Bacterial Transformation of Adamantane and Its Derivatives: Regioselectivity and Biocatalytic Approaches
Simple Summary
Abstract
1. Introduction
- (1)
- The substance exhibits elevated chemical stability, encompassing a high degree of resistance to oxidation processes.
- (2)
- Hydrophobic properties are exhibited, thereby ensuring stability in aqueous solutions.
- (3)
- The compact molecule size facilitates integration into pharmaceutical compositions without significantly altering their physicochemical characteristics.
- (4)
- It possesses lipophilicity, which plays a key role in ensuring effective penetration through lipid biological membranes.
- (5)
- Its significant adsorption capacity on material surfaces has been demonstrated to enhance the applicability of these materials in drug delivery systems (DDSs) that require fixation on specific surfaces.
- (6)
- The substance is characterised by low toxicity and an absence of allergic reactions, thus ensuring its biocompatibility.
2. Methods for Literature Search
- (1)
- Relevance to the topic of biocatalytic transformation and selective modification of adamantane;
- (2)
- The availability of experimental data on regioselectivity and biocatalysis mechanisms;
- (3)
- Inclusion of both classical and modern experimental and review studies, given the limited amount of work in this field.
- (4)
- Emphasis was placed on enzymatic systems (in particular cytochromes P450 and monooxygenases) and bacterial strains (Pseudomonas spp.).
- (5)
- Inclusion of data on the synthetic chemistry of adamantanes and catalytic systems for comprehensive coverage of the material.
3. Structure and Properties of Adamantane
3.1. Chemical Structure of Adamantane
3.2. Biological Activity and Applications of Adamantane Derivatives
4. Transformation of Adamantane and Its Derivatives
4.1. General Principles of Hydroxylation of C–H Bonds in Adamantane
4.2. Features of Bacterial Transformation of Adamantane
4.3. Bacterial Transformation of Adamantane Derivatives
4.4. Functionalisation of Adamantane: Chemical and Biocatalytic Strategies
5. Current Strategies and Tools for Potential Bioengineering Approaches to the Selective Biotransformation of Adamantanes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, X.; Hou, D.; Xu, C. The effect of biodegradation on adamantanes in reservoired crude oils from the Bohai Bay Basin, China. Org. Geochem. 2018, 123, 38–43. [Google Scholar] [CrossRef]
- De Araujo, P.L.B.; Mansoori, G.A.; De Araujo, E.S. Diamondoids: Occurrence in fossil fuels, applications in petroleum exploration and fouling in petroleum production. Int. J. Oil Gas Coal Technol. 2012, 5, 316–367. [Google Scholar]
- Landa, S.; Machacek, V.; Mzourek, M.; Landova, M. Adamantane in crude oil. Chim. Ind. 1933, 506, 506. (In French) [Google Scholar]
- Landa, S.; Machacek, V. On separation of adamantane from crude oil. Collect. Czechoslov. Chem. Commun. 1933, 5, 1–5. (In French) [Google Scholar]
- Fang, C.; Xiong, Y.; Li, Y.; Chen, Y.; Liu, J.; Zhang, H.; Adedosu, T.A.; Peng, P. The origin and evolution of adamantanes and diamantanes in petroleum. Geochim. Et Cosmochim. Acta 2013, 120, 109–120. [Google Scholar] [CrossRef]
- Schleyer, P.R. A simple preparation of adamantane. J. Am. Chem. Soc. 1957, 79, 3292. [Google Scholar] [CrossRef]
- Dragomanova, S.; Andonova, V. Adamantane-containing drug delivery systems. Pharmacia 2023, 70, 1057–1066. [Google Scholar] [CrossRef]
- Mirzoyan, R.S.; Gan’shina, T.S.; Maslennikov, D.V.; Kovalev, G.I.; Zimin, I.A.; Pyatin, B.M.; Avdyunina, N.I.; Kukhtarova, A.M.; Khostikyan, N.G.; Meliksetyan, V.S.; et al. Cerebrovascular and neuroprotective effects of adamantane derivative. BioMed Res. Int. 2014, 2014, 586501. [Google Scholar] [CrossRef]
- Weigel, W.K., 3rd; Dang, H.T.; Feceu, A.; Martin, D.B.C. Direct radical functionalization methods to access substituted adamantanes and diamondoids. Org. Biomol. Chem. 2021, 20, 10–36. [Google Scholar] [CrossRef]
- Shvekhgeimer, M.-G.A. Adamantane derivatives containing heterocyclic substituents in the bridgehead positions: Synthesis and properties. Russ. Chem. Rev. 1996, 65, 555–598. [Google Scholar] [CrossRef]
- Ma, H.M.; Zafonte, R.D. Amantadine and memantine: A comprehensive review for acquired brain injury. Brain Inj. 2020, 34, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological profile of natural and synthetic compounds with rigid adamantane-based scaffolds as potential agents for treatment of neurodegenerative diseases. Biochem. Biophys. Res. Commun. 2020, 529, 1225–1241. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Tanase, C.; Pascu, G.-A.; Todoran, N. Recent Advances Regarding the Therapeutic Potential of Adapalene. Pharmaceuticals 2020, 13, 217. [Google Scholar] [CrossRef]
- Cernea, S.; Cahn, A.; Raz, I. Saxagliptin for the treatment of diabetes—A focus on safety. Expert Opin. Drug Saf. 2016, 15, 697–707. [Google Scholar] [CrossRef]
- Agnew-Francis, K.A.; Williams, C.M. Catalysts Containing the Adamantane Scaffold. Adv. Synth. Catalisys 2016, 358, 675–698. [Google Scholar] [CrossRef]
- Yeung, K.-W.; Dong, Y.; Chen, L.; Tang, C.-Y.; Law, W.-C.; Tsui, G.C.-P. Nanotechnology of diamondoids for the fabrication of nanostructured systems. Nanotechnol. Rev. 2020, 9, 650–669. [Google Scholar] [CrossRef]
- Yang, H.-B.; Feceu, A.; Martin, D.B.C. Catalyst-Controlled C–H Functionalization of Adamantanes Using Selective H-Atom Transfer. ACS Catal. 2019, 9, 5708–5715. [Google Scholar] [CrossRef]
- Chalaya, O.N.; Lifshits, S.K.; Kashirtsev, V.A. Adamantane hydrocarbons in oils and condensates of Western Yakutia. Nauka I Obraz. 2014, 4, 16–21. [Google Scholar]
- White, R.E.; McCarthy, M.B.; Egeberg, K.D.; Sligar, S.G. Regioselectivity in the cytochromes P-450: Control by protein constraints and by chemical reactivities. Arch. Biochem. Biophys. 1984, 228, 493–502. [Google Scholar] [CrossRef]
- Candian, A.; Bouwman, J.; Hemberger, P.; Bodi, A.; Tielens, A.G.G.M. Dissociative ionisation of adamantane: A combined theoretical and experimental study. Phys. Chem. 2018, 20, 5399–5406. [Google Scholar] [CrossRef]
- Bagrii, E.I. Adamantanes: Synthesis, Properties, Applications; Nauka: Moscow, Russia, 1989; pp. 5–57. ISBN 5-02-001382-X. (In Russian) [Google Scholar]
- Kawai, R.; Yada, S.; Yoshimura, T. Characterization and Solution Properties of Quaternary-Ammonium-Salt-Type Amphiphilic Gemini Ionic Liquids. ACS Omega 2019, 4, 14242–14250. [Google Scholar] [CrossRef]
- Freisleben, H.J.; Waltinger, G.; Schatton, W.; Zimmer, G. Influences of tromantadine and nonoxinol 9 on the stability of red cell membrane. Arzneimittelforschung 1989, 39, 1202–1205. [Google Scholar] [PubMed]
- Georgiou, K.; Kolokouris, D.; Kolocouris, A. Molecular biophysics and inhibition mechanism of influenza virus A M2 viroporin by adamantane-based drugs—Challenges in designing antiviral agents. J. Struct. Biol. X 2025, 11, 100122. [Google Scholar] [CrossRef]
- Aganovic, A. pH-dependent endocytosis mechanisms for influenza A and SARS-coronavirus. Front. Microbiol. 2023, 14, 1190463. [Google Scholar] [CrossRef]
- Chew, C.F.; Guy, A.; Biggin, P.C. Distribution and dynamics of adamantanes in a lipid bilayer. Biophys. J. 2008, 95, 5627–5636. [Google Scholar] [CrossRef]
- Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Popiołek, Ł.; Herbet, M.; Dudka, J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci. Rep. 2022, 12, 6708. [Google Scholar] [CrossRef]
- Kim, E.A.; Han, A.R.; Choi, J.; Ahn, J.Y.; Choi, S.Y.; Cho, S.W. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int. Immunopharmacol. 2014, 22, 73–83. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.W.; Hwang, J.; Kim, J.; Lee, M.J.; Han, H.S.; Lee, W.H.; Suk, K. Microglia-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol. Aging 2012, 33, 2145–2159. [Google Scholar] [CrossRef] [PubMed]
- Blanpied, T.A.; Clarke, R.J.; Johnson, J.W. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 3312–3322. [Google Scholar] [CrossRef]
- Spilovska, K.; Zemek, F.; Korabecny, J.; Nepovimova, E.; Soukup, O.; Windisch, M.; Kuca, K. Adamantane—A Lead Structure for Drugs in Clinical Practice. Curr. Med. Chem. 2016, 23, 3245–3266. [Google Scholar] [CrossRef]
- Jefferson, T.O.; Demicheli, V.; Deeks, J.J.; Rivetti, D. Amantadine and rimantadine for preventing and treating influenza A in adults. Cochrane Database Syst. Rev. 2002, 3, CD001169. [Google Scholar] [CrossRef]
- Crosby, N.; Deane, K.H.; Clarke, C.E. Amantadine in Parkinson’s disease. Cochrane Database Syst. Rev. 2003, 2010, CD003468. [Google Scholar] [CrossRef]
- Caroff, S.N.; Jain, R.; Morley, J.F. Revisiting amantadine as a treatment for drug-induced movement disorders. Ann. Clin. Psychiatry Off. J. Am. Acad. Clin. Psychiatr. 2020, 32, 198–208. [Google Scholar]
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet. Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Singer, C.; Papapetropoulos, S.; Gonzalez, M.A.; Roberts, E.L.; Lieberman, A. Rimantadine in Parkinson’s disease patients experiencing peripheral adverse effects from amantadine: Report of a case series. Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 873–877. [Google Scholar] [CrossRef]
- Cheetham, J.J.; Epand, R.M. Comparison of the interaction of the anti-viral chemotherapeutic agents amantadine and tromantadine with model phospholipid membranes. Biosci. Rep. 1987, 7, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Lukashevich, V.; Del Prato, S.; Araga, M.; Kothny, W. Efficacy and safety of vildagliptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. Diabetes Obes. Metab. 2014, 16, 403–409. [Google Scholar] [CrossRef]
- Simon, D.; Detournay, B.; Eschwege, E.; Bouée, S.; Bringer, J.; Attali, C.; Dejager, S. Use of Vildagliptin in Management of Type 2 Diabetes: Effectiveness, Treatment Persistence and Safety from the 2-Year Real-Life VILDA Study. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2014, 5, 207–224. [Google Scholar] [CrossRef]
- Popiołek, Ł.; Janas, W.; Hordyjewska, A.; Biernasiuk, A. Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties. Appl. Sci. 2024, 14, 3700. [Google Scholar] [CrossRef]
- Morozov, I.S.; Pukhova, G.S.; Avdulov, N.A.; Sergeeva, S.A.; Spasov, A.A.; Iezhitsa, I.N. Mekhanizmy neĭrotropnogo deĭstviia bromantana [The mechanisms of the neurotropic action of bromantan]. Eksperimental’naia I Klin. Farmakol. 1999, 62, 11–14. [Google Scholar]
- Oliynyk, S.; Oh, S. The pharmacology of actoprotectors: Practical application for improvement of mental and physical performance. Biomol. Ther. 2012, 20, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Grekhova, T.V.; Gainetdinov, R.R.; Sotnikova, T.D.; Krasnykh, L.M.; Kudrin, V.S.; Sergeeva, S.A.; Morozov, I.S. Effect of bromantane, a new immunostimulating agent with psychostimulating activity, on the release and metabolism of dopamine in the striatum of freely moving rats. A microdialysis study. Biulleten’ Eksperimental’noi Biol. I Meditsiny 1995, 119, 294–296. [Google Scholar] [CrossRef]
- Okamoto, S.I.; Prikhodko, O.; Pina-Crespo, J.; Adame, A.; McKercher, S.R.; Brill, L.M.; Nakanishi, N.; Oh, C.K.; Nakamura, T.; Masliah, E.; et al. NitroSynapsin for the treatment of neurological manifestations of tuberous sclerosis complex in a rodent model. Neurobiol. Dis. 2019, 127, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, N.; Barrett, T.; Galassetti, P.; Karlsson, C.; Monyak, J.; Iqbal, N.; Tamborlane, W.V. Dapagliflozin or Saxagliptin in Pediatric Type 2 Diabetes. NEJM Evid. 2023, 2, EVIDoa2300210. [Google Scholar] [CrossRef] [PubMed]
- Kamianov, I.M.; Andrezinia, R.A. Ob antiparkinsonicheskoĭ aktivnosti gludantana (preliminary report). Zh. Nevropatol. Psikhiatr. Im. S.S. Korsakova 1975, 75, 910–916. [Google Scholar]
- Krapivin, S.V.; Sergeeva, S.A.; Morozov, I.S. Comparative analysis of the effects of adapromine, midantane, and bromantane on bioelectrical activity of rat brain. Biulleten’ Eksperimental’noi Biol. I Meditsiny 1998, 125, 151–155. [Google Scholar] [CrossRef]
- Meseko, C.; Sanicas, M.; Asha, K.; Sulaiman, L.; Kumar, B. Antiviral options and therapeutics against influenza: History, latest developments and future prospects. Front. Cell. Infect. Microbiol. 2023, 13, 1269344. [Google Scholar] [CrossRef]
- Muhsen, H.O.; Almayyali, A.O.M.; Al-Mamoori, A.Y.; Mahmood, F.F. Theoretical analysis of the structural and electronic properties of the interaction of boron nitride diamantane nanocrystal with the drug hydroxyurea as an anticancer drug. J. Mol. Model. 2021, 27, 90. [Google Scholar] [CrossRef]
- Terekhova, N.V.; Khazanova, V.V.; Zemskaia, E.A.; Kosorukova, N.I.a; Bykova, I.A.; Zidra, S.I. Lechenie kemantanom bol’nykh retsidiviruiushchim aftoznym stomatitom [Kemantan treatment of patients with recurrent aphthous stomatitis]. Stomatologiia (Mosk.) 1990, 69, 31–33. [Google Scholar]
- Rekalova, E.M. Immunomodulator kemantan v lechenii bol’nykh s obostreniem khronicheskogo obstruktivnogo bronkhita [The immunomodulator kemantan in treatment of patients with exacerbated chronic obstructive bronchitis]. Likars’ka Sprav. 1992, 4, 73–76. [Google Scholar]
- Ivanova, E.A.; Kapitsa, I.G.; Val’dman, E.A.; Voronina, T.A. Anti-Parkinsonian activity of hemantane on a model of hemiparkinsonian syndrome in rats. Bull. Exp. Biol. Med. 2015, 159, 380–383. [Google Scholar] [CrossRef]
- Foldes, F.F.; Chaudhry, I.A.; Barakat, T.; Flores, C.A.; Kinjo, M.; Bikhazi, G.B.; Nagashima, H. Species variation in the site and mechanism of the neuromuscular effects of diadonium in rodents. Anesth. Analg. 1989, 68, 638–644. [Google Scholar] [CrossRef]
- Goetz, M.K.; Schneider, J.E.; Filatov, A.S.; Jesse, K.A.; Anderson, J.S. Enzyme-Like Hydroxylation of Aliphatic C–H Bonds from an Isolable Co-Oxo Complex. J. Am. Chem. Soc. 2021, 143, 20849–20862. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, H.; Xie, D.; Sun, K.; Zhu, S.; Guo, M.; Han, W. Iron-catalyzed aliphatic C–H functionalization to construct carbon–carbon bonds. Nat. Commun. 2025, 16, 4673. [Google Scholar] [CrossRef]
- Mitsukura, K.; Sakamoto, H.; Kubo, H.; Yoshida, T.; Nagasawa, T. Bioconversion of 1-adamantanol to 1,3-adamantanediol using Streptomyces sp. SA8 oxidation system. J. Biosci. Bioeng. 2010, 109, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Maiti, D.; Guin, S. (Eds.) Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2021; ISBN 9783527346677. [Google Scholar]
- Siedlecka, R. Selectivity in the Aliphatic C–H Bonds Oxidation (Hydroxylation) Catalyzed by Heme- and Non-Heme Metal Complexes—Recent Advances. Catalysts 2023, 13, 121. [Google Scholar] [CrossRef]
- Mitsukura, K.; Kondo, Y.; Yoshida, T.; Nagasawa, T. Regioselective hydroxylation of adamantane by Streptomyces griseoplanus cells. Appl. Microbiol. Biotechnol. 2006, 71, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Moldowan, J.M.; Peters, K.E.; Wang, Y.; Xiang, W. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: Implications for biodegradation of diamondoids in petroleum reservoirs. Org. Geochem. 2007, 38, 1910–1926. [Google Scholar] [CrossRef]
- Slepenkin, A.V. Metabolism of Adamantane and Its Derivatives by Pseudomonas Bacteria Carrying the Camphor Biodegradation Plasmid. Bachelor’s Thesis, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia, 2000; 20p. (In Russian). [Google Scholar]
- Aramaki, H.; Sagara, Y.; Kabata, H.; Shimamoto, N.; Horiuchi, T. Purification and characterization of a cam repressor (CamR) for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. J. Bacteriol. 1995, 177, 3120–3127. [Google Scholar] [CrossRef]
- Selifonov, S.A. Microbial oxidation of adamantanone by Pseudomonas putida carrying the camphor catabolic plasmid. Biochem. Biophys. Res. Commun. 1992, 186, 1429–1436. [Google Scholar] [CrossRef]
- Folwell, B.D.; McGenity, T.J.; Whitby, C. Diamondoids are not forever: Microbial biotransformation of diamondoid carboxylic acids. Microb. Biotechnol. 2020, 13, 495–508. [Google Scholar] [CrossRef]
- Mitsukura, K.; Yamanaka, N.; Yoshida, T.; Nagasawa, T.N. Regioselective synthesis of 1,3,5-adamantanetriol from 1,3-adamantanediol using Kitasatospora. Biotechnol. Lett. 2012, 34, 1741–1744. [Google Scholar] [CrossRef]
- Behrendorff, J.B.; Huang, W.; Gillam, E.M. Directed evolution of cytochrome P450 enzymes for biocatalysis: Exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Biochem. J. 2015, 467, 1–15. [Google Scholar] [CrossRef]
- Colthart, A.M.; Tietz, D.R.; Ni, Y.; Friedman, J.L.; Dang, M.; Pochapsky, T.C. Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance. Sci. Rep. 2016, 6, 22035. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Zhang, H.; Chu, H.; Shi, C.; Zhang, L.; Bai, J.; Liu, P.; Li, J.; Zhu, X.; et al. Cytochrome P450 Enzyme Design by Constraining the Catalytic Pocket in a Diffusion Model. Research 2024, 7, 0413. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Q.; Wu, W.; Pu, Z.; Yu, H. Rational design of enzyme activity and enantioselectivity. Front. Bioeng. Biotechnol. 2023, 11, 1129149. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, F.; Sun, T.; Guo, J.; Zhang, X.; Zheng, X.; Du, L.; Zhang, W.; Ma, L.; Li, S. Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution. Commun. Biol. 2022, 5, 791. [Google Scholar] [CrossRef] [PubMed]
- Pongsupasa, V.; Anuwan, P.; Maenpuen, S.; Wongnate, T. Rational-Design Engineering to Improve Enzyme Thermostability. Methods Mol. Biol. 2022, 2397, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Kumondai, M.; Hishinuma, E.; Gutiérrez Rico, E.M.; Ito, A.; Nakanishi, Y.; Saigusa, D.; Hirasawa, N.; Hiratsuka, M. Heterologous expression of high-activity cytochrome P450 in mammalian cells. Sci. Rep. 2020, 10, 14193. [Google Scholar] [CrossRef]
- Newgas, S.A. Biocatalysis Using Plant and Metagenomic Enzymes for Organic Synthesis. Ph.D. Thesis, University College London, London, UK, 2018. Available online: https://discovery.ucl.ac.uk/id/eprint/10052003/ (accessed on 9 August 2025).
- Li, S.; Du, L.; Bernhardt, R. Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol. 2020, 28, 445–454. [Google Scholar] [CrossRef]
- Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.; Streit, W.R. Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl. Environ. Microbiol. 2013, 79, 4551–4563. [Google Scholar] [CrossRef] [PubMed]
- Shionogi & Co., Ltd. Method for Producing Hydroxylated Adamantine Using Cytochrome P450. US Patent No. 8,614,080, 24 December 2013. [Google Scholar]
- Batabyal, D.; Li, H.; Poulos, T.L. Synergistic effects of mutations in cytochrome P450cam designed to mimic CYP101D1. Biochemistry 2013, 52, 5396–5402. [Google Scholar] [CrossRef] [PubMed]
No | Name of Adamantane Derivative | Application and Role | References |
---|---|---|---|
1 | Amantadine | Antiviral (influenza A virus), anti-Parkinson’s agent | [31,32,33,34,35] |
2 | Memantine | Treatment of neurodegenerative diseases (Alzheimer’s disease), neurotropic agent | [11,31] |
3 | Rimantadine (remantadine) | Antiviral (against influenza A virus), treatment of Parkinson’s disease | [32,36] |
4 | Tromantadine | Analogue of amantadine, antiviral action | [37] |
5 | Vildagliptin | Hypoglycaemic agent for the treatment of type 2 diabetes mellitus, antidiabetic activity | [38,39,40] |
6 | Bromantane | Immunotropic, antiviral activity, adaptogen, psychostimulant, actoprotector | [41,42,43] |
7 | Nitromemantine (nitrosynapsin, YQW-036 or EM-036) | Treatment of neurodegenerative diseases, neuroprotective effect | [44] |
8 | Saxagliptin | Used in the treatment of diabetes mellitus, improvement of glycaemic control | [40,45] |
9 | Gludantan | Anti-Parkinson’s agent, antidepressant, antiviral | [46] |
10 | Adapromine | An anti-Parkinson’s disease, antidepressant and psychostimulant agent with antiviral properties | [47,48] |
11 | Diamantane | Vector for delivering anti-cancer drugs | [49] |
12 | Kemanatan | Immune-stimulating effect | [50,51] |
13 | Hemanthan | Anti-Parkinson’s agent | [52] |
14 | Diadonium (dithosylate bis[di(2-(adamantyl dimethylammonio)ethyl)succinate]) | Short-acting non-depolarising muscle relaxant | [53] |
15 | Chlodanthan | Adaptogen, immunostimulant | [42] |
No | Microorganism | Substrate | Transformation Products | References |
---|---|---|---|---|
1 | Streptomyces sp. SA8 | 1-adamantanol | 1,3-adamantandiol and 1,4-adamantandiol | [56] |
2 | Microbial communities from various aquatic ecological niches of the Mildred Lake Tail Basin | Adamantane carboxylic acids: adamantane-1-carboxylic acid, 3-ethyl adamantane carboxylic acid | 2-hydroxyadamantane-1-carboxylic acid, 3-ethyladamantane-2-ol | [64] |
3 | Kitasatospora sp. GF12 | 1,3-Adamantandiol | 1,3,5-Adamantatriol | [65] |
4 | Mycobacterium AGS10 | 1-Methyl-, 1,3-dimethyl- and 1,3,5-trimethyladamantanes | Partial consumption of ~55–58% of methyl- and dimethyladamantanes (metabolites not identified) | [52] |
5 | Pseudomonas putida ATCC17453(CAM) | Monoketone derivative of adamantane (adamantanone) | 4-oxahomoadamantane-5-one; 5-hydroxyadamantane-2-one; 1-hydroxy-4-oxa-homoadamantane-5-one; syn- and anti-1,4-dihydroxyadamantanes | [63] |
No | Method Name | Advantages | Limitations | Products/Outputs | Selectivity | Yield (Approx.) | References |
---|---|---|---|---|---|---|---|
1 | Traditional chemical radical substitution of C–H | - High reactivity - Variety of modifications | - Low selectivity - Aggressive conditions - Product mixtures | Substituted adamantanes, often complex mixtures; exact yields not specified | Low (multiple C–H positions affected, poor control) | Variable, usually low (often <20%, product mixtures) | [9] |
2 | Catalytic functionalisation of C–H bonds using transition metals (e.g., Pd, Rh). | - Increased selectivity - Controlled conditions | - Complex catalysts required - Sensitivity to water and oxygen - Cost | Hydroxylation predominantly occurs at the tertiary C–H bond, with high regioselectivity. | High regioselectivity (tertiary C–H), typically >90% | Moderate to high (30–80% depending on substrate and catalyst) | [17] |
3 | Chemical oxidative hydroxylation using peroxides and other oxidants. | - Simple reagents - Obtaining oxygen-containing products | - Low selectivity - Side reactions - Often high temperatures culture | Mono- and dihydroxy derivatives of adamantane were obtained with moderate yields | Moderate (primary and secondary C–H, possible side reactions) | Moderate (20–60%) | [58] |
4 | Biocatalytic hydroxylation using cytochrome P450 (P450cam) and other monooxygenases | - Very high regioselectivity (up to 48:1). - Mild conditions and environmental friendliness | - Low catalytic activity - Need for induction - Susceptibility to inhibitors | 1-Adamantanol (up to 32% yield), dihydroxy derivatives (1,3-adamantanediol, 1,4-adamantanediol, etc.). | Very high (up to 48:1 for tertiary vs. secondary C–H, e.g., P450cam) | Up to 32% for 1-adamantanole; other derivatives 5–20% | [19,59] |
5 | - Microbial transformation (Streptomyces, Pseudomonas, Kitasatospora strains, etc.). | - High selectivity and specificity - Mild conditions - Environmental friendliness | - Slow reaction rate - Scaling difficulties - Need to maintain | 1-adamantanol; 1,3-adamantanediol; 1,4-adamantanediol; 1,3,5-adamantatriol; 4-oxagomoadamantane-5-one; 5-hydroxyadamantane-2-one, etc.). | High (typically >80% for target positions, strain-dependent) | Low to moderate (10–35% for main products) | [56,64,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, A.A.; Vetrova, A.A. Bacterial Transformation of Adamantane and Its Derivatives: Regioselectivity and Biocatalytic Approaches. Biology 2025, 14, 1429. https://doi.org/10.3390/biology14101429
Ivanova AA, Vetrova AA. Bacterial Transformation of Adamantane and Its Derivatives: Regioselectivity and Biocatalytic Approaches. Biology. 2025; 14(10):1429. https://doi.org/10.3390/biology14101429
Chicago/Turabian StyleIvanova, Anastasia A., and Anna A. Vetrova. 2025. "Bacterial Transformation of Adamantane and Its Derivatives: Regioselectivity and Biocatalytic Approaches" Biology 14, no. 10: 1429. https://doi.org/10.3390/biology14101429
APA StyleIvanova, A. A., & Vetrova, A. A. (2025). Bacterial Transformation of Adamantane and Its Derivatives: Regioselectivity and Biocatalytic Approaches. Biology, 14(10), 1429. https://doi.org/10.3390/biology14101429