree, A.H.; Redalen, K.R.; Hafeez, A.; et al. Complement is increased in treatment resistant rectal cancer and modulates radioresistance. Cancer Lett. 2024, 604, 217253. [Google Scholar] [CrossRef]
- Arbore, G.; Albarello, L.; Bucci, G.; Punta, M.; Cossu, A.; Fanti, L.; Maurizio, A.; Di Mauro, F.; Bilello, V.; Arrigoni, G.; et al. Preexisting Immunity Drives the Response to Neoadjuvant Chemotherapy in Esophageal Adenocarcinoma. Cancer Res. 2023, 83, 2873–2888. [Google Scholar] [CrossRef]
- Llaudo, I.; Fribourg, M.; Medof, M.E.; Conde, P.; Ochando, J.; Heeger, P.S. C5aR1 regulates migration of suppressive myeloid cells required for costimulatory blockade-induced murine allograft survival. Am. J. Transplant. 2019, 19, 633–645. [Google Scholar] [CrossRef]




| Cancer Model | Complement Activation in the TME | References |
|---|---|---|
| Cervical cancer | Classical or lectin complement pathway activation involves C5a production in TME. C1q deposition patterns suggested the classical pathway’s involvement. Tumor growth was reduced in C3 and C4 deficient mice, but not in factor B deficient mice. | Markiewski et al. [8] |
| Sarcoma | The lection complement pathway is activated by sarcomagenesis. Genetic deficiencies in C3, C4, and MBL1/2 delayed tumor appearance, whereas C1q and factor B deficiencies had little to no impact. | Magrini et al. [19] |
| Glioblastoma (GBM) | Bb-dependent complement activation of the alternative complement pathway. Abundant C3a staining and robust staining for Bb neoepitope were found in GBM. | Ah-Pine et al. [20] |
| Lung cancer | A non-canonical bypass routes by trypsin-like serine protease. SBTI and TLCK, inhibitors of trypsin-like serine proteases, significantly reduced the local production of C5a. | Corrales et al. [23] |
| Epithelial ovarian cancer (EOC) | The classical or lectin complement activation pathway is involved in the progression of EOC. Either C3 or C5aR deficiency resulted in profoundly impaired EOC growth and reduced tumor vascularization, suggesting C3-dependent C5a production during EOC progression. | Nunez-Cruz et al. [33] |
| Squamous Carcinoma | C5 was cleaved in C3-independent manner by plasmin activated by urokinase (uPA)-expressing macrophages promotes carcinogenesis, Highlighting non-canonical activation of C5 via uPA. | Medler et al. [28] |
| Colorectal Cancer | Intracellular C5 is cleaved by cathepsin D (CTSD) to produce C5a in lysosomes and endosomes of colonic cancer cells. Intracellular C5a/C5aR1-mediated β-catenin stabilization. C5a/C5aR1 signaling drives colorectal tumorigenesis; C5-deficient mice show reduced tumorigenesis, whereas C3 deficiency does not affect, suggesting cascade-independent C5 activation is involved. | Ding et al. [9] Ding et al. [27] |
| Cancer Type | Mechanism Summary Additional Notes | References |
|---|---|---|
| Breast Cancer | High C5aR expression in tumor tissue; C5aR knockout or antagonist reduces tumor growth by modulating MAPK/p38 and p21 signaling. Noting the limitation of animal model due to the complexity of immune system involved. | Chen et al. [34] |
| Multiple myeloma | The expression of C3a and C5a receptors on myeloma cells of MM patients was also significantly higher than that on plasma cells of normal donors. C3a and C5a increase the migration, invasion and adhesion of MM cell lines by activating the MEK/ERK pathway and increasing the nuclear transfer of Nrf2. | Xiong et al. [36] |
| Colorectal cancer | Complement C5a generated intracellularly interacts with C5aR1 to stabilize β-catenin via KCTD5/cullin3/Roc-1 complex, linked to poor prognosis. Targeting C5a/C5aR may improve immunotherapy outcomes, Linking C5a/C5aR1 to β-catenin pathway and colorectal cancer prognosis. | Ding et al. [9] O’Brien et al. [10] |
| Anaplastic Thyroid Carcinoma (ATC) | Elevated C5aR1 promotes proliferation, migration, invasion via TLR1/2 and MyD88 pathway; miR-335-5p negatively regulates C5aR1, indicating Potential therapeutic axis: miR-335-5p/C5aR1/TLR1/2. | Liu et al. [37] |
| Multiple epithelial cancers (breast cancer, cervical cancer, Prostate cancer, keratinocytes, hepatocellular carcinoma) | C5a/C5aR interaction drives cancer cell proliferation, invasion, and checkpoint inhibitor expression. C5aR expression found on cancerous epithelial cells but not on normal tissue, suggesting induction by malignant transformation, highlighting heterogeneity of receptor expression. Inflammation may stimulate C5aR expression. | Nitta et al. [41] Imamura et al. [42] Yoneda et al. [43] Imamura et al. [44] Zwirner et al. [39] Buchner et al. [40] |
| Cancer Type | Mechanism Summary | References |
|---|---|---|
| Glioblastoma | C3a and C3aR upregulated in TAMs; C3aR+ TAMs express M2 marker CD163 and VEGF; TGF-β1 upregulates VEGF, C3, and C3aR in TAMs promoting angiogenesis and immunosuppression. C3a recruits and polarizes macrophages to M2 phenotype; targeting C3aR in TAMs may reduce immunosuppression. | Ah-Pine et al. [20] |
| Melanoma, head and neck cancer | Tumor stromal S1 population expresses C3; C3a/C3aR signaling recruits C3aR+ macrophages; blocking C3a reduces macrophage infiltration and increases CD8+ T cells, slowing tumor growth. CAF-macrophage crosstalk via C3a/C3aR axis conserved in mice and human tumors; anti-C3a slows tumor growth. | Davidson et al. [54] |
| Sarcoma (3-MCA, MN/MCA1, FS6) | C3aR signaling is critical for complement-mediated sarcoma promotion and metastasis; C3, C4, MBL1/2 deficiencies delay tumor onset; C3aR deficiency reduces macrophage recruitment and increases M1 polarization and CD8+ T cells. C3aR expressed mainly on myeloid cells; C3 or C3aR deficiency enhances response to anti-PD-1 immunotherapy; combination therapy promising. | Magrini et al. [19] |
| Medulloblastoma | C3a activates astrocytes via p38 MAPK and TNF-α; promotes tumor growth; blocking C3aR or TNF-α inhibits tumor progression. High C3/C3a in tumor tissue; TNF-α receptor expression correlates with poor prognosis. | Gong et al. [38] |
| Breast cancer metastasis | C3a binding to C3aR activates PI3K/AKT signaling, leading to CAF activation. Blocking C3aR signaling genetically or pharmacologically inhibits lung metastasis of breast cancer. | Shu et al. [55] |
| Melanoma (B16 model) | C3-deficient mice show slower tumor growth; C3aR and C5aR suppress IL-10 production in CD8+ T cells; The blockade of C3aR and C5aR restores IL-10 and enhances anti-tumor immunity. Combined blockade of C3aR and C5aR with anti-PD-1 improves anti-tumor response; C3aR and C5aR act as immune checkpoint receptors on CD8+ TILs. | Wang et al. [7,56] |
| Melanoma (B16-F0 model) | C3aR deficiency or antagonism reduces tumor growth; increases neutrophils and CD4+ Th1, Th2, Th17 cells; decreases macrophages; neutrophils essential for anti-tumor effects. C3aR blockade slows growth of melanoma, colon, and mammary carcinoma models; potential broad therapeutic target. | Nabizadeh et al. [53] |
| Colorectal carcinoma, Melanoma, breast cancer, lung cancer, lymphoma | Tumor cell–derived C3 was activated intracellularly, which results in generation of C3a. C3a modulated tumor-associated macrophages via C3a/C3aR-PI3Kg signaling, thereby repressing anti-tumor immunity. Deletion of C3 in tumor cells that had high C3 expression enhanced efficacy of anti–PD-L1 treatment. | Zha et al. [57] |
| Cutaneous squamous cell carcinoma (cSCC) | The absence of C3 conferred protection against skin cancer development in the DMBA-TPA model of cSCC. The findings suggest that C3 activation products, such as iC3b, C3b, and C3d, rather than anaphylatoxins C3a and C5a, can promote tumor growth and epithelial hyperplasia by interacting with the receptor CR3 on infiltrating myeloid cells. | Jackson et al. [58] |
| Cancer Type | Mechanism Summary | References |
|---|---|---|
| Cervical Cancer (TC-1 model) | C5a in TME suppresses CD8+ T cell anti-tumor response; promotes MDSC recruitment and their immunosuppressive functions; blocking C5aR enhances CD8+ T cells and reduces tumor growth. Classical/lectin pathway implicated; C5a acts on host cells; MDSCs produce ROS and RNS. | Markiewski et al. [8] |
| Non-Small-Cell Lung Cancer (NSCLC) | Lung cancer cells produce higher C5a; C5a promotes angiogenesis and immunosuppressive TME; blocking C5aR reduces tumor growth and MDSC levels, lowers immunosuppressive gene expression. C5a does not directly affect cancer cell proliferation; C5aR blockade could enhance cancer therapies. | Corrales et al. [23] |
| Epithelial Ovarian Cancer (EOC) | C3 deficiency impairs tumor growth; increased CD8+ T cells and decreased FoxP3+ CD4+ T cells; C5a promotes VEGF165-dependent tube formation; C5aR deficiency impairs tumor growth and angiogenesis. C3 and C5aR roles in angiogenesis and immune regulation. | Nunez-Cruz et al. [33] |
| Ovarian Cancer | C5a shows context-dependent effects and slows tumor growth in immunocompromised mice with increased NK/macrophage infiltration; promotes tumor growth in immunocompetent mice via increased MDSCs and Tregs. Effects depend on C5a concentration; high levels promote Treg induction and suppress Th1. | Gunn et al. [12] |
| Mammary Carcinoma (EMT6 model) | C5a expression slows tumor growth and induces tumor regression; triggers anti-tumor immunity via macrophages and granulocytes; low C5a expression beneficial. Induced long-term immunity to rechallenge, implicating acquired immunity. | Kim et al. [11] |
| Mammary Carcinoma (EMT6 and 4T1 models) | Dual C3aR/C5aR1 agonist slows tumor progression; increases T lymphocytes suggesting immunoregulatory roles. Low receptor mRNA in cell lines indicates immune-mediated effects. | Akhir et al. [13] |
| Mammary Carcinoma (neuT model) | C3 deficiency accelerates tumor onset with increased Tregs; transplanted tumor cells from C3−/− mice grow slower in immunocompetent hosts. Complement impact depends on genetic background, oncogene, immune tolerance, tumor type. | Bandini et al. [14] |
| Breast Cancer | C5aR promotes metastasis by suppressing T cell responses; recruits MDSCs and Tregs, increases immunosuppressive cytokines; blockade enhances Th1/Tc1 responses and reduces metastasis. MDSCs and complement deposition found in patient lymph nodes. | Vadrevu et al. [59] |
| Colitis-Associated Cancer (CAC) | C5aR1 signaling crucial for tumorigenesis, independent of C3; deficiency or antagonist prevents tumor development; modulates MDSC and CD8+ T cell infiltration. Bone marrow C5aR1 expression sufficient to initiate CRC tumorigenesis. | Ding et al. [27] |
| Ovarian Cancer | C5a/C5aR signaling in TAMs promotes M2 polarization, suppresses CXCL9, impairs CD8+ T cell infiltration; C5aR deficiency shifts TAMs to M1 phenotype; synergizes with PD-1 blockade. High C5aR correlates with poor survival; therapeutic potential. | Luan et al. [60] |
| Glioblastoma | Exosome-transmitted lnc-TALC promotes M2 microglia polarization via increased C5/C5a secretion, causing temozolomide resistance; C5aR antagonist improves therapy. lnc-TALC regulates C5 via ENO1 and p38; p38 inhibition reduces C5. | Li et al. [61] |
| Non-Small-Cell Lung Cancer (NSCLC) | circASCC3 overexpression increases C5a, induces M2 macrophage polarization, CD8+ T cell exhaustion, and PD-L1 expression; C5aR1 inhibitor PMX-53 + anti-PD1 improves therapy. C5a/C5aR axis drives immunosuppressive microenvironment and resistance. | Gao et al. [62] |
| High-Grade Serous Ovarian Cancer (HGSC) | High C5aR1 expression correlates with poor prognosis, increases pro-tumor immune cells, impairs CD8+ T function; C5aR antagonist PMX53 reduces tumor growth and synergizes with anti-PD-1. C5aR1 is an independent prognostic factor and therapeutic target. | Zhang et al. [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudgins, H.; Molina, V.; Wiernicki, S.; Okwuegbe, K.; Feng, X.; Wang, H. Targeting C3a and C5a Signaling—A Game Changer for Cancer Therapy? Biology 2025, 14, 1491. https://doi.org/10.3390/biology14111491
Hudgins H, Molina V, Wiernicki S, Okwuegbe K, Feng X, Wang H. Targeting C3a and C5a Signaling—A Game Changer for Cancer Therapy? Biology. 2025; 14(11):1491. https://doi.org/10.3390/biology14111491
Chicago/Turabian StyleHudgins, Hunter, Valeria Molina, Stanley Wiernicki, Kenneth Okwuegbe, Xiaodong Feng, and Hongbin Wang. 2025. "Targeting C3a and C5a Signaling—A Game Changer for Cancer Therapy?" Biology 14, no. 11: 1491. https://doi.org/10.3390/biology14111491
APA StyleHudgins, H., Molina, V., Wiernicki, S., Okwuegbe, K., Feng, X., & Wang, H. (2025). Targeting C3a and C5a Signaling—A Game Changer for Cancer Therapy? Biology, 14(11), 1491. https://doi.org/10.3390/biology14111491

