Methodological Pitfalls of Monitoring: Water Conditions Affect the Efficiency of Bottle Traps and Capture Success
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Bottle Trap Survey
2.3. Monitoring
2.4. Data Analysis
3. Results
3.1. Vertebrate Species Detected Using Bottle Traps
3.2. The Efficiency and Capture Success of Bottle Traps
3.3. The Effect of Water Conditions on the Efficiency and Capture Success of Bottle Traps
3.4. Sex Ratio of Smooth Newts
3.5. First Results of Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, N.C. How much wetland has the world lost? Longterm and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Caro, T.; Rowe, Z.; Berger, J.; Wholey, P.; Dobson, A. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conserv. Lett. 2022, 15, e12868. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef]
- Sayer, C.A.; Fernando, E.; Jimenez, R.R.; Macfarlane, N.B.W.; Rapacciuolo, G.; Böhm, M.; Brooks, T.M.; Contreras-MacBeath, T.; Cox, N.A.; Harrison, I.; et al. One-quarter of freshwater fauna threatened with extinction. Nature 2025, 638, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Houlahan, J.E.; Findlay, C.S.; Schmidt, B.R.; Meyer, A.H.; Kuzmin, S.L. Quantitative evidence for global amphibian population declines. Nature 2000, 404, 752–755. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, A.R.; Kiesecker, J.M. Complexity in conservation: Lessons from the global decline of amphibian populations. Ecol. Lett. 2002, 5, 597–608. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Han, B.A.; Relyea, R.A.; Johnson, P.T.J.; Buck, J.C.; Gervasi, S.S.; Kats, L.B. The complexity of amphibian population declines: Understanding the role of cofactors in driving amphibian losses. Ann. N. Y. Acad. Sci. 2011, 1223, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Oliver, T.H.; Morecroft, M.D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. WIREs Clim. Change 2014, 5, 317–335. [Google Scholar] [CrossRef]
- Hussain, Q.A.; Pandit, A.K. Global amphibian declines: A review. Int. J. Biodivers. Conserv. 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Timár, G.; Székely, B.; Molnár, G.; Ferencz, C.; Kern, A.; Galambos, C.; Gercsák, G.; Zentai, L. Combination of historical maps and satellite images of the Banat region—Re-appearance of an old wetland area. Glob. Plan. Change 2008, 62, 29–38. [Google Scholar] [CrossRef]
- Bíró, M.; Bölöni, J.; Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 2018, 32, 660–671. [Google Scholar] [CrossRef]
- Németh, G.; Lóczy, D.; Gyenizse, P. Long-term land use and landscape pattern changes in a marshland of Hungary. Sustainability 2021, 13, 12664. [Google Scholar] [CrossRef]
- Lieb, G.K.; Sulzer, W. Land use in the Drava Basin: Past and present. In The Drava River; Lóczy, D., Ed.; Springer Geography; Springer: Cham, Switzerland, 2019; pp. 27–43. [Google Scholar] [CrossRef]
- Erős, T.; Petrovszki, J.; Mórocz, A. Planning for sustainability: Historical data and remote sensing-based analyses aid landscape design in one of the largest remnant European floodplains. Landsc. Urban Plan. 2023, 238, 104837. [Google Scholar] [CrossRef]
- Malatinszky, Á.; Ádám, S.; Falusi, E.; Saláta, D.; Penksza, K. Climate change related land use problems in protected wetlands: A study in a seriously affected Hungarian area. Clim. Change 2013, 118, 671–682. [Google Scholar] [CrossRef]
- Šmejkal, M.; Kalous, L.; Auwerx, J.; Gorule, P.A.; Jurić, I.; Dočkal, O.; Fedorčák, J.; Muška, M.; Thomas, K.; Takács, P.; et al. Wetland fish in peril: A synergy between habitat loss and biological invasions drives the extinction of neglected native fauna. Biol. Conserv. 2025, 302, 110948. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Kovács, J.; Kovács, I.S.; Jakusch, P.; Korponai, J. Analysis of long-term water quality changes in the Kis-Balaton Water Protection System with time series-, cluster analysis and Wilks’ lambda distribution. Ecol. Eng. 2011, 37, 629–635. [Google Scholar] [CrossRef]
- Parrag, T.; Lóczy, D. Rehabilitation of Drava Side Channels. In The Drava River; Lóczy, D., Ed.; Springer Geography; Springer: Cham, Switzerland, 2019; pp. 345–365. [Google Scholar] [CrossRef]
- Lóczy, D.; Dezső, J.; Czigány, S.; Prokos, H.; Tóth, G. An environmental assessment of water replenishment to a floodplain lake. J. Environ. Manag. 2017, 202, 337–347. [Google Scholar] [CrossRef]
- Lóczy, D.; Dezső, J. Landscape Rehabilitation. In The Drava River; Lóczy, D., Ed.; Springer Geography; Springer: Cham, Switzerland, 2019; pp. 367–391. [Google Scholar] [CrossRef]
- Purger, J.J. (Ed.) Biotas and Rehabilitation of Four Drava River Side-Branches in Hungary; BioRes: Pécs, Hungary, 2013. [Google Scholar]
- Lóczy, D.; Dezső, J.; Gyenizse, P.; Czigány, S.; Tóth, G. Oxbow Lakes: Hydromorphology. In The Drava River; Lóczy, D., Ed.; Springer Geography; Springer: Cham, Switzerland, 2019; pp. 177–198. [Google Scholar] [CrossRef]
- Majer, J. Contributions to data on the fish, amphibian and reptile fauna (Pisces. Amphibia, Reptilia) of river Dráva and adjacent areas. Stud. Pannon. (A) Ser. Hist.-Nat. 1998, 9, 431–440. [Google Scholar]
- Sterbetz, I. Lage des praktischen Vogelschutzes in Ungarn 1974. Aquila 1977, 83, 11–27. [Google Scholar]
- Márkus, F. Szaporca-Ó-Dráva (Baranya). In Important Bird Areas in Europe; Grimmet, R.F.A., Jones, T.A., Eds.; International Council for Bird Preservation: Cambridge, UK, 1989; p. 315. [Google Scholar]
- Sallai, Z. Investigation of the fish fauna of the Drava-Mura river system. II. List of species, conclusions. Halászat 2002, 95, 119–140. [Google Scholar]
- Sallai, Z. Lápi póc Umbra krameri Walbaum, 1792. In Natura 2000 Fajok és Élőhelyek Magyarországon; Haraszthy, L., Ed.; Pro Vértes Közalapítvány: Csákvár, Hungary, 2014; pp. 448–450. [Google Scholar]
- Puky, M.; Schád, P.; Szövényi, G. Herpetological Atlas of Hungary; Varangy Akciócsoport Egyesület: Budapest, Hungary, 2005. [Google Scholar]
- Vörös, J.; Harmos, K. Dunai tarajosgőte Triturus dobrogicus (Kritzescu, 1903). In Natura 2000 Fajok és Élőhelyek Magyarországon; Haraszthy, L., Ed.; Pro Vértes Közalapítvány: Csákvár, Hungary, 2014; pp. 471–474. [Google Scholar]
- Griffiths, R.A. A simple funnel trap for studying newt populations and an evaluation of trap behaviour in smooth and palmate newts. Herpetol. J. 1985, 1, 5–10. [Google Scholar]
- Kiss, I.; Babocsay, G.; Dankovics, R.; Gubányi, A.; Kovács, T.; Molnár, P.; Somla, T.; Vörös, J. Kiválasztott Natura 2000 fajok (Triturus carnifex, T. dobrogicus és Bombina bombina) monitorozását előkészítő felmérések. Állattani Közl. 2010, 95, 281–304. [Google Scholar]
- Purger, J.J. The amphibian and reptile fauna of the Old-Drava oxbow near Barcs. In Habitats and Wildlife of the Old-Drava Oxbow near Barcs; Purger, D., Purger, J.J., Eds.; BioRes: Pécs, Hungary, 2019; pp. 141–154. [Google Scholar]
- Griffiths, R.A. Seasonal behaviour and intrahabitat movements in an urban population of Smooth newts, Triturus vulgaris (Amphibia: Salamandridae). J. Zool. 1984, 203, 241–251. [Google Scholar] [CrossRef]
- Arntzen, J.W. Seasonal variation in sex ratio and asynchronous presence at ponds of male and female Triturus newts. J. Herpetol. 2002, 36, 30–35. [Google Scholar] [CrossRef]
- Cicort-Lucaciu, A.S.; Radu, N.R.; Paina, C.; Severus-D.; Covaciu-Marcov, S.D.; Sas, I. Data on Population Dynamics of Three Syntopic Newt Species from Western Romania. Ecol. Balk. 2011, 3, 49–55. [Google Scholar]
- Bogdan, H.V.; Badar, L.; Goilean, C.; Boros, A.; Popovici, A.M. Population dynamics of Triturus cristatus and Lissotriton vulgaris (Amphibia) in an aquatic habitat from Banat region, Romania. Herpetol. Rom. 2012, 6, 41–50. [Google Scholar]
- Pálfai, I. Duna-Völgyi Holtágak; Közlekedési, Hírközlési és Vízügyi Minisztérium: Budapest, Hungary, 1997; pp. 41–44. [Google Scholar]
- Dénes, A.; Ortmann-Ajkai, A. Oxbow lakes of river Dráva in Baranya County (South Hungary). General and botanical description and problems of nature conservation. Jan. Pann. Múz. Évk. 1999, 43, 5–26. [Google Scholar]
- Ortmann-Ajkai, A.; Dénes, A. Non-forest vegetation of oxbows of river Dráva, South Hungary. Jan. Pann. Múz. Évk. 1999, 43, 27–39. [Google Scholar]
- Ortmann-Ajkai, A.; Kovács, A.; Lóczy, D. Landscape history of Drava oxbows in the last 50 years. Jan. Pann. Múz. Évk. 2017, 54, 105–118. [Google Scholar]
- Ortmann-Ajkai, A.; Csicsek, G.; Hollós, R.; Magyaros, V.; Wágner, L.; Lóczy, D. Twenty-years’ changes of wetland vegetation: Effects of floodplain-level threats. Wetlands 2018, 38, 591–604. [Google Scholar] [CrossRef]
- Závoczky, S. A természetvédelem múltja és jelene a DDNP területén. In Duna-Dráva Nemzeti Park; Iványi, I., Lehmann, A., Eds.; Mezőgazda Kiadó: Budapest, Hungary, 2001; pp. 7–16. [Google Scholar]
- Ramsar Sites Information Service. Szaporca. Available online: https://rsis.ramsar.org/ris/182 (accessed on 12 July 2025).
- European Environmental Agency. Kelet-Dráva Natura 2000 Site (Code HUDD20007). Available online: https://eunis.eea.europa.eu/sites/HUDD20007#tab-species (accessed on 12 July 2025).
- Köck, G.; Schwach, G.; Mohl, A. Mura-Drava-Danube biosphere reserve: A long way from the original idea to the designation of the world’s first 5-country biosphere reserve. Int. J. Environ. Sustain. Dev. 2022, 2, 253–269. [Google Scholar] [CrossRef]
- Dezső, J.; Halász, A.; Czigány, S.; Tóth, G.; Lóczy, D. Estimating seepage loss during water replenishment to a floodplain oxbow: A case study from the Drava Plain. Geogr. Fis. Dinam. Quat. 2017, 40, 61–75. [Google Scholar] [CrossRef]
- Deeming, D.C. Capture of smooth newts (Lissotriton vulgaris) and great crested newts (Triturus cristatus) correlates with the lunar cycle. Herpetol. J. 2008, 18, 171–174. [Google Scholar]
- Deeming, D.C. Estimations of the population size of smooth newts (Lissotriton vulgaris) breeding in a pond in Lincolnshire, England. Salamandra 2009, 45, 119–124. [Google Scholar]
- Sewell, D.; Beebee, T.J.C.; Griffiths, R.A. Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biol. Conserv. 2010, 143, 2102–2110. [Google Scholar] [CrossRef]
- Madden, N.; Jehle, R. Farewell to the bottle trap? An evaluation of aquatic funnel traps for great crested newt surveys (Triturus cristatus). Herpetol. J. 2013, 23, 241–244. [Google Scholar]
- Biggs, J.; Ewald, N.; Valentini, A.; Gaboriaud, C.; Dejean, T.; Griffiths, R.A.; Foster, J.; Wilkinson, J.W.; Arnell, A.; Brotherton, P. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 2015, 183, 19–28. [Google Scholar] [CrossRef]
- Mester, B.; Lengyel, S.; Puky, M. Low frequency of amphibian morphological anomalies in a large protected wetland and grassland complex in Hungary. Herpetol. Conserv. Biol. 2015, 10, 679–687. [Google Scholar]
- Oldham, R.S.; Keeble, J.; Swan, M.J.S.; Jeffcote, M. Evaluating the suitability of habitat for the great crested newt (Triturus cristatus). Herpetol. J. 2000, 10, 143–155. [Google Scholar]
- Korsós, Z. Nemzeti Biodiverzitás-Monitorozó Rendszer VIII. Kétéltűek és Hüllők; Magyar Természettudományi Múzeum: Budapest, Hungary, 1997. [Google Scholar]
- Kiss, I.; Babocsay, G.; Bakó, B.; Dankovics, R.; Deme, T.; Kovács, T.; Szénási, V.; Vági, B.; Vörös, J. Monitoring of amphibians and reptiles at nine regions of Hungary within the frame of the Hungarian Biodiversity Monitoring System. In A Nemzeti Biodiverzitás-Monitorozó Rendszer Eredményei II.—Gerinces Állatok; Váczi, O., Varga, I., Bakó, B., Eds.; Körös-Maros National Park Directorate: Szarvas, Hungary, 2019; pp. 123–156. [Google Scholar]
- Deák, G.; Sály, P.; Kiss, I. Population dinamic and habitat use of Triturus dobrogicus and Lissotriton vulgaris at the breeding site. Állat. Közlem. 2012, 97, 61–76. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Jelić, D.; Vucić, M.; Špelić, I.; Mihinjač, T.; Lisjak, D.; Pušić, A.; Ghrib, F.L.; Klobučar, G. Distribution and habitat preferences of the endangered mudminnow Umbra krameri Walbaum, 1792 in the Croatian parts of the Drava and Sava drainages. Biologia 2024, 79, 1289–1301. [Google Scholar] [CrossRef]
- Schäffer, D.A.; Purger, J.J. Distribution of Common Spadefoot Toad (Pelobates fuscus) in Hungary. Állat. Közlem. 2005, 90, 25–39. [Google Scholar]
- Sinsch, U.; Kirst, C. Homeward orientation of displaced newts (Triturus cristatus, Lissotriton vulgaris) is restricted to the range of routine movements. Ethol. Ecol. Evol. 2016, 28, 312–328. [Google Scholar] [CrossRef]
- Aronsson, S.; Stenson, J.A.E. Newt-fish interactions in a small forest lake. Amphibia-Reptilia 1995, 16, 177–184. [Google Scholar] [CrossRef]
- Winandy, L.; Darnet, E.; Denoël, M. Amphibians forgo aquatic life in response to alien fish introduction. Anim. Behav. 2015, 109, 209–216. [Google Scholar] [CrossRef]
- Préau, C.; Dubech, P.; Sellier, Y.; Cheylan, M.; Castelnau, F.; Beaune, D. Amphibian response to the nonnative fish, Lepomis gibbosus: The case of the Pinail Nature Reserve, France. Herpetol. Conserv. Biol. 2017, 12, 616–662. [Google Scholar]
- Dely, O.G. Kétéltűek–Amphibia. Fauna Hung. 1967, 83, 1–80. [Google Scholar]
- Sullivan, G.K.; Ryan, M.J.; Verell, P.A. Social Behaviour. In Amphibian Biology; Heatwole, H., Sullivan, B.K., Eds.; Surrey Beatty Sons: Chipping Norton, UK, 1995; pp. 469–517. [Google Scholar]
- Takács, P.; Erős, T.; Specziár, A.; Sály, P.; Vitál, Z.; Ferincz, Á.; Molnár, T.; Szabolcsi, Z.; Bíró, P.; Csoma, E. Population Genetic Patterns of Threatened European Mudminnow (Umbra krameri Walbaum, 1792) in a Fragmented Landscape: Implications for Conservation Management. PLoS ONE 2015, 10, e0138640. [Google Scholar] [CrossRef]
- Bănăduc, D.; Marić, S.; Cianfaglione, K.; Afanasyev, S.; Somogyi, D.; Nyeste, K.; Antal, L.; Koščo, J.; Caleta, M.; Wanzenböck, J.; et al. Stepping Stone Wetlands, Last Sanctuaries for European Mudminnow: How Can the Human Impact, Climate Change, and Non-Native Species Drive a Fish to the Edge of Extinction? Sustainability 2022, 14, 13493. [Google Scholar] [CrossRef]
- Somogyi, D.; Erős, T.; Mozsár, A.; Czeglédi, I.; Szeles, J.; Tóth, R.; Zulkipli, N.; Antal, L.; Nyeste, K. Intraguild predation as a potential explanation for the population decline of the threatened native fish, the European mudminnow (Umbra krameri Walbaum, 1792) by the invasive Amur sleeper (Perccottus glenii Dybowski, 1877). NeoBiota 2023, 83, 95–107. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Arscott, D.B.; Claret, C. Riverine landscape diversity. Freshw. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef]
Vertebrate Species | n | % |
---|---|---|
European weather loach Misgurnus fossilis (Linnaeus, 1758) | 7 | 0.35 |
European mudminnow Umbra krameri Walbaum, 1792 | 11 | 0.55 |
Danube whitefin gudgeon Romanogobio vladykovi (Fang, 1943) | 2 | 0.1 |
Smooth newt Lissotriton vulgaris (Linnaeus, 1758) | 205 | 10.25 |
Danube crested newt Triturus dobrogicus (Kiritzescu, 1903) | 2 | 0.1 |
Common spadefoot toad Pelobates fuscus (Laurenti, 1768) | 1 | 0.05 |
Edible frog Pelophylax kl. esculentus (Linnaeus, 1758) | 10 | 0.5 |
Total (Σ) | 238 | 11.9 |
Year (Sites) | Trap | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Σ | % |
---|---|---|---|---|---|---|---|---|---|---|
2020 (1–5) | 500 | 33 | 11 | 5 | 1 | 1 | 1 | 0 | 52 | 10.4 |
2021 (1–5) | 500 | 4 | 7 | 1 | 1 | 1 | 0 | 1 | 15 | 3.0 |
2021 (6–10) | 500 | 4 | 11 | 7 | 1 | 4 | 1 | 0 | 28 | 5.6 |
2021 (11–15) | 500 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 0.8 |
Σ Bottle Trap | 2000 | 43 | 31 | 13 | 3 | 6 | 2 | 1 | 99 | 4.9 |
Σ Smooth Newt | 43 | 62 | 39 | 12 | 30 | 12 | 7 | 205 | 10.2 |
Bottle Trap: 2020 (1–5) n = 52 | Smooth Newt: 2020 (1–5) n = 85 | |||||||
---|---|---|---|---|---|---|---|---|
Year (Sites) | n | χ2 | df | p | n | χ2 | df | p |
2021 (1–5) | 15 | 20.43 | 1 | <0.001 | 37 | 18.88 | 1 | <0.001 |
2021 (6–10) | 28 | 7.20 | 1 | <0.01 | 77 | 0.39 | 1 | 0.529 |
2021 (11–15) | 4 | 41.14 | 1 | <0.001 | 6 | 68.58 | 1 | <0.001 |
Year | 2020 | 2021 | ||
---|---|---|---|---|
Sex | Male | Female | Male | Female |
Lake Alsófüzes | 14 | 3 | 81 | 8 |
Lake Lencsés | 16 | 4 | 9 | 1 |
Lake Inner-Hobogy | 20 | 7 | 5 | 4 |
Lake Outer-Hobogy | 12 | 8 | 6 | - |
Lake Kisinc | - | 1 | - | - |
Lake Szilhát | - | - | 4 | 1 |
Lake Kerek | - | - | - | 1 |
Total (Σ) | 62 | 23 | 105 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purger, T.J.; Szűcs, B.; Dezső, J.; Wágner, L.; Purger, D.; Purger, J.J. Methodological Pitfalls of Monitoring: Water Conditions Affect the Efficiency of Bottle Traps and Capture Success. Biology 2025, 14, 1416. https://doi.org/10.3390/biology14101416
Purger TJ, Szűcs B, Dezső J, Wágner L, Purger D, Purger JJ. Methodological Pitfalls of Monitoring: Water Conditions Affect the Efficiency of Bottle Traps and Capture Success. Biology. 2025; 14(10):1416. https://doi.org/10.3390/biology14101416
Chicago/Turabian StylePurger, Teodor J., Boldizsár Szűcs, József Dezső, László Wágner, Dragica Purger, and Jenő J. Purger. 2025. "Methodological Pitfalls of Monitoring: Water Conditions Affect the Efficiency of Bottle Traps and Capture Success" Biology 14, no. 10: 1416. https://doi.org/10.3390/biology14101416
APA StylePurger, T. J., Szűcs, B., Dezső, J., Wágner, L., Purger, D., & Purger, J. J. (2025). Methodological Pitfalls of Monitoring: Water Conditions Affect the Efficiency of Bottle Traps and Capture Success. Biology, 14(10), 1416. https://doi.org/10.3390/biology14101416