Why Humans Prefer Phylogenetically Closer Species: An Evolutionary, Neurocognitive, and Cultural Synthesis
Simple Summary
Abstract
1. Introduction
2. Defining Terms and Scope
3. The Evolutionary Proximity Hypothesis
4. Perception and Signal Recognizability
5. Neurocognitive Architecture for Social Resonance
6. Developmental Trajectories and Learning
7. Domestication, Coevolution, and Niche Construction
8. Cultural Norms, Moral Circles, and Media
9. Boundary Cases and Exceptions
10. Measuring Empathy and Preference
11. Predictive Processing and Computational Models
12. Survival-Related Biases and Risk Management
13. Health and Well-Being Correlates in Humans
14. Ethical Implications and Conservation
15. Education and Communication Strategies
| Type of Intervention | Mechanisms of Action | Observed Outcomes | Representative References |
|---|---|---|---|
| Educational Modules (classroom, outreach, short workshops) | Present factual knowledge about ecological and intrinsic value of reptiles, fish, or invertebrates; emphasize functional roles (e.g., pollination, pest control, nutrient cycling); use visual analogies with mammalian care. | Increased willingness to protect non-mammalian taxa; measurable shifts in conservation attitudes even after brief exposure; improved retention of ecological knowledge. | [15,44] |
| Citizen-Science Programs | Direct, hands-on interaction (handling, observing, sampling); co-creation of data; fostering sense of agency and contribution. | Reduced disgust and fear toward reptiles, amphibians, arthropods; heightened stewardship, environmental identity, and empathy toward local biodiversity. | [52] |
| Visual Design Enhancements | Use of eye-spots, gaze cues, or anthropomorphic cues to create perceptual anchors; emphasize “faces” or recognizable body plans. | Increased engagement, attention, and likability of animals that otherwise evoke low empathy (e.g., fish, insects). | [53] |
| Narrative Reframing | Avoid sensationalist tropes (e.g., “dangerous snakes”); instead highlight cooperation, ecological services, parental care, and survival strategies. | Reduced fear-based stereotypes; greater acceptance of coexistence with species traditionally stigmatized. | [51] |
| Zoo & Aquarium Cognitive Displays | Place non-mammalian taxa in interactive contexts (e.g., octopuses solving puzzles, fish navigating mazes); emphasize cognition, learning, and social communication. | Elevates perceived sentience, agency, and moral concern; expands conservation support beyond mammals. | [54] |
| Virtual & Augmented Reality Experiences | Immersive simulations of animal perspective or habitat; promote embodiment and perspective-taking. | Strong increases in empathy, conservation donations, and prosocial intentions toward marine invertebrates and fish. | [55] |
16. Methodological Caveats and Confounds
17. Open Questions and Research Agenda for Future Directions
17.1. Lifespan Plasticity
17.2. Which Experiences Work Best?
17.3. Neuroendocrine Leverage—Opportunities and Limits
17.4. Incorporating Public Empathy into Conservation Triage
17.5. Computational Prediction and Cross-Cultural Validation
18. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, A. Surfing Uncertainty: Prediction, Action, and the Embodied Mind; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef]
- Nagasawa, M.; Mitsui, S.; En, S.; Ohtani, N.; Ohta, M.; Sakuma, Y.; Kikusui, T. Oxytocin–gaze positive loop and the coevolution of human–dog bonds. Science 2015, 348, 333–336. [Google Scholar] [CrossRef]
- Johnson, M.H.; Dziurawiec, S.; Ellis, H.; Morton, J. Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 1991, 40, 1–19. [Google Scholar] [CrossRef]
- Höehl, S.; Hellmer, K.; Johansson, M.; Tamm, S. Infants react with increased arousal to spiders and snakes. Front. Psychol. 2017, 8, 1710. [Google Scholar] [CrossRef]
- Sifre, R.; Olson, L.; Gillespie, S.; Klin, A.; Jones, W.; Shultz, S. A longitudinal investigation of preferential attention to biological motion in 2- to 24-month-old infants. Sci. Rep. 2018, 8, 2527. [Google Scholar] [CrossRef] [PubMed]
- Giri, T.; Maloney, S.E.; Giri, S.; Goo, Y.A.; Song, J.H.; Son, M.; Tycksen, E.; Conyers, S.B.; Bice, A.; Ge, X.; et al. Oxytocin-induced birth causes sex-specific behavioral and brain connectivity changes in developing rat offspring. iScience 2024, 27, 108960. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.; Luque, G.M.; Courchamp, F. The twenty most charismatic species. PLoS ONE 2018, 13, e0199149. [Google Scholar] [CrossRef]
- Ganea, P.A.; Ma, L.; DeLoache, J.S. Do cavies talk? The effect of anthropomorphic picture books on children’s learning and conceptions of animals. Front. Psychol. 2014, 5, 283. [Google Scholar] [CrossRef] [PubMed]
- Sitar, G.-M.; Rusu, A.S. The impact of environmental educational programs in promoting insects conservation awareness: A scoping review. J. Educ. Sci. 2023, XXIV, 74–89. [Google Scholar] [CrossRef]
- Mather, J.A. What is in an octopus’s mind? Anim. Sentience 2019, 4, 44. [Google Scholar] [CrossRef]
- Whitehead, H.; Rendell, L. The Cultural Lives of Whales and Dolphins; University of Chicago Press: Chicago, IL, USA, 2014. [Google Scholar]
- Emery, N.J. Cognitive ornithology: The evolution of avian intelligence. Phil. Trans. R. Soc. B 2006, 361, 23–43. [Google Scholar] [CrossRef]
- Prokop, P.; Tunnicliffe, S.D. “Disgusting” animals: Primary school children’s attitudes and myths of bats and spiders. Eurasia J. Math. Sci. Technol. Educ. 2008, 4, 87–97. [Google Scholar] [CrossRef]
- Waytz, A.; Gray, K.; Epley, N.; Wegner, D.M. Causes and consequences of mind perception. Trends Cogn. Sci. 2010, 14, 383–388. [Google Scholar] [CrossRef]
- Martens, P.; Enders, C.; Sapp, S. The animal welfare paradox: Empathy, economic trade-offs, and conservation dilemmas. Soc. Anim. 2019, 27, 585–604. [Google Scholar] [CrossRef]
- Balcombe, J. Animal pleasure and its moral significance. Appl. Anim. Behav. Sci. 2009, 118, 208–216. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Kruse, A.; Webb, C.E. Visual attention to animals: Eye-tracking evidence for empathy gradients. J. Environ. Psychol. 2021, 75, 101613. [Google Scholar] [CrossRef]
- Cao, Y.; Contreras-Huerta, L.S.; McFadyen, J.; Cunnington, R. Racial bias in neural response to others’ pain is reduced with other-race contact. Cortex 2015, 70, 68–78. [Google Scholar] [CrossRef]
- Serpell, J. The Domestic Dog: Its Evolution, Behavior and Interactions with People, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bradshaw, J.W.S. Dog Sense: How the New Science of Dog Behavior Can Make You a Better Friend to Your Pet; Basic Books: New York, NY, USA, 2012. [Google Scholar]
- Lefebvre, R.C.; Flora, J.A. Social Marketing and Social Change: Strategies and Tools for Improving Health, Wellbeing, and the Environment; Jossey-Bass/Wiley: Francisco, CA, USA, 2013. [Google Scholar]
- Daly, M.; Wilson, M. Sex, Evolution, and Behavior, 2nd ed.; Willard Grant Press: Boston, MA, USA, 1983. [Google Scholar]
- Kellert, S.R.; Berry, J.K. American attitudes toward and knowledge of animals. Int. J. Study Anim. Probl. 1984, 5, 175–190. [Google Scholar]
- Hare, B.; Tomasello, M. Human-like social skills in dogs? Trends Cogn. Sci. 2005, 9, 439–444. [Google Scholar] [CrossRef]
- Beetz, A.; Uvnäs-Moberg, K.; Julius, H.; Kotrschal, K. Psychosocial and psychophysiological effects of human–animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 234. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Handlin, L.; Petersson, M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 2015, 5, 1529. [Google Scholar] [CrossRef]
- McNicholas, J.; Collis, G.M. Animals as social supports: Insights for understanding animal-assisted therapy. In Handbook on Animal-Assisted Therapy; Fine, A., Ed.; Academic Press: Cambridge, MA, USA, 2006; pp. 49–71. [Google Scholar] [CrossRef]
- Powell, L.; Edwards, K.M.; Bauman, A.; Guastella, A.J.; Drayton, B.; Stamatakis, E.; McGreevy, P. Canine companionship and cardiometabolic health: A systematic review and meta-analysis of randomized and non-randomized trials. BMJ Open 2019, 9, e022041. [Google Scholar] [CrossRef]
- Herzog, H. The impact of pets on human health and psychological well-being: Fact, fiction, or hypothesis? Curr. Dir. Psychol. Sci. 2011, 20, 236–239. [Google Scholar] [CrossRef]
- Westgarth, C.; Pinchbeck, G.L.; Bradshaw, J.W.; Dawson, S.; Gaskell, R.M.; Christley, R.M. Dog–human and dog–dog interactions of 260 dog-owning households in a community in Cheshire. Vet. Rec. 2008, 162, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Toohey, A.M.; McCormack, G.R.; Doyle-Baker, P.K.; Adams, C.L.; Rock, M.J. Dog-walking and sense of community in neighborhoods: Implications for promoting regular physical activity in adults 50 years and older. Health Place 2013, 22, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Sitas, N.; Baillie, J.E.M.; Isaac, N.J.B. What are we saving? Developing a standardized approach for conservation prioritization. Anim. Conserv. 2009, 12, 231–237. [Google Scholar] [CrossRef]
- Martín-López, B.; Montes, C.; Benayas, J. The non-economic motives behind the willingness to pay for biodiversity conservation. Biol. Conserv. 2007, 139, 67–82. [Google Scholar] [CrossRef]
- Clucas, B.; McHugh, K.; Caro, T. Flagship species on covers of US conservation and nature magazines. Biodivers. Conserv. 2008, 17, 1517–1528. [Google Scholar] [CrossRef]
- Smith, R.J.; Veríssimo, D.; Isaac, N.J.B.; Jones, K.E. Identifying Cinderella species: Uncovering mammals with conservation flagship appeal. Conserv. Lett. 2012, 5, 205–212. [Google Scholar] [CrossRef]
- Singer, P. Animal Liberation, 2nd ed.; Avon Books: New York, NY, USA, 1990. [Google Scholar]
- Korsgaard, C. Fellow Creatures: Our Obligations to the Other Animals; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.V.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef]
- Root-Bernstein, M.; Douglas, L.; Smith, A.; Veríssimo, D. Anthropomorphized species as tools for conservation: Utility beyond prosocial, intelligent and suffering species. Biodivers. Conserv. 2013, 22, 1577–1589. [Google Scholar] [CrossRef]
- Miralles, A.; Raymond, M.; Lecointre, G. Empathy and compassion toward other species decrease with evolutionary divergence. Evol. Psychol. 2019, 17, 19555. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, J.; Rupf, R. Attitudes towards potential animal flagship species in nature conservation: A survey among students of different educational institutions. J. Nat. Conserv. 2010, 18, 278–290. [Google Scholar] [CrossRef]
- Ballouard, J.-M.; Brischoux, F.; Bonnet, X. Children prioritize virtual exotic biodiversity over local biodiversity. PLoS ONE 2011, 6, e23152. [Google Scholar] [CrossRef] [PubMed]
- Prokop, P.; Fančovičová, J. Animals in dangerous postures enhance learning, but decrease willingness to protect animals. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 6069–6077. [Google Scholar] [CrossRef]
- Marino, L.; Colvin, C.M. Thinking chickens: A review of cognition, emotion, and behavior in the domestic chicken. Anim. Cogn. 2015, 18, 127–147. [Google Scholar] [CrossRef]
- Clay, Z.; Archbold, J.; Zuberbühler, K. Functional flexibility in wild bonobo vocal behaviour. Proc. R. Soc. B 2011, 278, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Fa, J.E.; Funk, S.M.; O’Connell, D. Zoo Conservation Biology; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Moss, A.; Esson, M. The educational claims of zoos: Where do we go from here? Zoo Biol. 2013, 32, 13–18. [Google Scholar] [CrossRef]
- Fernandez, E.J.; Tamborski, M.A.; Pickens, S.R.; Timberlake, W. Animal–visitor interactions in the modern zoo: Conflicts and interventions. Appl. Anim. Behav. Sci. 2009, 120, 1–8. [Google Scholar] [CrossRef]
- Clayton, S.; Fraser, J.; Saunders, C.D. Zoo experiences: Conservation, education, entertainment, and collection animals. Zoo Biol. 2009, 28, 377–397. [Google Scholar] [CrossRef]
- Crall, A.W.; Jordan, R.; Holfelder, K.; Newman, G.J.; Graham, J.; Waller, D.M. The impacts of an invasive species training program on the knowledge and attitudes of citizen scientists. Public Underst. Sci. 2013, 22, 745–764. [Google Scholar] [CrossRef]
- Gould, A. Not So Skeptical: A Cow’s-Eye View on Optimism for Empathy. Stance 2020, 13, 62–71. [Google Scholar] [CrossRef]
- Schnell, A.K.; Amodio, P.; Boeckle, M.; Clayton, N.S. How intelligent is a cephalopod? Lessons from comparative cognition. Biol. Rev. 2021, 96, 162–178. [Google Scholar] [CrossRef]
- Foxman, M.; Markowitz, D.M.; Davis, D.Z. Defining empathy: Interconnected discourses of virtual reality’s prosocial impact. New Media Soc. 2021, 23, 2167–2188. [Google Scholar] [CrossRef]
- Wells, N.M.; Lekies, K.S. Nature and the life course: Pathways from childhood nature experiences to adult environmentalism. Child. Youth Environ. 2006, 16, 1–24. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Extinction of experience: The loss of human–nature interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef]
- Pettigrew, T.F.; Tropp, L.R. A meta-analytic test of intergroup contact theory. J. Pers. Soc. Psychol. 2006, 90, 751–783. [Google Scholar] [CrossRef]
- Leng, G.; Ludwig, M. Intranasal oxytocin: Myths and delusions. eLife 2016, 5, e24092. [Google Scholar] [CrossRef] [PubMed]
- Bottrill, M.C.; Joseph, L.N.; Carwardine, J.; Bode, M.; Cook, C.; Game, E.T.; Possingham, H.P. Is conservation triage just smart decision making? Trends Ecol. Evol. 2008, 23, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.M.; Gray, K.; Wegner, D.M. Dimensions of mind perception. Science 2007, 315, 619. [Google Scholar] [CrossRef] [PubMed]
- Epley, N.; Waytz, A.; Cacioppo, J.T. On seeing human: A three-factor theory of anthropomorphism. Psychol. Rev. 2007, 114, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Lamm, C.; Decety, J.; Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 2011, 54, 2492–2502. [Google Scholar] [CrossRef]
- Henrich, J.; Heine, S.J.; Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 2010, 33, 61–135. [Google Scholar] [CrossRef]
- Broom, D.M. Sentience and Animal Welfare; CABI: Wallingford, UK, 2014. [Google Scholar]
- Mather, J.A. What is in an octopus’s mind? Animal welfare implications. J. Appl. Anim. Welf. Sci. 2019, 22, 216–226. [Google Scholar]
- Elwood, R.W. Assessing the potential for pain in crustaceans and other invertebrates. Invertebr. Neurosci. 2019, 19, 7. [Google Scholar] [CrossRef]
- Birch, J.; Burn, C.; Schnell, A.; Browning, H.; Crump, A. Review of the evidence of sentience in cephalopod molluscs and decapod crustaceans. Anim. Sentience 2021, 6, 1–110. [Google Scholar]
- Proctor, H.; Carder, G.; Cornish, A.R. Searching for animal sentience: A systematic review of the scientific literature. Animals 2013, 3, 882–906. [Google Scholar] [CrossRef] [PubMed]
- Singer, P. The Expanding Circle: Ethics and Sociobiology; Farrar, Straus & Giroux: New York, NY, USA, 1981. [Google Scholar]
- World Health Organization. One Health. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 1 October 2025).





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragusa, A. Why Humans Prefer Phylogenetically Closer Species: An Evolutionary, Neurocognitive, and Cultural Synthesis. Biology 2025, 14, 1438. https://doi.org/10.3390/biology14101438
Ragusa A. Why Humans Prefer Phylogenetically Closer Species: An Evolutionary, Neurocognitive, and Cultural Synthesis. Biology. 2025; 14(10):1438. https://doi.org/10.3390/biology14101438
Chicago/Turabian StyleRagusa, Antonio. 2025. "Why Humans Prefer Phylogenetically Closer Species: An Evolutionary, Neurocognitive, and Cultural Synthesis" Biology 14, no. 10: 1438. https://doi.org/10.3390/biology14101438
APA StyleRagusa, A. (2025). Why Humans Prefer Phylogenetically Closer Species: An Evolutionary, Neurocognitive, and Cultural Synthesis. Biology, 14(10), 1438. https://doi.org/10.3390/biology14101438
