Environmental DNA Metabarcoding in Marine Ecosystems: Global Advances, Methodological Challenges, and Applications in the MENA Region
Simple Summary
Abstract
1. Introduction
2. Current Applications of eDNA Metabarcoding in Marine Ecosystems
2.1. Microbial Communities as Bioindicators
2.2. Coral and Symbiont Detection
2.3. Detection of Elusive, Endangered, and Invasive Species
2.4. Marine Conservation, Restoration, and Ecosystem Health Monitoring
3. Comparative Analysis of eDNA Methods and Traditional Survey Methods
4. Methodological/Experimental Challenges
4.1. Sample Collection and Processing
4.2. Molecular Processing and Sequencing Challenges
4.3. Data Analysis and Interpretation Challenges
4.4. Taxonomic Assignment and Database Limitations
5. Successful Applications of Marine eDNA (MENA Region)
- Biodiversity Assessment
- Biogeographic Pattern Analysis
- Monitoring Non-Indigenous Species
- Marine Habitat Differentiation
5.1. Methodological Innovations in Marine eDNA Research (MENA Region)
5.2. Ecological Insights from Marine eDNA Research (MENA Region)
5.3. Challenges and Limitations in Marine eDNA Research (MENA Region)
- Environmental Challenges
- Technical and Infrastructural Limitations
- Regulatory and Standardization Issues
5.4. Global Impact of Marine eDNA Research
5.4.1. Regional Disparities in eDNA Applications
5.4.2. Advancements in Global eDNA Monitoring
5.5. Summary of Findings
6. Management Applications and Future Research
Future Marine Research Perspectives for the MENA Region
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An Emerging Tool in Conservation for Monitoring Past and Present Biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Wang, L.; Wan, F.; Qian, W. Research and Prospects of Environmental DNA (eDNA) for Detection of Invasive Aquatic Species in East Asia. Front. Mar. Sci. 2023, 10, 1284953. [Google Scholar] [CrossRef]
- Suarez-Bregua, P.; Álvarez-González, M.; Parsons, K.M.; Rotllant, J.; Pierce, G.J.; Saavedra, C. Environmental DNA (eDNA) for Monitoring Marine Mammals: Challenges and Opportunities. Front. Mar. Sci. 2022, 9, 987774. [Google Scholar] [CrossRef]
- Díaz-Ferguson, E.E.; Moyer, G.R. History, Applications, Methodological Issues and Perspectives for the Use Environmental DNA (eDNA) in Marine and Freshwater Environments. Rev. Biol. Trop. 2014, 62, 1273. [Google Scholar] [CrossRef] [PubMed]
- Miya, M. Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. Annu. Rev. Mar. Sci. 2022, 14, 161–185. [Google Scholar] [CrossRef] [PubMed]
- Stat, M.; Huggett, M.J.; Bernasconi, R.; DiBattista, J.D.; Berry, T.E.; Newman, S.J.; Harvey, E.S.; Bunce, M. Ecosystem Biomonitoring with eDNA: Metabarcoding across the Tree of Life in a Tropical Marine Environment. Sci. Rep. 2017, 7, 12240. [Google Scholar] [CrossRef]
- Fediajevaite, J.; Priestley, V.; Arnold, R.; Savolainen, V. Meta-Analysis Shows That Environmental DNA Outperforms Traditional Surveys, but Warrants Better Reporting Standards. Ecol. Evol. 2021, 11, 4803–4815. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yan, M.; Xiong, W.; Li, N.; Gao, L. Editorial: Applications of Environmental DNA in the Aquatic Ecosystem Management of East Asia. Front. Mar. Sci. 2024, 11, 1473463. [Google Scholar] [CrossRef]
- Fu, M.; Hemery, L.; Sather, N. Cost Efficiency of Environmental DNA as Compared to Conventional Methods for Biodiversity Monitoring Purposes at Marine Energy Sites; U.S. Department of Energy: Oak Ridge, TN, USA, 2021; p. PNNL-32310. [Google Scholar]
- Keck, F.; Blackman, R.C.; Bossart, R.; Brantschen, J.; Couton, M.; Hürlemann, S.; Kirschner, D.; Locher, N.; Zhang, H.; Altermatt, F. Meta-analysis Shows Both Congruence and Complementarity of DNA and eDNA Metabarcoding to Traditional Methods for Biological Community Assessment. Mol. Ecol. 2022, 31, 1820–1835. [Google Scholar] [CrossRef]
- Adams, C.I.M.; Jeunen, G.-J.; Cross, H.; Taylor, H.R.; Bagnaro, A.; Currie, K.; Hepburn, C.; Gemmell, N.J.; Urban, L.; Baltar, F.; et al. Environmental DNA Metabarcoding Describes Biodiversity across Marine Gradients. ICES J. Mar. Sci. 2023, 80, 953–971. [Google Scholar] [CrossRef]
- Seymour, M.; Edwards, F.K.; Cosby, B.J.; Bista, I.; Scarlett, P.M.; Brailsford, F.L.; Glanville, H.C.; De Bruyn, M.; Carvalho, G.R.; Creer, S. Environmental DNA Provides Higher Resolution Assessment of Riverine Biodiversity and Ecosystem Function via Spatio-Temporal Nestedness and Turnover Partitioning. Commun. Biol. 2021, 4, 512. [Google Scholar] [CrossRef] [PubMed]
- Truelove, N.K.; Patin, N.V.; Min, M.; Pitz, K.J.; Preston, C.M.; Yamahara, K.M.; Zhang, Y.; Raanan, B.Y.; Kieft, B.; Hobson, B.; et al. Expanding the Temporal and Spatial Scales of Environmental DNA Research with Autonomous Sampling. Environ. DNA 2022, 4, 972–984. [Google Scholar] [CrossRef]
- He, X.; Jeffery, N.W.; Stanley, R.R.E.; Hamilton, L.C.; Rubidge, E.M.; Abbott, C.L. eDNA Metabarcoding Enriches Traditional Trawl Survey Data for Monitoring Biodiversity in the Marine Environment. ICES J. Mar. Sci. 2023, 80, 1529–1538. [Google Scholar] [CrossRef]
- Rossouw, E.I.; Landschoff, J.; Ndhlovu, A.; Neef, G.; Miya, M.; Courtaillac, K.-L.; Brokensha, R.; Von Der Heyden, S. Detecting Kelp-Forest Associated Metazoan Biodiversity with eDNA Metabarcoding. npj Biodivers. 2024, 3, 4. [Google Scholar] [CrossRef]
- Sassoubre, L.M.; Yamahara, K.M.; Gardner, L.D.; Block, B.A.; Boehm, A.B. Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environ. Sci. Technol. 2016, 50, 10456–10464. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, Present, and Future Perspectives of Environmental DNA (eDNA) Metabarcoding: A Systematic Review in Methods, Monitoring, and Applications of Global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Beng, K.C.; Corlett, R.T. Applications of Environmental DNA (eDNA) in Ecology and Conservation: Opportunities, Challenges and Prospects. Biodivers. Conserv. 2020, 29, 2089–2121. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Jiang, Y.; Wen, Y.; Li, M.; Liu, L.; Zou, K. New Insights into Biologic Interpretation of Bioinformatic Pipelines for Fish eDNA Metabarcoding: A Case Study in Pearl River Estuary. J. Environ. Manag. 2024, 368, 122136. [Google Scholar] [CrossRef] [PubMed]
- Gold, Z.; Wall, A.R.; Schweizer, T.M.; Pentcheff, N.D.; Curd, E.E.; Barber, P.H.; Meyer, R.S.; Wayne, R.; Stolzenbach, K.; Prickett, K.; et al. A Manager’s Guide to Using eDNA Metabarcoding in Marine Ecosystems. PeerJ 2022, 10, e14071. [Google Scholar] [CrossRef] [PubMed]
- Claver, C.; Canals, O.; De Amézaga, L.G.; Mendibil, I.; Rodriguez-Ezpeleta, N. An Automated Workflow to Assess Completeness and Curate GenBank for Environmental DNA Metabarcoding: The Marine Fish Assemblage as Case Study. Environ. DNA 2023, 5, 634–647. [Google Scholar] [CrossRef]
- Bourret, A.; Nozères, C.; Parent, E.; Parent, G.J. Maximizing the Reliability and the Number of Species Assignments in Metabarcoding Studies Using a Curated Regional Library and a Public Repository. Metabarcoding Metagenom. 2023, 7, e98539. [Google Scholar] [CrossRef]
- Shea, M.M.; Kuppermann, J.; Rogers, M.P.; Smith, D.S.; Edwards, P.; Boehm, A.B. Systematic Review of Marine Environmental DNA Metabarcoding Studies: Toward Best Practices for Data Usability and Accessibility. PeerJ 2023, 11, e14993. [Google Scholar] [CrossRef]
- Theroux, S.; Sepulveda, A.; Abbott, C.L.; Gold, Z.; Watts, A.W.; Hunter, M.E.; Klymus, K.E.; Hirsch, S.L.; Craine, J.M.; Jones, D.N.; et al. What Is eDNA Method Standardisation and Why Do We Need It? Metabarcoding Metagenom. 2025, 9, e132076. [Google Scholar] [CrossRef]
- Hernan, G.; Dubel, A.K.; Caselle, J.E.; Kushner, D.J.; Miller, R.J.; Reed, D.C.; Sprague, J.L.; Rassweiler, A. Measuring the Efficiency of Alternative Biodiversity Monitoring Sampling Strategies. Front. Mar. Sci. 2022, 9, 820790. [Google Scholar] [CrossRef]
- Petit-Marty, N.; Casas, L.; Saborido-Rey, F. State-of-the-Art of Data Analyses in Environmental DNA Approaches towards Its Applicability to Sustainable Fisheries Management. Front. Mar. Sci. 2023, 10, 1061530. [Google Scholar] [CrossRef]
- Senapati, D.; Bhattacharya, M.; Kar, A.; Chini, D.S.; Das, B.K.; Patra, B.C. Environmental DNA (eDNA): A Promising Biological Survey Tool for Aquatic Species Detection. Proc. Zool. Soc. 2019, 72, 211–228. [Google Scholar] [CrossRef]
- Huo, Q.; Ma, Y.; Hu, L.; Liu, Q.; Wang, C.; Liu, J.; Ren, D.; Wang, Z.; Wang, B.; Zeng, H.; et al. A Study on the Community and Ecological Characteristics of Benthic Invertebrates in the Ulungu River, Xinjiang, via eDNA Metabarcoding and Morphological Methods. Biology 2025, 14, 410. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yang, X.; Sha, N.; Wang, J.; Qiu, G.; Chang, M. Application of eDNA Metabarcoding Technology to Monitor the Health of Aquatic Ecosystems. Water 2025, 17, 1109. [Google Scholar] [CrossRef]
- Sun, B.; Luo, D.; Huang, N.; Guo, L.; Tang, X.; Li, Z.; Xie, Z.; Liu, F.; Zhang, X.; Wu, Y. Environmental DNA Exploring the Distribution of Indo-Pacific Humpback Dolphins and Fish Diversity from the Pearl River Estuary, China. Mar. Pollut. Bull. 2025, 216, 118026. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Strickler, K.M.; Pilliod, D.S. Moving Environmental DNA Methods from Concept to Practice for Monitoring Aquatic Macroorganisms. Biol. Conserv. 2015, 183, 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.; Pavlovska, M.; Stoica, E.; Prekrasna, I.; Yang, J.; Slobodnik, J.; Zhang, X.; Dykyi, E. Holistic Pelagic Biodiversity Monitoring of the Black Sea via eDNA Metabarcoding Approach: From Bacteria to Marine Mammals. Environ. Int. 2020, 135, 105307. [Google Scholar] [CrossRef] [PubMed]
- Glasl, B.; Webster, N.S.; Bourne, D.G. Microbial Indicators as a Diagnostic Tool for Assessing Water Quality and Climate Stress in Coral Reef Ecosystems. Mar. Biol. 2017, 164, 91. [Google Scholar] [CrossRef]
- Catania, V.; Cascio Diliberto, C.; Cigna, V.; Quatrini, P. Microbes and Persistent Organic Pollutants in the Marine Environment. Water Air Soil Pollut. 2020, 231, 354. [Google Scholar] [CrossRef]
- Kaur-Kahlon, G.; Kumar, S.; Rehnstam-Holm, A.-S.; Rai, A.; Bhavya, P.S.; Edler, L.; Singh, A.; Andersson, B.; Karunasagar, I.; Ramesh, R.; et al. Response of a Coastal Tropical Pelagic Microbial Community to Changing Salinity and Temperature. Aquat. Microb. Ecol. 2016, 77, 37–50. [Google Scholar] [CrossRef]
- Pinnell, L.J.; Turner, J.W. Temporal Changes in Water Temperature and Salinity Drive the Formation of a Reversible Plastic-Specific Microbial Community. FEMS Microbiol. Ecol. 2020, 96, fiaa230. [Google Scholar] [CrossRef]
- Rodríguez, J.; Gallampois, C.M.J.; Haglund, P.; Timonen, S.; Rowe, O. Bacterial Communities as Indicators of Environmental Pollution by POPs in Marine Sediments. Environ. Pollut. 2021, 268, 115690. [Google Scholar] [CrossRef]
- Song, T.; Zi, F.; Huang, Y.; Fang, L.; Zhang, Y.; Liu, Y.; Chang, J.; Li, J. Assessment of Aquatic Ecosystem Health in the Irtysh River Basin Using eDNA Metabarcoding. Water 2025, 17, 246. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Wu, H.; Liu, F.; Peng, W.; Zhang, X.; Chang, F.; Xie, P.; Zhang, H. A Review and Perspective of eDNA Application to Eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms 2020, 8, 417. [Google Scholar] [CrossRef] [PubMed]
- Downie, A.T.; Bennett, W.W.; Wilkinson, S.; de Bruyn, M.; DiBattista, J.D. From Land to Sea: Environmental DNA Is Correlated with Long-Term Water Quality Indicators in an Urbanized Estuary. Mar. Pollut. Bull. 2024, 207, 116887. [Google Scholar] [CrossRef]
- Garlapati, D.; Kumar, B.C.; Muthukumar, C.; Madeswaran, P.; Ramu, K.; Murthy, M.V.R. Assessing the in Situ Bacterial Diversity and Composition at Anthropogenically Active Sites Using the Environmental DNA (eDNA). Mar. Pollut. Bull. 2021, 170, 112593. [Google Scholar] [CrossRef]
- Lee, A.H.; Lee, J.; Hong, S.; Kwon, B.-O.; Xie, Y.; Giesy, J.P.; Zhang, X.; Khim, J.S. Integrated Assessment of West Coast of South Korea by Use of Benthic Bacterial Community Structure as Determined by eDNA, Concentrations of Contaminants, and in Vitro Bioassays. Environ. Int. 2020, 137, 105569. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, X.; Yang, J.; Kim, S.; Hong, S.; Giesy, J.P.; Yim, U.H.; Shim, W.J.; Yu, H.; Khim, J.S. eDNA-Based Bioassessment of Coastal Sediments Impacted by an Oil Spill. Environ. Pollut. 2018, 238, 739–748. [Google Scholar] [CrossRef]
- Dugal, L.; Thomas, L.; Meenakshisundaram, A.; Simpson, T.; Lines, R.; Colquhoun, J.; Jarman, S.; Meekan, M. Distinct Coral Reef Habitat Communities Characterized by Environmental DNA Metabarcoding. Coral Reefs 2023, 42, 17–30. [Google Scholar] [CrossRef]
- Joydas, T.V.; Manokaran, S.; Gopi, J.; Rajakumar, J.P.; Yu-Jia, L.; Heinle, M.; Nazal, M.K.; Manikandan, K.P.; Qashqari, M.; Mohandas, S.P.; et al. Advancing Ecological Assessment of the Arabian Gulf through eDNA Metabarcoding: Opportunities, Prospects, and Challenges. Front. Mar. Sci. 2024, 11, 1276956. [Google Scholar] [CrossRef]
- Muenzel, D.; Bani, A.; De Brauwer, M.; Stewart, E.; Djakiman, C.; Purnama, H.R.; Yusuf, S.; Santoso, P.; Hukom, F.D.; Struebig, M.; et al. Combining Environmental DNA and Visual Surveys Can Inform Conservation Planning for Coral Reefs. Proc. Natl. Acad. Sci. USA 2024, 121, e2307214121. [Google Scholar] [CrossRef]
- Nichols, P.K.; Marko, P.B. Rapid Assessment of Coral Cover from Environmental DNA in Hawai’i. Environ. DNA 2019, 1, 40–53. [Google Scholar] [CrossRef]
- Nishitsuji, K.; Nagata, T.; Narisoko, H.; Kanai, M.; Hisata, K.; Shinzato, C.; Satoh, N. An Environmental DNA Metabarcoding Survey Reveals Generic-Level Occurrence of Scleractinian Corals at Reef Slopes of Okinawa Island. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230026. [Google Scholar] [CrossRef] [PubMed]
- Açıkbaş, A.H.O.; Narisoko, H.; Huerlimann, R.; Nishitsuji, K.; Satoh, N.; Reimer, J.D.; Ravasi, T. Fish and Coral Assemblages of a Highly Isolated Oceanic Island: The First eDNA Survey of the Ogasawara Islands. Environ. DNA 2024, 6, e509. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Danovaro, R.; Dell’Anno, A. Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments. Appl. Environ. Microbiol. 2005, 71, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Pikitch, E.K. A Tool for Finding Rare Marine Species. Science 2018, 360, 1180–1182. [Google Scholar] [CrossRef]
- Bautista, J.A.; Manubag, J.J.; Sumaya, N.H.; Martinez, J.G.; Tabugo, S.R. Environmental DNA (eDNA) Metabarcoding and Fish Visual Census Reveals the First Record of Doboatherina Magnidentata in the Philippines. Biodiversitas J. Biol. Divers. 2023, 24, 3063–3072. [Google Scholar] [CrossRef]
- Bonfil, R.; Palacios-Barreto, P.; Vargas, O.U.M.; Ricaño-Soriano, M.; Díaz-Jaimes, P. Detection of Critically Endangered Marine Species with Dwindling Populations in the Wild Using eDNA Gives Hope for Sawfishes. Mar. Biol. 2021, 168, 60. [Google Scholar] [CrossRef]
- Budd, A.M.; Cooper, M.K.; Port, A.L.; Schils, T.; Mills, M.S.; Deinhart, M.E.; Huerlimann, R.; Strugnell, J.M. First Detection of Critically Endangered Scalloped Hammerhead Sharks (Sphyrna lewini) in Guam, Micronesia, in Five Decades Using Environmental DNA. Ecol. Indic. 2021, 127, 107649. [Google Scholar] [CrossRef]
- Clark, A.J.; Atkinson, S.R.; Scarponi, V.; Cane, T.; Geraldi, N.R.; Hendy, I.W.; Shipway, J.R.; Peck, M. Cost-Effort Analysis of Baited Remote Underwater Video (BRUV) and Environmental DNA (eDNA) in Monitoring Marine Ecological Communities. PeerJ 2024, 12, e17091. [Google Scholar] [CrossRef]
- Lehman, R.N.; Poulakis, G.R.; Scharer, R.M.; Schweiss, K.E.; Hendon, J.M.; Phillips, N.M. An Environmental DNA Tool for Monitoring the Status of the Critically Endangered Smalltooth Sawfish, Pristis Pectinata, in the Western Atlantic. Conserv. Genet. Resour. 2020, 12, 621–629. [Google Scholar] [CrossRef]
- Rojahn, J.; Pearce, L.; Gleeson, D.M.; Duncan, R.P.; Gilligan, D.M.; Bylemans, J. The Value of Quantitative Environmental DNA Analyses for the Management of Invasive and Endangered Native Fish. Freshw. Biol. 2021, 66, 1619–1629. [Google Scholar] [CrossRef]
- Sigsgaard, E.E.; Torquato, F.; Frøslev, T.G.; Moore, A.B.M.; Sørensen, J.M.; Range, P.; Ben-Hamadou, R.; Bach, S.S.; Møller, P.R.; Thomsen, P.F. Using Vertebrate Environmental DNA from Seawater in Biomonitoring of Marine Habitats. Conserv. Biol. 2020, 34, 697–710. [Google Scholar] [CrossRef]
- Yamamoto, S.; Minami, K.; Fukaya, K.; Takahashi, K.; Sawada, H.; Murakami, H.; Tsuji, S.; Hashizume, H.; Kubonaga, S.; Horiuchi, T.; et al. Environmental DNA as a ‘Snapshot’ of Fish Distribution: A Case Study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. PLoS ONE 2016, 11, e0149786. [Google Scholar] [CrossRef]
- Yamamoto, S.; Masuda, R.; Sato, Y.; Sado, T.; Araki, H.; Kondoh, M.; Minamoto, T.; Miya, M. Environmental DNA Metabarcoding Reveals Local Fish Communities in a Species-Rich Coastal Sea. Sci. Rep. 2017, 7, 40368. [Google Scholar] [CrossRef] [PubMed]
- Hoban, M.L.; Bunce, M.; Bowen, B.W. Plumbing the Depths with Environmental DNA (eDNA): Metabarcoding Reveals Biodiversity Zonation at 45–60 m on Mesophotic Coral Reefs. Mol. Ecol. 2023, 32, 5590–5608. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.; Costa, C.; da Luz Calado, M.; Vasco-Rodrigues, N.; Campos, M.J.; Leandro, S.M.; Antunes, A. Unveiling the UNESCO Biosphere Reserve of the Berlengas Archipelago in Portugal as a Hotspot of Fish Species Using eDNA Metabarcoding and the Collaboration of Fishing Crews. J. Mar. Sci. Eng. 2025, 13, 60. [Google Scholar] [CrossRef]
- Holman, L.E.; de Bruyn, M.; Creer, S.; Carvalho, G.; Robidart, J.; Rius, M. Detection of Introduced and Resident Marine Species Using Environmental DNA Metabarcoding of Sediment and Water. Sci. Rep. 2019, 9, 11559. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, F.; Belliveau, V.; Watson, E.; Coomber, C.; Simard, N.; DiBacco, C.; Bernier, R.; Gagné, N. Environmental DNA (eDNA) Detection of Marine Aquatic Invasive Species (AIS) in Eastern Canada Using a Targeted Species-Specific qPCR Approach. Manag. Biol. Invasions 2020, 11, 201. [Google Scholar] [CrossRef]
- Gargan, L.M.; Brooks, P.R.; Vye, S.R.; Ironside, J.E.; Jenkins, S.R.; Crowe, T.P.; Carlsson, J. The Use of Environmental DNA Metabarcoding and Quantitative PCR for Molecular Detection of Marine Invasive Non-Native Species Associated with Artificial Structures. Biol. Invasions 2022, 24, 635–648. [Google Scholar] [CrossRef]
- Zixuan, E.; Luo, P.; Ren, C.; Cheng, C.; Pan, W.; Jiang, X.; Jiang, F.; Ma, B.; Yu, S.; Zhang, X.; et al. Applications of Environmental DNA (eDNA) in Monitoring the Endangered Status and Evaluating the Stock Enhancement Effect of Tropical Sea Cucumber Holothuria Scabra. Mar. Biotechnol. 2023, 25, 778–789. [Google Scholar] [CrossRef]
- Nester, G.M.; Suter, L.; Kitchener, J.A.; Bunce, M.; Polanowski, A.M.; Wasserman, J.; Deagle, B. Long-Distance Southern Ocean Environmental DNA (eDNA) Transect Provides Insights into Spatial Marine Biota and Invasion Pathways for Non-Native Species. Sci. Total Environ. 2024, 951, 175657. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, C.S.; Turner, C.R.; Deiner, K.; Klymus, K.E.; Thomsen, P.F.; Murphy, M.A.; Spear, S.F.; McKee, A.; Oyler-McCance, S.J.; Cornman, R.S.; et al. Critical Considerations for the Application of Environmental DNA Methods to Detect Aquatic Species. Methods Ecol. Evol. 2016, 7, 1299–1307. [Google Scholar] [CrossRef]
- Hinz, S.; Coston-Guarini, J.; Marnane, M.; Guarini, J.-M. Evaluating eDNA for Use within Marine Environmental Impact Assessments. J. Mar. Sci. Eng. 2022, 10, 375. [Google Scholar] [CrossRef]
- Duarte, S.; Simões, L.; Costa, F.O. Current Status and Topical Issues on the Use of eDNA-Based Targeted Detection of Rare Animal Species. Sci. Total Environ. 2023, 904, 166675. [Google Scholar] [CrossRef]
- Menegotto, A.; Rangel, T.F. Mapping Knowledge Gaps in Marine Diversity Reveals a Latitudinal Gradient of Missing Species Richness. Nat. Commun. 2018, 9, 4713. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA Metabarcoding: Transforming How We Survey Animal and Plant Communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Capurso, G.; Carroll, B.; Stewart, K.A. Transforming Marine Monitoring: Using eDNA Metabarcoding to Improve the Monitoring of the Mediterranean Marine Protected Areas Network. Mar. Policy 2023, 156, 105807. [Google Scholar] [CrossRef]
- Shinzato, C.; Zayasu, Y.; Kanda, M.; Kawamitsu, M.; Satoh, N.; Yamashita, H.; Suzuki, G. Using Seawater to Document Coral-Zoothanthella Diversity: A New Approach to Coral Reef Monitoring Using Environmental DNA. Front. Mar. Sci. 2018, 5, 28. [Google Scholar] [CrossRef]
- Dugal, L.; Thomas, L.; Wilkinson, S.P.; Richards, Z.T.; Alexander, J.B.; Adam, A.A.S.; Kennington, W.J.; Jarman, S.; Ryan, N.M.; Bunce, M.; et al. Coral Monitoring in Northwest Australia with Environmental DNA Metabarcoding Using a Curated Reference Database for Optimized Detection. Environ. DNA 2022, 4, 63–76. [Google Scholar] [CrossRef]
- Wee, A.K.S.; Salmo, S.G., III; Sivakumar, K.; Then, A.Y.-H.; Basyuni, M.; Fall, J.; Habib, K.A.; Isowa, Y.; Leopardas, V.; Peer, N.; et al. Prospects and Challenges of Environmental DNA (eDNA) Metabarcoding in Mangrove Restoration in Southeast Asia. Front. Mar. Sci. 2023, 10, 1033258. [Google Scholar] [CrossRef]
- Wesselmann, M.; Geraldi, N.R.; Marbà, N.; Hendriks, I.E.; Díaz-Rúa, R.; Duarte, C.M. eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments. Diversity 2022, 14, 549. [Google Scholar] [CrossRef]
- Stoeckle, M.Y.; Adolf, J.; Charlop-Powers, Z.; Dunton, K.J.; Hinks, G.; VanMorter, S.M. Trawl and eDNA Assessment of Marine Fish Diversity, Seasonality, and Relative Abundance in Coastal New Jersey, USA. ICES J. Mar. Sci. 2021, 78, 293–304. [Google Scholar] [CrossRef]
- Suter, L.; Polanowski, A.M.; Clarke, L.J.; Kitchener, J.A.; Deagle, B.E. Capturing Open Ocean Biodiversity: Comparing Environmental DNA Metabarcoding to the Continuous Plankton Recorder. Mol. Ecol. 2021, 30, 3140–3157. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Suwannapoom, C. Sustainable Fisheries Management through Reliable Restocking and Stock Enhancement Evaluation with Environmental DNA. Sci. Rep. 2023, 13, 11297. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Møller, P.R.; Sigsgaard, E.E.; Knudsen, S.W.; Jørgensen, O.A.; Willerslev, E. Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes. PLoS ONE 2016, 11, e0165252. [Google Scholar] [CrossRef]
- Boussarie, G.; Bakker, J.; Wangensteen, O.S.; Mariani, S.; Bonnin, L.; Juhel, J.-B.; Kiszka, J.J.; Kulbicki, M.; Manel, S.; Robbins, W.D.; et al. Environmental DNA Illuminates the Dark Diversity of Sharks. Sci. Adv. 2018, 4, eaap9661. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, B.; Sistiaga, M.; Santos, J.; Sala, A. How Many Fish Need to Be Measured to Effectively Evaluate Trawl Selectivity? PLoS ONE 2016, 11, e0161512. [Google Scholar] [CrossRef] [PubMed]
- Manjarrés-Martínez, L.M.; Gutiérrez-Estrada, J.C.; Hernando, J.A. Effects of Mesh Size and Towing Speed on the Multispecies Catch Rates of Historical Swept Area Surveys. Fish. Res. 2015, 164, 143–152. [Google Scholar] [CrossRef]
- Sajdlová, Z.; Draštík, V.; Jůza, T.; Říha, M.; Frouzová, J.; Čech, M.; Vašek, M.; Muška, M.; Blabolil, P.; Tušer, M.; et al. Fish Behaviour in Response to a Midwater Trawl Footrope in Temperate Reservoirs. Fish. Res. 2015, 172, 105–113. [Google Scholar] [CrossRef]
- Stevenson, D.E.; Lauth, R.R. Bottom Trawl Surveys in the Northern Bering Sea Indicate Recent Shifts in the Distribution of Marine Species. Polar Biol. 2019, 42, 407–421. [Google Scholar] [CrossRef]
- Williams, K.; Horne, J.K.; Punt, A.E. Examining Influences of Environmental, Trawl Gear, and Fish Population Factors on Midwater Trawl Performance Using Acoustic Methods. Fish. Res. 2015, 164, 94–101. [Google Scholar] [CrossRef]
- Sahu, A.; Kumar, N.; Pal Singh, C.; Singh, M. Environmental DNA (eDNA): Powerful Technique for Biodiversity Conservation. J. Nat. Conserv. 2023, 71, 126325. [Google Scholar] [CrossRef]
- Dickie, I.A.; Boyer, S.; Buckley, H.L.; Duncan, R.P.; Gardner, P.P.; Hogg, I.D.; Holdaway, R.J.; Lear, G.; Makiola, A.; Morales, S.E.; et al. Towards Robust and Repeatable Sampling Methods in eDNA-Based Studies. Mol. Ecol. Resour. 2018, 18, 940–952. [Google Scholar] [CrossRef]
- Altermatt, F.; Carraro, L.; Antonetti, M.; Albouy, C.; Zhang, Y.; Lyet, A.; Zhang, X.; Pellissier, L. Quantifying Biodiversity Using eDNA from Water Bodies: General Principles and Recommendations for Sampling Designs. Environ. DNA 2023, 5, 671–682. [Google Scholar] [CrossRef]
- Sepulveda, A.J.; Hutchins, P.R.; Forstchen, M.; Mckeefry, M.N.; Swigris, A.M. The Elephant in the Lab (and Field): Contamination in Aquatic Environmental DNA Studies. Front. Ecol. Evol. 2020, 8, 609973. [Google Scholar] [CrossRef]
- Kumar, G.; Eble, J.E.; Gaither, M.R. A Practical Guide to Sample Preservation and Pre-PCR Processing of Aquatic Environmental DNA. Mol. Ecol. Resour. 2020, 20, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, K.; Aihara, H.; Imanaka, T.; Matsudaira, T.; Tsukahara, K.; Usui, A.; Osaki, S.; Doi, H. Water Pre-Filtration Methods to Improve Environmental DNA Detection by Real-Time PCR and Metabarcoding. PLoS ONE 2021, 16, e0250162. [Google Scholar] [CrossRef]
- Andruszkiewicz Allan, E.; Zhang, W.G.; Lavery, A.C.; Govindarajan, A.F. Environmental DNA Shedding and Decay Rates from Diverse Animal Forms and Thermal Regimes. Environ. DNA 2021, 3, 492–514. [Google Scholar] [CrossRef]
- Stewart, K.A. Understanding the Effects of Biotic and Abiotic Factors on Sources of Aquatic Environmental DNA. Biodivers. Conserv. 2019, 28, 983–1001. [Google Scholar] [CrossRef]
- Strickler, K.M.; Fremier, A.K.; Goldberg, C.S. Quantifying Effects of UV-B, Temperature, and pH on eDNA Degradation in Aquatic Microcosms. Biol. Conserv. 2015, 183, 85–92. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Taberlet, P.; Coissac, E. How to Limit False Positives in Environmental DNA and Metabarcoding? Mol. Ecol. Resour. 2016, 16, 604–607. [Google Scholar] [CrossRef]
- Rishan, S.T.; Kline, R.J.; Rahman, M.S. Applications of Environmental DNA (eDNA) to Detect Subterranean and Aquatic Invasive Species: A Critical Review on the Challenges and Limitations of eDNA Metabarcoding. Environ. Adv. 2023, 12, 100370. [Google Scholar] [CrossRef]
- Corse, E.; Costedoat, C.; Chappaz, R.; Pech, N.; Martin, J.-F.; Gilles, A. A PCR-Based Method for Diet Analysis in Freshwater Organisms Using 18S rDNA Barcoding on Faeces. Mol. Ecol. Resour. 2010, 10, 96–108. [Google Scholar] [CrossRef]
- Stoeckle, B.C.; Beggel, S.; Cerwenka, A.F.; Motivans, E.; Kuehn, R.; Geist, J. A Systematic Approach to Evaluate the Influence of Environmental Conditions on eDNA Detection Success in Aquatic Ecosystems. PLoS ONE 2017, 12, e0189119. [Google Scholar] [CrossRef]
- Lance, R.F.; Guan, X. Variation in Inhibitor Effects on qPCR Assays and Implications for eDNA Surveys. Can. J. Fish. Aquat. Sci. 2020, 77, 23–33. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR Inhibitors—Occurrence, Properties and Removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Deagle, B.E.; Jarman, S.N.; Coissac, E.; Pompanon, F.; Taberlet, P. DNA Metabarcoding and the Cytochrome c Oxidase Subunit I Marker: Not a Perfect Match. Biol. Lett. 2014, 10, 20140562. [Google Scholar] [CrossRef]
- Bell, K.L.; Loeffler, V.M.; Brosi, B.J. An rbcL Reference Library to Aid in the Identification of Plant Species Mixtures by DNA Metabarcoding. Appl. Plant Sci. 2017, 5, 1600110. [Google Scholar] [CrossRef]
- Willis, C.; Desai, D.; LaRoche, J. Influence of 16S rRNA Variable Region on Perceived Diversity of Marine Microbial Communities of the Northern North Atlantic. FEMS Microbiol. Lett. 2019, 366, fnz152. [Google Scholar] [CrossRef]
- Kerrigan, Z.; Kirkpatrick, J.B.; D’Hondt, S. Influence of 16S rRNA Hypervariable Region on Estimates of Bacterial Diversity and Community Composition in Seawater and Marine Sediment. Front. Microbiol. 2019, 10, 1640. [Google Scholar] [CrossRef]
- Elbrecht, V.; Leese, F. Validation and Development of COI Metabarcoding Primers for Freshwater Macroinvertebrate Bioassessment. Front. Environ. Sci. 2017, 5, 11. [Google Scholar] [CrossRef]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a Set of Universal PCR Primers for Metabarcoding Environmental DNA from Fishes: Detection of More than 230 Subtropical Marine Species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef] [PubMed]
- Closek, C.J.; Santora, J.A.; Starks, H.A.; Schroeder, I.D.; Andruszkiewicz, E.A.; Sakuma, K.M.; Bograd, S.J.; Hazen, E.L.; Field, J.C.; Boehm, A.B. Marine Vertebrate Biodiversity and Distribution Within the Central California Current Using Environmental DNA (eDNA) Metabarcoding and Ecosystem Surveys. Front. Mar. Sci. 2019, 6, 732. [Google Scholar] [CrossRef]
- Valdivia-Carrillo, T.; Rocha-Olivares, A.; Reyes-Bonilla, H.; Domínguez-Contreras, J.F.; Munguia-Vega, A. Integrating eDNA Metabarcoding and Simultaneous Underwater Visual Surveys to Describe Complex Fish Communities in a Marine Biodiversity Hotspot. Mol. Ecol. Resour. 2021, 21, 1558–1574. [Google Scholar] [CrossRef]
- Polanco, A.; Richards, E.; Flück, B.; Valentini, A.; Altermatt, F.; Brosse, S.; Walser, J.-C.; Eme, D.; Marques, V.; Manel, S.; et al. Comparing the Performance of 12S Mitochondrial Primers for Fish Environmental DNA across Ecosystems. Environ. DNA 2021, 3, 1113–1127. [Google Scholar] [CrossRef]
- Shinzato, C.; Narisoko, H.; Nishitsuji, K.; Nagata, T.; Satoh, N.; Inoue, J. Novel Mitochondrial DNA Markers for Scleractinian Corals and Generic-Level Environmental DNA Metabarcoding. Front. Mar. Sci. 2021, 8, 758207. [Google Scholar] [CrossRef]
- Oladi, M.; Leontidou, K.; Stoeck, T.; Shokri, M.R. Environmental DNA-Based Profiling of Benthic Bacterial and Eukaryote Communities along a Crude Oil Spill Gradient in a Coral Reef in the Persian Gulf. Mar. Pollut. Bull. 2022, 184, 114143. [Google Scholar] [CrossRef]
- Levy, N.; Simon-Blecher, N.; Ben-Ezra, S.; Yuval, M.; Doniger, T.; Leray, M.; Karako-Lampert, S.; Tarazi, E.; Levy, O. Evaluating Biodiversity for Coral Reef Reformation and Monitoring on Complex 3D Structures Using Environmental DNA (eDNA) Metabarcoding. Sci. Total Environ. 2023, 856, 159051. [Google Scholar] [CrossRef]
- Collins, R.A.; Wangensteen, O.S.; O’Gorman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of Environmental DNA in Marine Systems. Commun. Biol. 2018, 1, 185. [Google Scholar] [CrossRef] [PubMed]
- Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance Comparison of Benchtop High-Throughput Sequencing Platforms. Nat. Biotechnol. 2012, 30, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.M.; Creed, T.B.; Reardon, C.L.; Manter, D.K. Comparison of Oxford Nanopore Technologies and Illumina MiSeq Sequencing with Mock Communities and Agricultural Soil. Sci. Rep. 2023, 13, 9323. [Google Scholar] [CrossRef] [PubMed]
- Bell, G. Replicates and Repeats. BMC Biol. 2016, 14, 28. [Google Scholar] [CrossRef]
- Cowart, D.A.; Murphy, K.R.; Cheng, C.-H.C. Environmental DNA from Marine Waters and Substrates: Protocols for Sampling and eDNA Extraction. In Marine Genomics; Verde, C., Giordano, D., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2498, pp. 225–251. ISBN 978-1-0716-2312-1. [Google Scholar]
- Dos Santos, R.A.; Blabolil, P. Comparison of Bioinformatic Pipelines for eDNA Metabarcoding Data Analysis of Fish Populations. Fishes 2025, 10, 214. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact Sequence Variants Should Replace Operational Taxonomic Units in Marker-Gene Data Analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- De Santiago, A.; Pereira, T.J.; Mincks, S.L.; Bik, H.M. Dataset Complexity Impacts Both MOTU Delimitation and Biodiversity Estimates in Eukaryotic 18S rRNA Metabarcoding Studies. Environ. DNA 2022, 4, 363–384. [Google Scholar] [CrossRef]
- Fasolo, A.; Deb, S.; Stevanato, P.; Concheri, G.; Squartini, A. ASV vs OTUs Clustering: Effects on Alpha, Beta, and Gamma Diversities in Microbiome Metabarcoding Studies. PLoS ONE 2024, 19, e0309065. [Google Scholar] [CrossRef]
- Scriver, M.; Zaiko, A.; Pochon, X.; Stanton, J.-A.L.; Belonovich, O.; Jeunen, G.-J.; Thomas, A.C.; Gemmell, N.J.; Von Ammon, U. Biodiversity Monitoring in Remote Marine Environments: Advancing Environmental DNA/RNA Sampling Workflows. Mar. Environ. Res. 2025, 206, 107041. [Google Scholar] [CrossRef]
- Jeske, J.T.; Gallert, C. Microbiome Analysis via OTU and ASV-Based Pipelines—A Comparative Interpretation of Ecological Data in WWTP Systems. Bioengineering 2022, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Weigand, H.; Beermann, A.J.; Čiampor, F.; Costa, F.O.; Csabai, Z.; Duarte, S.; Geiger, M.F.; Grabowski, M.; Rimet, F.; Rulik, B.; et al. DNA Barcode Reference Libraries for the Monitoring of Aquatic Biota in Europe: Gap-Analysis and Recommendations for Future Work. Sci. Total Environ. 2019, 678, 499–524. [Google Scholar] [CrossRef]
- Keck, F.; Couton, M.; Altermatt, F. Navigating the Seven Challenges of Taxonomic Reference Databases in Metabarcoding Analyses. Mol. Ecol. Resour. 2023, 23, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Leese, F.; Altermatt, F.; Bouchez, A.; Ekrem, T.; Hering, D.; Meissner, K.; Mergen, P.; Pawlowski, J.; Piggott, J.; Rimet, F.; et al. DNAqua-Net: Developing New Genetic Tools for Bioassessment and Monitoring of Aquatic Ecosystems in Europe. Res. Ideas Outcomes 2016, 2, e11321. [Google Scholar] [CrossRef]
- DiBattista, J.D.; Berumen, M.L.; Priest, M.A.; De Brauwer, M.; Coker, D.J.; Sinclair-Taylor, T.H.; Hay, A.; Bruss, G.; Mansour, S.; Bunce, M.; et al. Environmental DNA Reveals a Multi-Taxa Biogeographic Break across the Arabian Sea and Sea of Oman. Environ. DNA 2022, 4, 206–221. [Google Scholar] [CrossRef]
- Sempere-Valverde, J.; Aylagas, E.; Syomin, V.; Teixeira, M.A.L.; Kolbasova, G.D.; Ruiz-Velasco, S.; Chebaane, S.; Anker, A.; Curdia, J.; Cadiz, R.; et al. First Assessment of Biofouling Assemblages in the Northern Red Sea, an Important Region for Marine Non-Indigenous Species Transfer. Front. Mar. Sci. 2025, 12, 1522723. [Google Scholar] [CrossRef]
- Al-Enezi, E.; Francescangeli, F.; Balassi, E.; Borderie, S.; Al-Hazeem, S.; Al-Salameen, F.; Boota Anwar, A.; Pawlowski, J.; Frontalini, F. Benthic Foraminifera as Proxies for the Environmental Quality Assessment of the Kuwait Bay (Kuwait, Arabian Gulf): Morphological and Metabarcoding Approaches. Sci. Total Environ. 2022, 833, 155093. [Google Scholar] [CrossRef]
- Lee, A.H.; Lee, J.; Noh, J.; Lee, C.; Hong, S.; Kwon, B.-O.; Kim, J.-J.; Khim, J.S. Characteristics of Long-Term Changes in Microbial Communities from Contaminated Sediments along the West Coast of South Korea: Ecological Assessment with eDNA and Physicochemical Analyses. Mar. Pollut. Bull. 2020, 160, 111592. [Google Scholar] [CrossRef] [PubMed]
- Stoeckle, M.Y.; Das Mishu, M.; Charlop-Powers, Z. Improved Environmental DNA Reference Library Detects Overlooked Marine Fishes in New Jersey, United States. Front. Mar. Sci. 2020, 7, 226. [Google Scholar] [CrossRef]
- Allen, M.C.; Lockwood, J.L.; Ibanez, R.; Butler, J.D.; Angle, J.C.; Jaffe, B.D. eDNA Offers Opportunities for Improved Biodiversity Monitoring within Forest Carbon Markets. Commun. Earth Environ. 2024, 5, 801. [Google Scholar] [CrossRef]
- UNESCO Mapping Ocean Life with Environmental DNA: A Transformative Tool for Marine Conservation. 2024. Available online: https://oceandecade.org/publications/engaging-communities-to-safeguard-ocean-life-unesco-environmental-dna-expeditions/ (accessed on 23 March 2025).
- Narvaez, V.Y. Marine eDNA Monitoring Network, Partnership for Observation of the Global Ocean. 2023. Available online: https://pogo-ocean.org/innovation-in-ocean-observing/activities/marine-edna-monitoring-network-in-latin-america-and-the-caribbean/ (accessed on 23 March 2025).
- Perry, I.; Jâms, I.B.; Casas-Mulet, R.; Hamutoko, J.; Marchbank, A.; Lendelvo, S.; Naomab, E.; Mapani, B.; Creer, S.; Wanke, H.; et al. Challenges to Implementing Environmental-DNA Monitoring in Namibia. Front. Environ. Sci. 2022, 9, 773991. [Google Scholar] [CrossRef]
- McCartin, L.; Saso, E.; Vohsen, S.A.; Pittoors, N.; Demetriades, P.; McFadden, C.S.; Quattrini, A.M.; Herrera, S. Nuclear eDNA Metabarcoding Primers for Anthozoan Coral Biodiversity Assessment. PeerJ 2024, 12, e18607. [Google Scholar] [CrossRef] [PubMed]

| Strategy | Description | When to Use |
|---|---|---|
| On-site Filtration and Freezing | Filter samples immediately, and then freeze; preserves DNA longest | Ideal when portable freezers available |
| Ethanol/Isopropanol Precipitation | Add alcohol to samples on-site for chemical stabilization | No freezing available, work in remote sites |
| Short-term Refrigeration/Chilling | Store samples chilled (4 °C) for up to 24–48 h to slow degradation | Short transport, timely lab access |
| Chemical Preservatives (e.g., Longmire’s and CTAB) | Use stabilization buffers or solutions for temporary preservation | Fieldwork constraints, delayed processing |
| Marker Gene | Taxonomic Coverage | Resolution | Database Availability | Advantages | Limitations | References |
|---|---|---|---|---|---|---|
| 12S rRNA | Vertebrates (esp. fish, mammals) | Species, sometimes genus | GenBank, MitoFish | High specificity for vertebrates, short fragment (good for degraded DNA), popular primers (MiFish, Teleo) | Lower coverage for invertebrates, regional gaps, incomplete reference for non-fish taxa | [5,14,18,60,109,110,111,112] |
| 16S rRNA | Broadly targets marine fish and some invertebrates. Provides moderate taxonomic resolution for metazoans and high resolution for prokaryotes | Genus, sometimes species | GenBank, SILVA, RDP | Broad detection of prokaryotes is helpful for microbial community profiling—ability to amplify a range of metazoans, especially invertebrates | Poor animal/fungal resolution, primer bias. Does not perform as well as 12S for fish diversity, incomplete reference databases which limit species-level identification | [5,6,14,20,32,113] |
| 18S rRNA | Universal eukaryotes (protists, metazoa, algae) | Family to species, mainly genus | GenBank, SILVA, PR2 | Comprehensive eukaryotic coverage, widely used for plankton, protists | Short variable regions limit species resolution, primer bias, not ideal for metabarcoding animals | [14,42,45,82,114] |
| COI | Metazoa (invertebrates, fish) | Species but limited | GenBank, BOLD | High resolution for animals, standard barcode for metazoans | Variable success (e.g., low amplification in some taxa), incomplete databases for marine species | [18,20,21,82,115,116] |
| Workflow | Common Issues | Proposed Solutions/Best Practices | References |
|---|---|---|---|
| Sample Collection and Processing |
|
| [72,89,91,92,94] |
| Filtration |
|
| [88,92,93] |
| DNA Extraction |
|
| [98,99,100] |
| PCR Bias |
|
| [3,17,19,104] |
| Bioinformatics |
|
| [19,23,120,122] |
| Reference Databases |
|
| [18,21,45,128] |
| Country | Habitat | Marker(s) | n (Samples) | Gear/Devices | Key Findings | Data Deposited |
|---|---|---|---|---|---|---|
| Qatar | Seagrass, coral reefs, mangroves, sand bottoms | 12S rRNA | 21 sites sampled across 2 years | Water filtration | Mapped vertebrate biodiversity, found elusive species (dugongs) | Dryad Digital Repository GenBank |
| Oman | Coastal, reefs, lagoon, rocky coast, mangroves | 16S rRNA ITS2 | 120 samples from 15 sites | Water filtration, sediment grab | Revealed biogeographic break, multi-taxa/environmental patterns | Dryad Digital Repository OBITools Platform |
| Saudi Arabia (NEOM, Red Sea) | Lagoon, ports, biofouling substrates | COI, 18S rRNA | 39 panels, 70 water samples | PVC panels, water filtration | 20 non-indigenous species (NIS) were recorded and detected 71% of all NIS/cryptogenic species | BOLD Systems European Nucleotide Archive (ENA) |
| Kuwait | Benthic, estuarine bay | 18S rRNA | 46 surface sediment samples | Modified grab (surface sediment) | 73% agreement in environmental quality assessment between morphological and molecular data | ENA Global Biodiversity Information Facility (GBIF) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawh, S.K.; Merabet, S.; Higazy, N.; Béji, M.; Søresen, J.M.; Range, P.; Alqudah, A.M.; Daly Yahia, M.N. Environmental DNA Metabarcoding in Marine Ecosystems: Global Advances, Methodological Challenges, and Applications in the MENA Region. Biology 2025, 14, 1467. https://doi.org/10.3390/biology14111467
Sawh SK, Merabet S, Higazy N, Béji M, Søresen JM, Range P, Alqudah AM, Daly Yahia MN. Environmental DNA Metabarcoding in Marine Ecosystems: Global Advances, Methodological Challenges, and Applications in the MENA Region. Biology. 2025; 14(11):1467. https://doi.org/10.3390/biology14111467
Chicago/Turabian StyleSawh, Sandy K., Sarah Merabet, Nayla Higazy, Marwa Béji, Johan Mølgård Søresen, Pedro Range, Ahmad M. Alqudah, and Mohamed Nejib Daly Yahia. 2025. "Environmental DNA Metabarcoding in Marine Ecosystems: Global Advances, Methodological Challenges, and Applications in the MENA Region" Biology 14, no. 11: 1467. https://doi.org/10.3390/biology14111467
APA StyleSawh, S. K., Merabet, S., Higazy, N., Béji, M., Søresen, J. M., Range, P., Alqudah, A. M., & Daly Yahia, M. N. (2025). Environmental DNA Metabarcoding in Marine Ecosystems: Global Advances, Methodological Challenges, and Applications in the MENA Region. Biology, 14(11), 1467. https://doi.org/10.3390/biology14111467

