Detectability of Crown-of-Thorns Starfish and Consequences for Culling or Removal
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Depletive Sampling at Lizard Island
2.2. Mark–Recapture Sampling at Rib Reef
2.3. Estimating and Comparing Detectability of CoTS
3. Results
3.1. Depletive Sampling at Lizard Island
3.2. Mark–Recapture Sampling at Rib Reef
4. Discussion
Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CoTS | Crown-of-Thorns Starfish |
GBR | Great Barrier Reef |
MC/R | Mark Capture Re-capture |
SE | Standard Error |
Appendix A
Site (Aspect) | Zone | Density | Body Size | Detectability |
---|---|---|---|---|
Casuarina (leeward) | Crest | 160 ± 29.15 | 35.25 ± 2.26 | 0.89 ± 0.07 |
Slope | 360 ± 33.7 | 29.43 ± 2.75 | 0.72 ± 0.07 | |
Corner Beach (leeward) | Crest | 170 ± 20.00 | 34.46 ± 1.47 | 0.90 ± 0.06 |
Slope | 200 ± 44.72 | 32.14 ± 1.36 | 0.50 ± 0.00 | |
Lizard Head (windward) | Crest | 50 ± 27.39 | 34.20 ± 2.39 | 0.89 ± 0.09 |
Slope | 250 ± 41.83 | 38.17 ± 1.97 | 0.70 ± 0.14 | |
Coconut Beach (windward) | Crest | 10 ± 10.00 | 34.20 ± 2.39 | 1.00 ± 0.00 |
Slope | 120 ± 25.50 | 39.42 ± 2.00 | 0.88 ± 0.07 |
Transect (Aspect) | Zone | Max N | Density | Body Size | Coral Cover (%) | Detectability | |
---|---|---|---|---|---|---|---|
Day | Night | ||||||
A-1 (Windward) | Slope | 70 | 1400 | 29.73 ± 0.94 | 39 | 0.71 | 1.00 |
A-2 (Windward) | Crest | 28 | 1120 | 27.33 ± 0.85 | 51 | 1.00 | 0.95 |
B-1 (Windward) | Slope | 89 | 1780 | 33.67 ± 0.93 | 42 | 0.93 | 0.83 |
B-2 (Windward) | Crest | 89 | 3560 | 31.37 ± 0.52 | 74 | 0.82 | 1.00 |
C-1 (Leeward) | Slope | 32 | 640 | 30.33 ± 1.29 | 34 | 0.60 | 0.50 |
C-2 (Leeward) | Crest | 6 | 240 | 25.83 ± 2.99 | 44 | 0.83 | 1.00 |
C-3 (Leeward) | Slope | 0 | 0 | 55 | |||
C-4 (Leeward) | Crest | 4 | 160 | 28.67 ± 2.33 | 48 | 0.50 | 0.50 |
D-1 (Leeward) | Crest | 54 | 2160 | 28.24 ± 1.58 | 51 | 0.60 | 0.28 |
D-2 (Leeward) | Slope | 19 | 380 | 29.94 ± 1.97 | 21 | 0.77 | 1.00 |
E-1 (Leeward) | Crest | 6 | 240 | 32.50 ± 2.50 | 44 | 0.50 | 1.00 |
E-2 (Leeward) | Slope | 14 | 280 | 31.25 ± 1.75 | 16 | 0.36 | 1.00 |
Total | 411 | 913.33 | 30.76 ± 0.39 | 43.26 ± 4.41 | 0.69 | 0.81 |
References
- Riegl, B.; Bruckner, A.; Coles, S.L.; Renaud, P.; Dodge, R.E. Coral reefs: Threats and conservation in an era of global change. Ann. N. Y. Acad. Sci. 2009, 1162, 136–186. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Pratchett, M.S.; Morrison, T.H.; Gurney, G.G.; Hughes, T.P.; Álvarez-Romero, J.G.; Day, J.C.; Grantham, R.; Grech, A.; Hoey, A.S.; et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 2019, 236, 604–615. [Google Scholar] [CrossRef]
- Donovan, M.K.; Burkepile, D.E.; Kratochwill, C.; Shlesinger, T.; Sully, S.; Oliver, T.A.; Hodgson, G.; Freiwald, J.; van Woesik, R. Local conditions magnify coral loss after marine heatwaves. Science 2021, 372, 977–980. [Google Scholar] [CrossRef]
- Baker, A.C.; Glynn, P.W.; Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 2008, 80, 435–471. [Google Scholar] [CrossRef]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef]
- Eakin, C.M.; Sweatman, H.P.; Brainard, R.E. The 2014–2017 global-scale coral bleaching event: Insights and impacts. Coral Reefs 2019, 38, 539–545. [Google Scholar] [CrossRef]
- Reimer, J.D.; Peixoto, R.S.; Davies, S.W.; Traylor-Knowles, N.; Short, M.L.; Cabral-Tena, R.A.; Burt, J.A.; Pessoa, I.; Banaszak, A.T.; Winters, R.S.; et al. The fourth global coral bleaching event: Where do we go from here? Coral Reefs 2024, 43, 1121–1125. [Google Scholar] [CrossRef]
- Ortiz, J.C.; Bozec, Y.M.; Wolff, N.H.; Doropoulos, C.; Mumby, P.J. Global disparity in the ecological benefits of reducing carbon emissions for coral reefs. Nat. Clim. Change 2014, 4, 1090–1094. [Google Scholar] [CrossRef]
- Roberts, C.M.; O’Leary, B.C.; McCauley, D.J.; Cury, P.M.; Duarte, C.M.; Lubchenco, J.; Pauly, D.; Sáenz-Arroyo, A.; Sumaila, U.R.; Wilson, R.W.; et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Nat. Acad. Sci. USA 2017, 114, 6167–6175. [Google Scholar] [CrossRef] [PubMed]
- Condie, S.A.; Anthony, K.R.; Babcock, R.C.; Baird, M.E.; Beeden, R.; Fletcher, C.S.; Gorton, R.; Harrison, D.; Hobday, A.J.; Plagányi, É.E.; et al. Large-scale interventions may delay decline of the Great Barrier Reef. R. Soc. Open Sci. 2021, 8, 201296. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.A.; Williamson, D.H.; Beeden, R.; Emslie, M.J.; Abom, R.T.M.; Beard, D.; Bonin, M.; Bray, P.; Campili, A.R.; Ceccarelli, D.M.; et al. Protecting Great Barrier Reef resilience through effective management of crown-of-thorns starfish outbreaks. PLoS ONE 2024, 19, e0298073. [Google Scholar] [CrossRef]
- Haszprunar, G.; Vogler, C.; Wörheide, G. Persistent gaps of knowledge for naming and distinguishing multiple species of crown-of-thorns-seastar in the Acanthaster planci species complex. Diversity 2017, 9, 22. [Google Scholar] [CrossRef]
- Uthicke, S.; Pratchett, M.S.; Bronstein, O.; Alvarado, J.J.; Wörheide, G. The crown-of-thorns seastar species complex: Knowledge on the biology and ecology of five corallivorous Acanthaster species. Mar. Biol. 2024, 171, 32. [Google Scholar] [CrossRef]
- Chandler, J.F.; Burn, D.; Caballes, C.F.; Doll, P.C.; Kwong, S.L.T.; Lang, B.J.; Pacey, K.I.; Pratchett, M.S. Increasing densities of Pacific crown-of-thorns starfish (Acanthaster cf. solaris) at Lizard Island, northern Great Barrier Reef, resolved using a novel survey method. Sci. Rep. 2023, 13, 19306. [Google Scholar] [CrossRef] [PubMed]
- Chesher, R.H. Destruction of Pacific corals by the sea star Acanthaster planci. Science 1969, 165, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Colgan, M.W. Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci. Ecology 1987, 68, 1592–1605. [Google Scholar] [CrossRef] [PubMed]
- Kayal, M.; Vercelloni, J.; de Loma, T.L.; Bosserelle, P.; Chancerelle, Y.; Geoffroy, S.; Stievenart, C.; Michonneau, F.; Penin, L.; Planes, S.; et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 2012, 7, e47363. [Google Scholar] [CrossRef]
- Moran, P.J.; De’Ath, G. Estimates of the abundance of the crown-of-throns starfish Acanthaster planci in outbreaking and non-outbreaking populations on reefs within the Great Barrier Reef. Mar. Biol. 1992, 113, 509–515. [Google Scholar] [CrossRef]
- Rogers, J.G.; Plagányi, É.E.; Blamey, L.K.; Desbiens, A.A. Validating effectiveness of crown-of-thorns starfish control thresholds to limit coral loss throughout the Great Barrier Reef. Coral Reefs 2024, 43, 1611–1626. [Google Scholar] [CrossRef]
- Emslie, M.J.; Ceccarelli, D.M.; Logan, M.; Blandford, M.I.; Bray, P.; Campili, A.; Jonker, M.J.; Parker, J.G.; Prenzlau, T.; Sinclair-Taylor, T.H. Changing dynamics of Great Barrier Reef hard coral cover in the Anthropocene. Coral Reefs 2024, 43, 747–762. [Google Scholar] [CrossRef]
- Babcock, R.C.; Plagányi, É.E.; Condie, S.A.; Westcott, D.A.; Fletcher, C.S.; Bonin, M.C.; Cameron, D. Suppressing the next crown-of-thorns outbreak on the Great Barrier Reef. Coral Reefs 2020, 39, 1233–1244. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Caballes, C.F.; Rivera-Posada, J.; Sweatment, H.P.A. Limits to understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster spp.). Oceanogr. Mar. Biol. Annu. Rev. 2014, 52, 133–200. [Google Scholar]
- Uthicke, S.; Doyle, J.R.; Gomez Cabrera, M.; Patel, F.; McLatchie, M.J.; Doll, P.C.; Chandler, J.F.; Pratchett, M.S. eDNA monitoring detects new outbreak wave of corallivorous seastar (Acanthaster cf. solaris) at Lizard Island, Great Barrier Reef. Coral Reefs 2024, 43, 857–866. [Google Scholar] [CrossRef]
- De’Ath, G.; Fabricius, K.E.; Sweatman, H.P.A.; Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Nat. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef]
- Osborne, K.; Dolman, A.M.; Burgess, S.C.; Johns, K.A. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS ONE 2011, 6, e17516. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Cumming, G.S. Managing cross-scale dynamics in marine conservation: Pest irruptions and lessons from culling of crown-of-thorns starfish (Acanthaster spp.). Biol. Conserv. 2019, 238, 108211. [Google Scholar] [CrossRef]
- Westcott, D.A.; Fletcher, C.S.; Kroon, F.J.; Babcock, R.C.; Plagányi, E.E.; Pratchett, M.S.; Bonin, M.C. Relative efficacy of three approaches to mitigate Crown-of-Thorns Starfish outbreaks on Australia’s Great Barrier Reef. Sci. Rep. 2020, 10, 12594. [Google Scholar] [CrossRef] [PubMed]
- Castro-Sanguino, C.; Bozec, Y.; Condie, S.A.; Fletcher, C.S.; Hock, K.; Roelfsema, C.; Westcott, D.A.; Mumby, P.J. Control efforts of crown-of-thorns starfish outbreaks to limit future coral decline across the Great Barrier Reef. Ecosphere 2023, 14, e4580. [Google Scholar] [CrossRef]
- Bos, A.R.; Gumanao, G.S.; Mueller, B.; Saceda-Cardoza, M.M. Management of crown-of-thorns sea star (Acanthaster planci L.) outbreaks: Removal success depends on reef topography and timing within the reproduction cycle. Ocean Coast. Manag. 2013, 71, 116–122. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Baird, A.H.; Burn, D.; Caballes, C.F.; Chandler, J.F.; Garing, M.; Lang, B.; Levering, L.; Pacey, K.; Doll, P.C. Detectability and exposure of Pacific crown-of-thorns starfish (Acanthaster cf. solaris) during emerging population irruptions in the northern Great Barrier Reef, Australia. Coral Reefs 2025. in review. [Google Scholar]
- Burn, D.; Matthews, S.; Caballes, C.F.; Chandler, J.F.; Pratchett, M.S. Biogeographical variation in diurnal behaviour of Acanthaster planci versus Acanthaster cf. solaris. PLoS ONE 2020, 15, e0228796. [Google Scholar] [CrossRef] [PubMed]
- Keesing, J.K. Temporal patterns in the feeding and emergence behaviour of crown-of-thorns starfish Acanthaster planci. Mar. Freshw. Behav. Physiol. 1995, 25, 209–232. [Google Scholar] [CrossRef]
- Ling, S.D.; Cowan, Z.L.; Boada, J.; Flukes, E.B.; Pratchett, M.S. Homing behaviour by destructive crown-of-thorns starfish is triggered by local availability of coral prey. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201341. [Google Scholar] [CrossRef]
- Fernandes, L.; Marsh, H.; Moran, P.J.; Sinclair, D. Bias in manta tow surveys of Acanthaster planci. Coral Reefs 1990, 9, 155–160. [Google Scholar] [CrossRef]
- MacNeil, M.A.; Mellin, C.; Pratchett, M.S.; Hoey, J.; Anthony, K.R.; Cheal, A.J.; Miller, I.; Sweatman, H.; Cowan, Z.L.; Taylor, S.; et al. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef. PeerJ 2016, 4, e2310. [Google Scholar] [CrossRef]
- Plagányi, É.E.; Babcock, R.C.; Rogers, J.; Bonin, M.; Morello, E.B. Ecological analyses to inform management targets for the culling of crown-of-thorns starfish to prevent coral decline. Coral Reefs 2020, 39, 1483–1499. [Google Scholar] [CrossRef]
- Pratchett, M.S. Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995–1999). Coral Reefs 2005, 24, 453–462. [Google Scholar] [CrossRef]
- Pratchett, M.S. Influence of coral symbionts on feeding preferences of crown-of-thorns starfish Acanthaster planci in the western Pacific. Mar. Ecol. Prog. Ser. 2001, 214, 111–119. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Lang, B.J.; Matthews, S. Culling crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef: Rationale and effectiveness. Aust. Zool. 2019, 40, 13–24. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Caballes, C.F.; Messmer, V.; Fletcher, C.S.; Westcott, D.A. Movement Patterns of Pacific Crown-of-Thorns Starfish (Acanthaster cf. solaris) Linked to Habitat Structure and Prey Availability; Report to the National Environmental Science Program; Reef and Rainforest Research Centre Limited: Cairns, Australia, 2020; 40p, Available online: https://nesptropical.edu.au/wp-content/uploads/2020/07/NESP-TWQ-Project-3.1.1-Technical-Report-3.pdf (accessed on 8 October 2025).
- McGillycuddy, M.; Warton, D.I.; Popovic, G.; Bolker, B.M. Parsimoniously fitting large multivariate random effects in glmmTMB. J. Stat. Softw. 2025, 112, 1–19. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 8 October 2025).
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.48.11. 2025. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 8 October 2025).
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- De’ath, G.; Moran, P.J. Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef:: 1: Patterns of activity. J. Exp. Mar. Biol. Ecol. 1998, 220, 83–106. [Google Scholar] [CrossRef]
- Ormond, R.F.G.; Campbell, A.C.; Head, S.H.; Moore, R.J.; Rainbow, P.R.; Saunders, A.P. Formation and breakdown of aggregations of the crown-of-thorns starfish, Acanthaster planci (L.). Nature 1973, 246, 167–169. [Google Scholar] [CrossRef]
- Kayal, M.; Bosserelle, P.; Adjeroud, M. Bias associated with the detectability of the coral-eating pest crown-of-thorns seastar and implications for reef management. R. Soc. Open Sci. 2017, 4, 170396. [Google Scholar] [CrossRef]
- Chandler, J.F.; Burn, D.; Figueira, W.F.; Doll, P.C.; Johandes, A.; Piccaluga, A.; Pratchett, M.S. Daily variation in the feeding activity of Pacific crown-of-thorns starfish (Acanthaster cf. solaris). Biology 2025, 14, 1001. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Cowan, Z.-L.; Nadler, L.E.; Caballes, C.F.; Hoey, A.S.; Messmer, V.; Flecther, C.S.; Westcott, D.A.; Ling, S.D. Body size and substrate type modulate movement by the western Pacific crown-of-thorns starfish, Acanthaster solaris. PLoS ONE 2017, 12, e0180805. [Google Scholar] [CrossRef]
- Petie, R.; Hall, M.R.; Hyldahl, M.; Garm, A. Visual orientation by the crown-of-thorns starfish (Acanthaster planci). Coral Reefs 2016, 35, 1139–1150. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Weber, A.; Pipitone, C.; Leopold, M.; Cronin, M.; Scheidat, M.; Doyle, T.K.; Buhl-Mortensen, L.; Buhl-Mortensen, P.; Anna, G.D.; et al. Monitoring marine populations and communities: Methods dealing with imperfect detectability. Aquat. Biol. 2012, 16, 31–52. [Google Scholar] [CrossRef]
- Uthicke, S.; Robson, B.; Doyle, J.R.; Logan, M.; Pratchett, M.S.; Lamare, M. Developing an effective marine eDNA monitoring: eDNA detection at pre-outbreak densities of corallivorous seastar (Acanthaster cf. solaris). Sci. Total Environ. 2022, 851, 158143. [Google Scholar] [CrossRef]
- Moran, P.J.; De’ath, G. Suitability of the manta tow technique for estimating relative and absolute abundances of crown-of-thorns starfish (Acanthaster planci L.) and corals. Mar. Freshw. Res. 1992, 43, 357–379. [Google Scholar] [CrossRef]
- Lawrence, E.; Foster, S.; Matthews, S.; Williams, D.; Pratchett, M.S.; Doyle, J.; Bainbridge, S.; Uthicke, S.; Doll, P.C.; Kusy, B.; et al. A quantitative comparison of tools for monitoring the abundance of crown-of-thorns starfish and coral cover. Coral Reefs 2025. in review. [Google Scholar]
- Vanhatalo, J.; Hosack, G.R.; Sweatman, H. Spatiotemporal modelling of crown-of-thorns starfish outbreaks on the Great Barrier Reef to inform control strategies. J. Appl. Ecol. 2016, 54, 188–197. [Google Scholar] [CrossRef]
- Chak, S.T.; Dumont, C.P.; Adzis, K.A.A.; Yewdall, K. Effectiveness of the removal of coral-eating predator Acanthaster planci in Pulau Tioman Marine Park, Malaysia. J. Mar. Biol. Assoc. U. K. 2018, 98, 183–189. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Caballes, C.F.; Wilmes, J.C.; Matthews, S.; Mellin, C.; Sweatman, H.P.A.; Nadler, L.E.; Brodie, J.; Thompson, C.A.; Hoey, J.; et al. Thirty years of research on crown-of-thorns starfish (1986–2016): Scientific advances and emerging opportunities. Diversity 2017, 9, 41. [Google Scholar] [CrossRef]
Factor | Potential Mechanism (Directionality of Effect) |
---|---|
Aspect L,R | (−) CoTS are less likely to be exposed when subject to higher hydrodynamic forces and more likely to become dislodged [45,46] |
Depth/zone L,R | (+) Diurnal shifts in behavioral modality are less pronounced in low-light environments [45] |
CoTS density L | (+) Increased competition for food leads to increased feeding during the day [46] |
Body size R | (+) Larger CoTS feed more often and are more likely to be exposed, especially during the day [30,31,32,33,45] |
Coral cover R | (−) There are greater opportunities to remain hidden in areas with high coral cover [15] |
Prey availability | (−) CoTS spend less time moving in search of prey in areas with high cover of preferred coral prey, especially Acropora [33] |
Individual condition | (+) CoTS in poor condition spend more time searching for food [45] |
Habitat complexity | (−) Highly complex habitats provide greater opportunities for CoTS to remain hidden [14,30] |
Night versus day R | (+) CoTS are more exposed when feeding, which tends to occur mostly at night [31,32,33] |
Summer versus winter | (+) Temperature-mediated changes in metabolic demands increase time spent feeding [32] |
Size (Diameter) | Day | Night | ||||
---|---|---|---|---|---|---|
M | N | Detectability | M | N | Detectability | |
Very small (≤20 cm) | 9 | 18 | 0.50 | 16 | 36 | 0.44 |
Small (21–30 cm) | 140 | 188 | 0.74 | 179 | 203 | 0.88 |
Medium (31–40 cm) | 74 | 98 | 0.89 | 95 | 105 | 0.90 |
Large (>40 cm) | 26 | 33 | 0.91 | 32 | 34 | 0.94 |
Location | Detectability | Sampling Unit | Method for Inferring True Sample Population (N) | Factors Affecting Detectability |
---|---|---|---|---|
Bowden and Shell Reefs, central GBR [34] | 22.7% | 200 m × 10 m manta tow | Intensive, repeated SCUBA surveys | Exposure of CoTS, habitat complexity, water visibility, and reef aspect |
Bowden and Shell Reefs, central GBR [34] | 88.2% | 20 m × 10 m SCUBA surveys | Successive SCUBA surveys (K = 2) recording unmarked CoTS | |
Undine and Rudder Reefs, northern GBR [35] | 82.0% | 50 m × 5 m SCUBA surveys | Mark–recapture surveys (K = 6) including nighttime surveys | Size of CoTS; no effect of coral cover |
Moorea, French Polynesia [47] | 78.7% | 50 m × 4 m SCUBA surveys | Nighttime surveys | No effect of CoTS density or habitat complexity |
Wheeler Reef, central GBR [32] | 81.8% | 60 min timed swims | Nighttime surveys | Size of CoTS; no effect of month/season |
Northern GBR [30] | 50.5% | >800 m × 5 m SALAD surveys | Inferred densities based on feeding scars | Size-based differences in feeding and exposure during the day; no effect of coral cover |
Lizard Island, northern GBR 1 | 78.4% | 50 m × 4 m SCUBA surveys | Re-sampling (K = 3) following CoTS removal | Zone (depth); no effect of reef aspect or CoTS density |
Rib Reef, central GBR 1 | 75.9% | 250–500 m2 SCUBA surveys | Mark–recapture surveys (K = 3) including nighttime surveys | Day versus night and reef aspect; no effect of zone or coral cover |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratchett, M.S.; Caballes, C.F. Detectability of Crown-of-Thorns Starfish and Consequences for Culling or Removal. Biology 2025, 14, 1391. https://doi.org/10.3390/biology14101391
Pratchett MS, Caballes CF. Detectability of Crown-of-Thorns Starfish and Consequences for Culling or Removal. Biology. 2025; 14(10):1391. https://doi.org/10.3390/biology14101391
Chicago/Turabian StylePratchett, Morgan S., and Ciemon F. Caballes. 2025. "Detectability of Crown-of-Thorns Starfish and Consequences for Culling or Removal" Biology 14, no. 10: 1391. https://doi.org/10.3390/biology14101391
APA StylePratchett, M. S., & Caballes, C. F. (2025). Detectability of Crown-of-Thorns Starfish and Consequences for Culling or Removal. Biology, 14(10), 1391. https://doi.org/10.3390/biology14101391